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The pN interaction is studied within a meson-exchange model and in a coupled-channels approach which
includes the channelspN, hN, as well as three effectiveppN channels, namely,rN, pD, andsN. Starting out
from an earlier model of the Jülich group systematic improvements in the dynamics and in some technical
aspects are introduced. With the new model an excellent quantitative reproduction of thepN phase shifts and
inelasticity parameters in the energy region up to 1.9 GeV and for total angular momentaJø3/2 is achieved.
Simultaneously, good agreement with data for the total and differentialpN→hN transition cross sections is
obtained. The connection of thepN dynamics in theS11 partial wave with the reactionpN→hN is discussed.
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I. INTRODUCTION

ThepN interaction is interesting for several reasons. First,
it is one of the main sources of information about the baryon
spectrum. Thereby it serves as a doorway to the understand-
ing of QCD in the nonperturbative regime, and especially of
the confining mechanism, which is most important for bind-
ing a system of quarks into a hadron. For example, experi-
mental information about the mass, width, and decay of
baryon resonances serves as a testing ground for several
models of the internal structure of the nucleon and its excited
states. Most of this information is extracted from partial
wave analyses ofpN scattering data[1–3].

ThepN interaction is also interesting by itself. The wealth
of accurate data and the richness of structures shown by them
provide an excellent but also challenging testing ground for
any model description in terms of effective degrees of free-
dom, e.g., for chiral perturbation theory[4,5] but also for the
more conventional meson-exchange picture[6–8].

Finally, the pN interaction is an important ingredient in
many other hadronic reactions and in particular for the me-
son production in nucleon-nucleonsNNd collisions [9,10].
pN rescattering is an essential mechanism in the reaction
NN→NNp near threshold[11–13]. There are also strong in-
dications that rescattering involving thepN system plays an
important, if not dominant role, in the production of theh
[14–17] and v mesons[18,19] and even for the associated
strangeness productionsNN→NLK,NN→NSKd [20,21].
Thus, model investigations of such production reactions re-
quire solid information about the corresponding elementary
reactions such aspN→hN, pN→vN, pN→KL, pN→KS,
etc.

Over the past few years, in a series of papers, the Jülich
group has investigated thepN interaction in the meson-
exchange framework[8,22–24]. One of the main novelties of
the model was treating thes- and r-mesont-channel ex-
changes as correlated two-pion exchange, using the disper-
sion relation technique. The Jülich model was originally con-
structed to describe elasticpN data not far from threshold
[22]. Later the model was extended to higher energies by
including several inelastic channels, namely, three effective

ppN channels(sN, rN, andDp) and thehN channel[8,24].
The treatment of correlatedpp exchange was made more
consistent and transparent in Ref.[25]. The possibility of
generating resonances dynamically was also systematically
studied. It turned out that only one of them, namely the
Roper resonanceP11s1440d, can be understood in this way in
the framework of the JülichpN model [8,24]. Other reso-
nances such asS11s1535d, S11s1650d, D13s1520d, andDs1232d
had to be included explicitly. The latest model provided a
good qualitative, and in many partial waves even a quantita-
tive, description ofpN scattering in the energy region from
threshold up to 1.9 GeV.[8].

Unfortunately, a further improvement of this model by
simply introducing further resonances and by including ad-
ditional inelastic channels proved to be impossible due to
several reasons. First of all, in some partial waves the devia-
tion of the model predictions from the data at higher energies
are seemingly not due to missing resonance contributions
only. Already the basic(nonresonant or background) contri-
butions of the model by Krehlet al. [8] are incompatible
with the general trend exhibited by the experimental phase
shifts.

The second problem is a strong influence of theN*s1650d
resonance on the low energyS11 phase shift. In fact, it gives
the main contribution to this partial wave even at threshold –
which is, of course, unphysical. This means, in turn, that any
additional channels that couple to theN*s1650d resonance
will likewise have a strong influence on theS11 phase shift
close to threshold, a certainly undesirable feature.

Finally, the existingpN model yields only an unsatisfac-
tory description of the inelasticity parameter in theS11 partial
wave and at the same time it overestimates thepN→hN
transition cross section close to thehN threshold. These two
related problems are believed to be due to shortcomings in
the treatment of theppN channel.

In this context, let us mention that theS11 partial wave is
of particular importance for thehN andKL channels close to
their thresholds. ForpN→hN as well aspN→KL experi-
mental information on the transition cross sections and also
differential cross sections and polarization observables are
available. An analysis of these data within our model re-
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quires a satisfactory description of theS11 pN partial wave in
the relevant energy range. Moreover, an adequate description
of the S11 inelasticity and of thepN→hN transition ampli-
tude is also needed if one wishes to investigateh production
in NN collisions [17]. Similarly, thepN→KLsSd transition
amplitude plays an important role in studies ofLsSd produc-
tion in NN collisions. It is the main ingredient in the produc-
tion amplitude based on the pion rescattering mechanism
[20].

In the present work we want to remedy the above-
mentioned deficiencies of the JülichpN model [8]. Thereby
we aim at a quantitative description of thepN phase shifts
and inelasticities for all partial waves withJø3/2, from
threshold up to around 1.9 Gev. A further and equally impor-
tant goal is the consistent description of the experimental
information on thepN→hN transition.

The paper is structured in the following way. In Sec. II the
main ingredients of ourpN model are described with special
emphasis on those parts of the dynamics where changes and
improvements were made. For the time being, apart from the
ppN channel(described effectively via thesN, rN, andDp
channels) only the hN channel is taken into account. How-
ever, the inclusion of theKL channel(and evenvN andKS)
is expected to be straightforward within the new improved
model. In Sec. III we present results for thepN elastic scat-
tering. Specifically, we compare thepN phase shifts and in-
elasticities of the new model with experimental values and
with the description achieved within the model of Krehlet
al. [8]. In addition, and as the main result of our paper we
examine in detail the transition reactionpN→hN. Calcula-
tions for the total transition cross section but also for differ-
ential observables are presented. Furthermore, we shed some
light on peculiar structures which occur in thepN→hN total
cross section of our old model, but also in other models in
the literature[26–28]. The paper ends with a summary.

II. DESCRIPTION OF THE MODEL

The general framework as well as all technical aspects of
the JülichpN model have been thoroughly described in ear-
lier papers[8,22,25]. Therefore, we refrain from repeating all
the details here. Rather we want to give a brief account of its
main features with specific emphasis on the new and im-
proved ingredients of the present model.

Our model of thepN interaction is derived within the
meson-exchange framework in time-ordered perturbation
theory. Within the envisaged range of validity of our model
of up to around 1.9 GeV inelasticities play an increasingly
important role, as is evidenced by the results of phase-shift
analyses. Hence, coupling to reaction channels that are re-
sponsible for these inelasticities have to be taken into ac-
count. The decay modes of the nucleon resonances in the
energy range under consideration show that the dominant
decay [besidespN and hN for the N*s1535d] is the ppN
channel [29]. Since a three-body calculation is much too
complicated for realistic potentials, we represent theppN
channel by effective two-body channels. In doing this we are
guided by studying strong interactions, between two-body
clusters of the three-bodyppN state in the spirit of the for-

malism of Ref.[30]. The dominant clusters are theD in the
pN interaction, ther in the vector-isovectorpp interaction
and the strong correlation in the scalar-isoscalarpp interac-
tion, which we calls. Therefore—besides thepN and hN
channels—we include in our model the reaction channels
pD, sN, andrN.

Accordingly, we have to solve the coupled-channel scat-
tering equation[31]

kkW8l3l4uTmn
I ukWl1l2l = kkW8l3l4uVmn

I ukWl1l2l

+ o
g

o
l18,l28

E d3qkkW8l3l4uVmg
I uqWl1l8l

3
1

E − Wgsqd + ie
kqWl18l28uTgn

I ukWl1l2l,

s1d

where li ,li+2,li8 ,si =1,2d are the helicities of the baryon
and meson in the initial, final, and intermediate states,I is
the total isospin of the two body system, andm ,n ,g are
indices that label different reaction channels.Wgsqd
=Îq2+Mg+Îq2+mg, wheremgsMgd is the mass of the me-
son sbaryond in the channelg. We work in the center-of-
momentum frame andksk8d are the momenta of the initial
sfinald baryon.

The pseudopotentialVmn
I (i.e., the interaction between

baryon and meson) that is iterated in Eq.(1) is constructed
from an effective Lagrangian. Our interaction Lagrangian
(see Table I) is based on that of Wess and Zumino[32],
which we have supplemented with additional terms for in-
cluding theD isobar, thev, h, a0 meson, and thes. We also
have included terms that characterize the coupling of the
resonancesN*s1535d, N*s1520d, andN*s1650d to various re-
action channels. The diagrams that built up the interaction in
thepN→pN, pN→hN, andhN→hN channels are shown in
Figs. 1 and 2 as an example and also to introduce our nota-
tion. The full set of diagrams, including also the transitions
and interactions in the other reaction channels(rN, sN, and
pD), can be found in Ref.[8]. In that paper one can also find
explicit expressions for all the matrix elements

kkW8l3l4uVmn
I ukWl1l2l.

As already indicated in the Introduction, there are some
modifications and improvements in the present model and
we want to summarize them here. First, we now use deriva-
tive coupling for theS11 N* resonances, as demanded by chi-
ral symmetry. The corresponding Lagrangians for the
N*sS11dNp and N*sS11dNh vertices can be found in Table I.
Second, we introduce a coupling of theS11 N*s1535d reso-
nance to thepD channel. Also, this Lagrangian is given in
Table I. Finally, the subtraction constant that appears in the
dispersion relations which constitute the contribution of the
correlatedpp exchange in the scalar-isoscalarssd channel
[22] is not set to zero as in our previous models[8,24], but
allowed to assume a finite value. Interpreted in terms of ef-
fective exchanges this contact term corresponds to the ex-
change of as meson with scalar coupling in addition to the
derivative coupling as it occurs now for thes exchange
stemming from the subtracted dispersion integral. Note,
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TABLE I. The effective Lagrangian.

Vertex Lint Vertex Lint

NNp −
fNNp

mp
Cg5gmtW]mpW C pha0 gpha0

mphpW aW0

NDp fNDp

mp
DmSW†]mpW C+H.c. N*sS11dNp fN*Np

mp
CN*gmtWC]mpW +H.c.

rpp −grppspW 3]mpW drWm N*sS11dNh fN*Nh

mp
CN*gmC]mh+H.c.

NNr −gNNrCfgm−
kr

2mN
smn]ngtWrWmC N*sS11dNr gN*NrCN*g5gmtWrWmC+H.c.

NNs −gNNsCCs N*sS11dDp −fN*Dp

mp
CN*g5SWDm]mpW +H.c.

spp gspp

2mp
]mpW ]mpW s N*sP13dNp fN*Np

mp
CN*

m tWC]mpW +H.c.

sss −gsssmssss N*sP13dNh fN*Nh

mp
CN*

m
C]mh+H.c.

NNrp fNNp

mp
grCg5gmtWCsrWm3pW d N*sP13dDp fN*Dp

mp
CN*

m g5gnSWDm]npW +H.c.

NNa1 −
fNNp

mp
ma1

Cg5gmtWCaWm
N*sD13dNp fN*Np

mp
2 Cg5gntWCN*

m ]n]mpW +H.c.

a1pr
−

gr

ma1

f]mpW 3aWn−]npW 3aWmgf]mrWn−]nrWmg

+
gr

2ma1

fpW 3s]mrWn-]nrWmdgf]maWn-]naWmg

N*sD13dNh fN*Nh

mp
2 Cg5gnCN*

m ]n]mh+H.c.

NNv −gNNvCgmvmC N*sD13dDp i
fN*Dp

mp
CN*nSWgmDn]mpW +H.c.

vpr gvpr

mv
eabmn]

arW b]mpW vn N*sD13dNr fN*Nr

mr
CN*

m gntWrWmnC+H.c.

NDr −i
fNDr

mr
Dmg5gnSW†rWmnC+H.c. D*sS31dNp fD*Np

mp
D*gmSW†C]mpW +H.c.

rrr gr

2
srWm3rWndrWmn D*sS31dDp −fD*Dp

mp
D*g5TWDm]mpW +H.c.

NNrr krgr
2

8mN
CsmntWCsrWm3rWnd D*sP31dNp −

fD*Np

mp
D*g5gmSW†C]mpW +H.c.

DDp fDDp

mp
Dmg5gnTWDm]npW D*sP31dDp −

fD*Dp

mp
D*TWDm]mpW +H.c.

DDr −gDDrDtsgm−i
kDDr

2mD

smn]ndrWmTWDt N*sD33dNp fN*Np

mp
2 Cg5gnSW†CN*

m ]n]mpW +H.c.

NNh −
fNNh

mp
Cg5gm]mhC N*sD33dDp i

fN*Dp

mp
D*nTWgmDn]mpW +H.c.

NNa0 gNNa0
mpCtWCaW0 N*sD33dNr fN*Nr

mr
D*mgnSW†rWmnC+H.c.
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when interpreting the low energy constantsci, as they occur
in the chiral perturbation theory analysis ofpN scattering,
phenomenologically in terms of resonance exchanges, both
coupling structures of a scalar to pions can also be identified
[33]. Explicit expressions for those matrix elements

kkW8l3l4uVmn
I ukWl1l2l which differ from the ones employed in

our old model[8] can be found in the Appendix.
Mesons and baryons are not pointlike particles, but have a

finite size. Therefore the interaction verticesmmmandmBB
(m is meson,B is baryon) also have a finite structure which,
in our model, is taken into account by means of form factors.
These form factors are parametrized by the following ana-
lytical forms, in which qW is the three-momentum transfer
carried by the exchanged particle.

For meson and baryon exchange

Fsqd = SL2 − mx
2

L2 + qW2 Dn

. s2d

We use monopole form factorssn=1d except for theD
exchange, for which the convergence of the integral in Eq.
s1d requires a dipole form factorsn=2d.

For the nucleon exchange at thepNN vertex

Fsqd =
L2 − mN

2

L2 − fsmN
2 − mp

2d/mNg2 + qW2 . s3d

This choice ensures that the nucleon pole and nucleon
exchange contribution cancel each other at the Cheng-
Dashen point, which is needed for a calculation of theS
term f22g.

For N, N*, andD pole diagrams

Fsqd = S L4 + mR
4

L4 + fEgsqd + vgsqdg4Dn

, s4d

wheren=1 is used forS- and P-wave resonances, andn
=2 for resonances in higer partial waves.

The correlatedpp exchange is supplemented by the form
factor

Fsp2, p4d =
L2

L2 + pW2
2

L2

L2 + pW4
2 s5d

Note that this choice differs from the form employed in
our previouspN models, where the form factor appeared
inside thet8 integration, cf. Ref.f22g. The particular form
we apply in the present work has the following advan-
tages:sid it does not depend on energy;sii d it does not
modify strongly the on-shell potentialswhich is assumed
to be fully determined by the dispersion integralsd as long
as the energy is not too high; andsiii d it does not change
the t dependence of the potential.

For the contact interaction in the Wess-Zumino Lagrang-
ian [32],

Fsp2, p4d = SL2 + m4
2

L2 + pW4
2

L2 + m2
2

L2 + pW2
2 D2

. s6d

Finally, we want to emphasize that theD isobar in thepD
channel and thes and r mesons in thesN and rN chan-
nels are not treated as stable particles. Rather, as already
mentioned above, theD, s, and r here stand forpN and
pp subsystems with the quantum numbers of theP33 par-
tial wave in thepN system and theI =J=0 and I =J=1
partial waves in thepp system, respectively. In order to
simulate these, a simplified model for theP33 pN partial
wave as well as for thed00 and d11 pp partial waves was
adopted in which pole diagrams, in the framework of
time-ordered perturbation theory, are iteratedf8,24g.
These models are then used to construct the self-energies
of the D, s, andr which appear in the propagators of the
pD andsN intermediate states in our scattering equation,
i.e., we replace the two-particle intermediate state propa-
gator for pD, sN, andrN by

N

N

π

π

N

π

N

N

π

ρσ,

T

N

N

π

π

∆

πN

πN

∆

πN

πN

N

N

N

*N

π

π

q

2p

4p3p

p1 p1 2p

3p 4p

q

p1 2p

3p 4p

q

(a) (b) (c)

(d) (e) (f)

3λ

2λ

4λ

1λ

FIG. 1. Contribution to the elasticpN channel.

N π

N

π

ηNη N

ao

N N

N η

*N

π

N

N

Nη

η N

N

η

η

*N

(a) (b) (c)

(d) (e)

FIG. 2. Contribution to thepN→hN transition (a)–(c) and to
the hN channel(d)–(e).
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1

E − Wgsqd
→ 1

E − Wgsqd − SgsEsubd
, s7d

where

Esub= E − vpsqd − fÎsMD
od2 + qW2 − MD

og for the D,

Esub= E − ENsqd − fÎsmr
od2 + qW2 − mr

og for r = r, s s8d

is the energy of the decaying cluster at restf24g. The bare
massesMD

o andmr
o are determined by fitting the models to

the relevant phase shifts of thepN and pp systems, cf.
Refs. f8,24g for details. By taking into account the self-
energy contibutions we preserve the correct threshold be-
havior for the description of pion production in thepN
system.

The scattering equation(1) is reduced to a set of one-
dimensional integral equations by means of the usual partial
wave decomposition[34] and then solved numerically by
standard contour-deformation methods[35,36].

III. RESULTS

In this section we present the results of our model forpN
elastic scattering and for thepN→ph transition in the en-
ergy range frompN threshold up to 1.9 GeV. First we dis-
cuss the parameters that enter into our model calculation.
Then we present the results for thepN phase shifts and in-
elasticities. In particular, the role of the background and of
the resonance contributions is analyzed. We also compare the
results with those of the previous version of the model. Fur-
thermore, we analyze in detail the results for thepN→hN
total cross section and angular distributions and discuss the
role of the background in this process.

A. Parameters of the model

Our model is based on the effective potential, which was
described in Sec. II. The masses of all the particles appearing
in the model are collected in Table II. Here one should pay
attention to the mass of thes meson. While thes exchange
in the pN→pN potential is evaluated using a dispersion re-
lation, we have anothert-channels exchange in thesN
→sN potential. In this case we choose the valuems

=650 MeV, which was extracted from a Breit-Wigner pa-
rametrization of the correlatedpp exchange in Ref.[37].

Table III contains coupling constants and cutoff param-
eters of the form factors for the vertices entering thet- and
u-exchange diagrams and the contact terms, i.e., those which
constitute the background.

Most of the coupling constants have been taken from
other sources. The coupling constants of the pole diagrams
are constrained by values determined from their decay
widths, for which we take the estimates of Ref.[38]. The
parameters which are not fixed from other sources are shown
in boldface. These are the purely phenomenological coupling
constant at the triples vertexgsss and the subtraction con-
stantA0 for the dispersion relation in thes channel. In addi-
tion, the cutoff masses are treated as free parameters. These
free parameters are determined by a fit to thepN phase shifts
and inelasticities forJø3/2 and thepN→hN cross section
in the energy range from threshold to about 1.9 GeV. Here
we should emphasize that we restrict ourselves to values of
the cutoff masses of about 1–1.5 GeV(in some cases up to
2 GeV for heavy exchanged particles), i.e., values in line
with typical hadronic scales.

Parameters of the pole diagrams(bare masses and cou-
pling constants) are given in Table IV. Note that the bare
nucleon mass and barepN coupling constantfpNN

B are not
free parameters, because they are fixed by the physical val-
ues of these quantities(cf. Ref. [22]). However, the cutoff at
the pNN vertex was allowed to vary, in order to fit theP11
partial wave. The resulting parameters for the nucleon pole
are

M0 = 1239 MeV,
sfNNp

B d2

4p
= 0.0166,L = 1950 MeV. s9d

The cutoff masses for all other resonance diagrams were
set to 2 GeV.Indeed, the results depend only weakly on
the particular values of the cutoff masses, since their ef-
fects can be always compensated by a change in the cor-
responding coupling constants. The largeness of the cutoff
masses in the resonance diagrams is motivated by the spe-
cific analytical form of the employed resonance form fac-
tors, which fall off with momentum rather rapidly even for
such a large cutoff massf39g.

In general, we adopt positive values for the sign of the
bare coupling constants. However, we use negative coupling
constants if this leads to a better agreement with the data. In
the case of theNP13

* s1720dhN vertex we changed the sign of
the coupling constant because this allows us to obtain a bet-
ter description of thepN→hN differential cross section via
an interference of theP13 with other partial waves. Finally,
we would like to remark that among the three phase-shift
analyses, whose results are shown in figures, we use the en-
ergy independent analysis from Ref.[2] as the main guide-
line for the fitting procedure.

B. pN elastic scattering

We start the discussion of the elasticpN data by first
looking at the phase shifts as they result from the original
model of Krehlet al. [8] (cf. the dashed curves in Figs. 3, 4,
and 5) In general, the quality of the description is rather
good, but there are some unsatisfactory features which we
would like to point out here.

First, there are significant deviations of the model results
from the data in some partial waves, specifically in theP13,
S31, andD33 waves. Evidently, the discrepancies are prima-

TABLE II. Masses of mesons and baryons(in MeV) used in the
calculations.

Mesons Baryons

mp 138.03 mv 782.6 mN 938.926
mh 547.45 ma0

982.7 mD 1232.0
ms 650.0 ma1

1260.0
mr 769.0
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rily due to the presence of resonances in these partial waves,
which are not yet included in the model. However, it is easy
to see that the inclusion of the resonances in question alone
will not help in the case ofP13 andS31. This is because such
resonance contributions will vanish again above the position
of the resonance within the energy range given roughly by
the width and the phase shift will change by 180°(if the
resonance contribution and the background have the same
signs) or turn back to the background(if they have opposite

signs). However, as one can see from Figs. 3 and 4, in the
P13 partial wave the phase goes in the opposite direction to
the data, and inS31 partial wave the deviation from the data
at energies above the position of the resonance is huge.

The second problem of thepN model of Krehlet al. is the
presence of a long tail of theS11s1650d resonance. This leads
to the undesirable feature that even at very low energies the
S11 phase shift is strongly influenced by this resonance, in
conflict with chiral symmetry. As was shown by Weinberg

TABLE III. Parameters of the vertices which enter into the background diagrams. Free parameters are
given in boldface.

Vertex Type of the diagram Coupling constant Reference CutoffL (MeV)

Correlatedpp exchange:
r channel 1000

s channel A0=25 MeV/Fp
2 900

NNp
N exchange

fNNp
2

4p
=0.0778 [59] 1100

NDp
D exchange

fNDp
2

4p
=0.36 [59] 1800

NNr
N exchange

gNNr
2

4p
=0.84 [59] 1600

k=6.1 [59]

NNrp Contact term ,fNNpgNNr 1100

NNp p exchange ,fNNp 900

ppr
p exchange

gppr
2

4p
900

NNv
v exchange

gNNv
2

4p
=11.0 [59] 1200

vpr
v exchange

gvpr
2

4p
=10.0 [18,60] 1200

NNa1 a1 exchange ,fNNp 1600

a1pr a1 exchange ,gNNr 1600

NNr r exchange gNNr,k 1400

rrr r exchange ,gNNr 1400

NNrr contact term ,gNNr
2 k 1200

NDp
N exchange

fNDp
2

4p
=0.36 [59] 1600

DDp
D exchange

fDDp
2

4p
=0.252 [61,62] 1800

NDr
r exchange

fNDr
2

4p
=20.45 [59] 1400

DDr
r exchange

gDDr
V 2

4p
=4.69, [61,62] 1400

gDDr
T

gDDr
V =6.1 [61,62]

ppr r exchange
grpp

2

4p
=2.90 [63] 1400

NNs
N exchange

gNNs
2

4p
=13 [37] 1800

pps
p exchange

gpps
2

4p
=0.25 [64] 1050

NNs s exchange ,gNNs 1700

sss
s exchange

gsss
2

4p
=0.275 1700

NNh
N exchange

fNNh
2

4p
=0.00934 [24] 1500

NNa0 a0 exchange
gNNa0

gpha0

4p
=8.0 [24] 1500

pha0 a0 exchange 1500
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and Tomozawa[40,41] the isovectors-wave pN scattering
length is fully determined to leading order by the pion mass
mp and pion decay constantFp. Therefore, the presence of
contributions related to theN*s1650d resonance at low ener-
gies is unnatural and physically hard to justify. Figure 5
shows the discussed effect. One can see that the low energy
S11 phase shift even changes its sign when all couplings to
the S11s1650d resonance are switched off.

A detailed inspection of this problem revealed that the
long tail of theS11s1650d resonance is predominantly due to
the rather hard form factors used in the model of Krehlet al.
and, in particular, in those diagrams contributing to thepN
→rN transition potential[there is a direct coupling of therN
channel to theS11s1650d]. As was mentioned before, in the
new model we want to avoid the use of extremely large
cutoff masses anyway. A further reduction of the near thresh-
old contribution from theS11s1650d resonance is achieved by
choosing the derivative coupling for theNS11

* Np vertex (see
the Appendix) in analogy with theNNp coupling. In the new
model the missing strength at low energies is provided by the
correlatedpp exchange in thes channel. It can be generated
by allowing the subtraction constant, which occurs in the
corresponding dispersion relations, cf. Eq.(31) in Ref. [22],
and which was set to zero by hand in the old model[8], to
assume a finite but still small value.

Now, let us consider the nonresonant part(or the back-
ground) of the new model. First one should note that the
main contribution to the background at low energies is, of
course, provided by diagrams that involve only thepN chan-
nel. Therefore, we start by discussing the importance of vari-
ouspN graphs for the different partial waves. There are five
diagrams in thepN→pN potential, cf. Figs. 1(a)–1(e): cor-
relatedpp exchange in theJ=0, I=0 ssd and J=1, I=1 srd
channels, nucleon andD u-channel exchanges, and the
nucleon(s-channel) pole diagram. It turned out that the con-
tribution from theD exchange is very small in all partial
waves. (As a consequence of this, we do not include
u-channel graphs involving heavier resonances.) The S
waves are dominated by ther ands exchanges. The nucleon
exchange becomes important in higher partial waves. Note

also that ther exchange alone provides such a strong attrac-
tion in theP11 partial wave that it is almost sufficient for the
formation of a resonance. However, it is partly canceled by
the contribution from the nucleon pole. One should empha-
size here that, in contrast to the old model, we do not have
much freedom in varying the strength of ther and s ex-
changes (except for the subtraction constant mentioned
above), since their contributions at low energies are basically
fixed due to our choice of the form factors(see Sec. II).
Thus, the simultaneous description of the background in
seven partial waves with a rather small number of parameters
is to be considered as a success of our model(cf. dash-dotted
lines in Figs. 3 and 4). We have not included theP11 partial
wave in these considerations, because there the coupling to
the sN channel plays a rather important role.

As a confirmation for the quality of the background con-
tribution we also looked at the phase shifts withJ=5/2, cf.
Fig. 6. These partial waves were not included in the fitting
procedure and, therefore, are genuine predictions of our

TABLE IV. Parameters of the pole graphs: bare masses and
coupling constants. The minus sign in parentheses indicates that the
coupling constant is negative.

f2/s4pd
Resonance Bare mass

(MeV)
pN pD rN hN

NS11

* s1535d 2051 0.00045 1.09s−d 0.0247

NS11

* s1650d 1919 0.0067 0.0461

NP13

* s1720d 1910 0.0031 0.0085s−d 0.079s−d
ND13

* s1520d 2263 0.00037 0.0118 0.609 0.0008

Ds1232d 1459 0.163

DS31
s1620d 2419 0.0154 2.91s−d

DP31
s1910d 2121 0.0043 0.007s−d

DD33
s1700d 2252 0.00038 0.03s−d 0.011
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FIG. 3. ThepN phase shifts and inelasticities for the isospinI
=1/2 partial waves. The dashed curves show the results of thepN
model of Krehl et al. [8]. The dash-dotted curves represent the
results based on the background contributions of our new model, as
discussed in the text. The results of the full model are given by the
solid lines. The data are from the phase-shift analyses KA84[50],
SM95 [2], and SE-SM95[2].
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model. It is evident that our results are quite in line with the
general trend of the data(disregarding the resonance struc-
tures, of course).

The next step is the inclusion of the inelastic channels.
The most important ones are those that represent effectively
theppN channel, namely,rN, sN, andpD. ThesN channel
couples dominantly to theP11 pN partial wave. It is a con-
sequence of the parity difference betweenp and s, which
implies that theP11 pN partial wave couples to anSwave in
thesN system. In the course of adjusting the free parameters
attraction is introduced into thesN channel and also a strong
pN→sN transition potential results. This, in turn, provides
additional attraction in thepN channel via coupled-channels
effects and eventually leads to a dynamical generation of the
N*s1440d (Roper) resonance in theP11 partial wave. This
mechanism and also its implications for the Roper resonance
were discussed extensively in previous studies[8,24] by the
Jülich group and, therefore, we do not repeat the arguments
here. However, it is certainly reassuring that also within the
new model the Roper resonance turns out to be dynamically
generated, and no genuineN*s1440d (three quark) resonance
is needed to explain theP11 partial wave.

The channelsrN andpD are important for the inelastici-
ties at high energies in all partial waves, but, in particular, in
the D13, P31, and P33. In the P33 partial wave there are no
resonances in this energy region that couple strongly to the
pN system[29]. Thus, coupling to these channels viat- and
u-channel exchange diagrams is the only source of inelastic-
ity in the P33 pN partial wave. The most important diagrams
for the P33 inelasticity are ther exchange in thepN→pD
potential and, partly, the nucleon exchange in thepN→rN
potential. One should mention here also thep-exchange dia-
gram in thepN→rN transition. It turns out to be much too
strong in theP13 and S11 partial waves, independent of the
cutoff used. Its contribution alone produces a very strong
cusp in the region of therN threshold in theS11 phase shift,
and drastically modifies the behavior of theP13 phase shift,
bending it upwards. Luckily thep-exchange contribution is
canceled to a large extent by thepN→rN contact term from
the Wess-Zumino Lagrangian, and also by thev-exchange
diagram. Ultimately, on the whole, the phase shifts are not
too much affected by the inelastic channels.

The final step in the description of the elasticpN data
consists in adding the resonance terms. We included reso-
nances in all partial waves except for theP11 where our
model reproduces the phase shift and inelasticity, including
the structure associated with the Roper resonance, dynami-
cally via a strong coupling to thesN channel, as already
mentioned above. In theS11 partial wave there are two reso-
nances, namely, theN*s1535d and theN*s1650d. The former
dominates the near thresholdpN→hN cross section.(The
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hN channel will be discussed in detail in the following sec-
tion.) As can be seen from the parameters given in Table IV,
among the effectiveppN channels, thepD channel is al-
lowed to couple to most of the resonances. This channel
becomes relevant already at rather low energies(in contrast
to therN channel) and it can contribute to both(I=1/2 and
I=3/2) isospin states. Since we cannot calculatepN→ppN
observables directly at the moment(due to technical difficul-
ties that arise from three-body singularities)—which would
allow us to further constrain the relative importance of the
different ppN channels—we choose this particular channel
for describing the bulk of theppN part of thepN inelastic-
ity. However, in addition, therN channel needs to be coupled
to some resonances, namely,D13s1520d, S11s1650d, and
D33s1700d. In these cases the different energy behavior re-
sulting from therN channel is required for a satisfactory
description of the experimental phase shifts as well as the
inelasticities.

The position of theP31s1910d resonance is located already
above the energy region we are interested in(which is from
pN threshold up to,1.9 GeV). Nevertheless it was included
because its tail still influences noticeably the energy region
around 1.8,1.9 GeV.

Note that, among others, the inelasticity in theP13 partial
wave shows an incorrect trend at higher energies, and the
data are underestimated. A similar, but less pronounced de-
ficiency can be found in theD13 inelasticity. Some authors
claim, that there is a sizable contribution from thevN chan-

nel, which opens at around 1.7 GeV, to these particular par-
tial waves[42]. Therefore, the inclusion of thevN channel
might improve the description of these data.

Finally, let us mention that also the low energy parameters
of pN scattering are in reasonable agreement with available
data, as it should be, since we fit our model to the phase-shift
analyses. TheS and P-wave scattering lengths and volumes
are collected in Table V.

C. Description of the hN channel

The reactionpN→hN near thehN threshold is closely
related to the properties of theN*s1535d resonance. The total
cross section of this reaction has a very pronounced peak
structure at the position of the resonance(cf. Fig. 7). In the
previous version of the JülichpN model the totalp−p→hn
cross section was overestimated by about 20–30% around
the maximum. The reason for this deficiency is that only the
pN andhN channels were allowed to couple to theN*s1535d
resonance. Therefore, in order to describe theS11 pN ampli-
tude one had to generate basically the whole inelasticity in
this partial wave by the coupling to thehN channel. Indeed,
the contribution of theS11 partial wave to the inelasticp−p
cross section is given by

sin =
2p

3k1
2s1 − h2d, s10d

which amounts tosin,3.5 mb at the maximum using the
inelasticity h as given by the phase-shift analysis. How-
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FIG. 6. pN phase shift in theS11 partial wave. The results of the
model of Krehlet al. [8] are shown at the top and those of the new
model at the bottom. The curves correspond to the full model(solid
line) and to the full model with the contribution of theS11s1650d
resonance switched off(dashed line). The data are from the phase-
shift analyses KA84[50], SM95 [2], and SE-SM95[2].

TABLE V. The s- and p-wave pN scattering lengths and vol-

umes in terms ofm
p+
−s2L+1d.

This work Reference[65] SM95 [2]

S11 0.195 0.173±0.003 0.175
S31 −0.110 −0.101±0.004 −0.087
P11 −0.089 −0.081±0.002 −0.068
P31 −0.046 −0.045±0.002 −0.039
P13 −0.031 −0.030±0.002 −0.022
P33 0.209 0.214±0.002 0.209
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FIG. 7. p−p→hn total cross section. The solid line corresponds
to the full calculation. The dashed line indicates the pures-wave
contribution. The results of the old model are shown as a dotted line
(only s wave). The data are from Refs.[51–57].
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ever, the experimentalp−p→hn cross section is always
below 3 mb, cf. Fig. 7. Thus, it is clear that there must be
contributions of other channels to theS11 inelasticity. The
only other channel which is open at energies around theh
threshold is theppN channel. Indeed, theppN channel
was found to be important in an analysis of thepN
S-waves within the chiral unitary approach of Inoueet al.
[43]. Accordingly, we introduce a coupling of thepD
system—which in our model is one of the effective channels
that represent theppN channel—to theN*s1535d resonance.
This enables us to describe simultaneously the totalp−p
→hn cross section and the inelasticity in theS11 partial wave
in the resonance region, as can be seen in Figs. 7 and 3,
respectively.

The inclusion of anN*Dp coupling improves also the de-
scription of theS11 inelasticity above the position of the
N*s1535d resonance. In Fig. 3 one can see that the old Jülich
model produces a strong dip in theS11 inelasticity, which
then leads to a similar dip in theS-wave p−p→hn cross
section. We found that the origin of this behavior is essen-
tially a unitarity constraint from thepN channel. It can be
easily understood schematically if we assume a two-channel
problem involving only thepN and hN systems. We also
assume that, apart from theN*s1535d resonance(whose con-
tribution drops quickly when one moves away from its
peak), there is some background contribution to thepN
→hN transition potential and that at the same time(which is
the crucial point) the directhN→hN potential is negligibly
small. (These conditions are satisfied in the old Jülich
model.) Then thepN→hN T matrix (we consider only the
S11 partial wave) is given by

TpN→hN = VpN→hNs1 + G0TpN→pNd, s11d

which can be reexpressed in the formssee, e.g., Ref.f44gd

TpN→hN = S1 + sb + ikpNd
he2id − 1

2ikpN
DVpN→hN. s12d

Here b is the inverse of the characteristic range of inter-
action, which is determined by the principal value inte-
gral, d and h are theS11 phase shift and inelasticity pa-
rameter, andkpN is the on-shell momentum in thepN
channel. Let us now examine under what circumstances
we can haveTpN→hN=0. Given our simplifying model as-
sumption, the conditionTpN→hN=0 implies thath=1 and
consequentlyb is purely real. Then, it is convenient to
rewrite Eq.s12d as

TpN→hN = eidÎ1 + b2/kpN
2 sinsg − adVpN→hN, s13d

where g=arctansb /kpNd and a=d−p /2. Note that in the
specific situation we discuss that the phased crosses
p /2 sa=0d, due to the presence of theN*s1650d resonance
in the pN→pN interaction, and then continues to rise
rapidly, whereasb is a smooth function ofkpN and has a
typical value in the order of several hundred MeVsthe
exact value is, of course, model dependentd, so that in the
region of interest we haveg&1. It is thus easy to con-
vince oneself that the expression in Eq.s13d equals zero at
some energy abovesbut not far fromd the position of the

N*s1650d resonance. ExpandingTpN→hN in powers of Z
−Z0, whereZ0 is the position of the “zero,” one can see
that the p−p→hn cross section is proportional tosZ
−Z0d2—which explains the structure of the dip in the cross
section exhibited by the old Jülich modelsdotted line in
Fig. 7d. It is interesting to note that the same effect can be
found in other model analyses, e.g., in the ones by Grid-
nev and Kozlenkof26g and by the Giessen groupf27,28g
In general, when there are more than two channels,b
becomes complex and the cross section at the dip will be
finite—but it will still be small sprovided that the inelas-
ticity is not too larged.

In our model theS11 inelasticity in the energy region
around the h threshold is partly determined by the
N*s1535dDp coupling. In the Dp system this resonance
couples to a pureD wave. Because of this the maximum of
the pN→pD transition cross section is shifted to somewhat
higher energies as compared to the resonance energy. Its con-
tribution to the inelasticity is likewise shifted to somewhat
higher energies and fills up the dip that can be seen in theS11
inelasticity predicted by the old model, cf. Fig. 3. It also
smoothens out the effect discussed above and, therefore, we
can achieve a fairly realistic description of the energy depen-
dence ofsp−p→hn over the region of theN*s1650d resonance.
Specifically, we do not get this strong double hump structure
prominently visible in the model analysis of Ref.[27], cf.
their Fig. 7.

Let us now look at the energy dependence of the total
cross section over a wider energy range and also at the
p−p→hn differential cross section in order to examine the
importance of higher partial waves. To include the effect of
higher partial waves we introduced a coupling of thehN
system to theP13s1720d andD13s1520d resonances. These are
the most pronounced resonances in the energy region below
1.9 GeV that couple strongly to thepN system. Note that
there are other three-starN* resonances[29] in this region.
However, we do not include these because their coupling to
the pN channel is very weak and therefore their parameters
cannot be sufficiently constrained from thepN data.

At energies below 1.6 GeV the slight deviation of the
differential cross section from the isotropic distribution can
be easily described by the interference of theD13 resonance
with theS-wave amplitude[45], cf. Fig. 8. For the total cross
section theD13 contribution is of minor importance. Above
1.6 GeV the total cross section can be described by introduc-
ing a coupling of thehN system to theP13s1720d resonance,
as is evidenced by the results shown in Fig. 7. However, as is
obvious from Fig. 9, this coupling alone is not sufficient to
achieve also good agreement with the data for the differential
cross section in this energy region. Most likely this points to
missing contributions from higher partial waves, and specifi-
cally from J=5/2 resonances. At present we do not aim to
include these. We would also like to remark that the existing
data do not allow one to discriminate between different
partial-wave contributions—one would need to know polar-
ization observables for this purpose.

Finally, we want to draw attention to the fact that in our
model there is also a background contribution to thepN
→hN transition interaction which is provided byt-channel
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exchange of thea0s980d meson, cf. Fig. 2(b). However, the
role of a0 exchange is now strongly reduced as compared to
the old Jülich model, mainly because in the present model
we avoid large values of the cutoff mass. In any case, the
influence of thea0s980d meson is suppressed at energies
above theN*s1535d resonance due to the mechanism dis-
cussed above.

We also want to present thehN effective range parameters
predicted by our model. They are

ahN = s0.41 +i0.26d fm,

rhN = s− 3.4 +i0.4d fm. s14d

Obviously, our result for ResahNd is at the lower end of the
spectrum of values that one can find in the literature, cf.,
e.g., the compilation given in Table I of Ref.f46g. In fact,
it is even slightly lower than the one of the old Jülich
model, which yieldsahN=s0.42+i0.34d fm. However, we
want to emphasize that such a value is pretty much in line
with conclusions drawn from recent analyses of thehN
final state interaction in the reactionsgd→nph f46g and
pn→dh f47,48g.

IV. SUMMARY

We have presented results of an extended and improved
version of the JülichpN model. The model is based on the

meson-exchange picture and it is derived in its main part
from the phenomenological Wess-Zumino Lagrangian, con-
sistent with chiral symmetry. ThepN interaction in the
scalar-isoscalar and vector-isovector channels is calculated
by means of dispersion relations from correlatedpp ex-
change in order to constrain the contributions of the corre-
spondings andr exchanges. In the present work ambiguities
in the treatment of dispersion relations(cf. Sec. III B of Ref.
[22]) are even further reduced by a choice of the form factors
which does not modify the strength andt dependence of the
interaction at low energies. In addition, some more improve-
ments have been implemented. In particular, we now use
derivative coupling for theS11 N* resonances at thepN and
hN vertices, as is demanded by chiral symmetry anyway. We
also include some more resonance diagrams, specifically for
the S13s1620d, P13s1720d, P13s1910d, D13s1520d, and
D33s1700d resonances.

The potential constructed in this way was unitarized in a
coupled channels-Lippmann-Schwinger equation to obtain
the reaction amplitudes for various processes. The reaction
channels included in the present investigation arepN, hN,
sN, rN, andpD, where the latter three channels are under-
stood as an effective description of the physicalppN state.

With the new model an excellent quantitative reproduc-
tion of thepN phase shifts and inelasticity parameters in the
energy region up to 1.9 GeV and for total angular momenta
Jø3/2 was achieved. In addition, a good description of the
background in theJ=5/2 partial waves was obtained auto-
matically. As far as theP11 partial wave is concerned we
confirm the results of our earlier investigations that the struc-
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ture associated with the Roper resonance is generated dy-
namically by the model so that no genuineN*s1440d (three-
quark) resonance diagram needs to be included.

As the main new aspect we studied in detail the coupling
of the pN system to thehN channel. First of all we showed
that the overestimation of thep−p→hn cross section in the
region of theN*s1535d resonance by the old Jülich model can
be removed by introducing additional flux from thepN to
the pD channel. Furthermore, the inclusion of thehN cou-
pling to theP13s1720d resonance turned out to lead to a sig-
nificant improvement of the total cross section at higher en-
ergies. At the same time the puzzle of the dip in theS11
inelasticity, present in the old Jülich model but also in other
models in the literature[26,27], could be explained. The ori-
gin of this deficiency turned out to be an almost model inde-
pendent effect of coupled-channels unitarity constraints. We
also improved the description of thep−p→hn differential
cross section. A remaining discrepancy with the data at
higher energies is most likely caused by contributions from
partial waves withJ.3/2 which are not included in our
model calculation. Note that a detailed partial-wave analysis
of this reaction at such energies is presently impossible be-
cause of the lack of data on polarization observables.

The model in its present form enables a straightforward
inclusion of further reaction channels, and specifically those
nearest in energy, namely,KL, KS, andvN. Such an exten-
sion of the present model in this direction is planned for the
future.
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APPENDIX: THE PSEUDOPOTENTIAL
In this appendix we give the expressions for those contri-

butions to the interaction potentials that differ from our ear-
lier work [8]. For convenience we also summarize here all
pole diagrams since most of them were not included in the
old model. All other expressions for the pseudopotential can
be found in Appendix A of Ref.[8]. The notation for the
different particles and their momenta is given in Fig. 1.E1,
E3, v2, andv4 indicate on-mass-shell energies of baryons 1
and 3 and those of mesons 2 und 4, respectively:

Ei = Îmi
2 + pi

2, vi = Îmi
2 + pi

2. sA1d

q is the four-momentum of the intermediate particle. The
tensor operatorPmn is given in Eq.sA12d of Ref. f8g.

Since we work in time-ordered perturbation theory, all the
potentials contain the normalization factor

k =
1

s2pd3Îm1

E1

m3

E3
Î 1

2v22v4
. sA2d

1. pN\pN

Correlatedpp exchange in thes channel[Fig. 1(c)]:

− kuspW3, l3duspW1, l1dFA0 + 16s− 2p2mp4
md E dt8

Imff+
0st8dg

st8 − 2mp
2dst8 − 4mN

2d
Pst8dGIFstsId, sA3d

where Pst8d=s1/2vt8dsf1/sE−v2−E3−vt8dg+f1/sE−v4−E1−vt8dgd, vt8=
Îq2+ t8, and f is a Frazer-Fulco amplitude

f25,49g. The isospin coefficients are equal toIFsts1/2d=1 andIFsts3/2d=1.
N*sS11,S31d pole diagrams[Fig. 1(g)]:

k
fN*Np
2

mp
2 uspW3, l3dp”4

1

2mN*
0

q” + mN*
0

E − mN*
0 p”2uspW1, l1dIFN*ssId. sA4d

Nucleon,N*sP31d pole diagrams:

k
fN*Np
2

mp
2 uspW3, l3dg5p”4

1

2mN*
0

q” + mN*
0

E − mN*
0 g5p”2uspW1, l1dIFN*ssId. sA5d

N*sP13,P33d pole diagrams:

k
fN*Np
2

mp
2 uspW3, l3dp4m

1

2mN*
0

Pmnsqd

E − mN*
0 p2nuspW1, l1dIFN*ssId. sA6d

N*sD13,D33d pole diagrams:

k
fN*Np
2

mp
4 uspW3, l3dg5p”4p4m

1

2mN*
0

Pmnsqd

E − mN*
0 g5p”2p2nuspW1, l1dIFN*ssId, sA7d

IFN*ss1/2d=3,IFN*ss3/2d=1.
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2. pN\hN

N*sS11d pole diagram:

k
fN*NpfN*Nh

mp
2 uspW3, l3dp”4

1

2mN*
0

q” + mN*
0

E − mN*
0 p”2uspW1, l1dIFN*ssId. sA8d

N*sP13d pole diagram:

k
fN*NpfN*Nh

mp
2 uspW3, l3dp4m

1

2mN*
0

Pmnsqd

E − mN*
0 p2nuspW1, l1dIFN*ssId. sA9d

N*sD13d pole diagram:

k
fN*NpfN*Nh

mp
4 uspW3, l3dg5p”4p4m

1

2mN*
0

Pmnsqd

E − mN*
0 g5p”2p2nuspW1, l1dIFN*ssId. sA10d

IFN*ss1/2d=Î3.

3. pN\rN

N*sS11d pole diagram:

− ik
fN*NpgN*Nr

mp

uspW3, l3dg5e”*spW4, l4d
1

2mN*
0

q” + mN*
0

E − mN*
0 p”2uspW1, l1dIFN*ssId. sA11d

N*sD13,D33d pole diagrams

: ik
fN*NpfN*Nr

mp
2mr

uspW3, l3dfp”4em
* spW4, l4d − p4me”*spW4, l4dg

Pmnsqd

2mN*sE − mN*
0 d

p2n
g5p”2uspW1, l1dIFN*ssId sA12d

IFN*ss1/2d=3 andIFN*ss3/2d=1.

4. pN\pD

N*sS11,S31d pole diagrams:

k
fN*NpfN*Dp

mp
2 umspW3, l3dp4

mg5 1

2mN*
0

q” + mN*
0

E − mN*
0 p”2uspW1, l1dIFN*ssId. sA13d

N*sP31d pole diagram:

k
fN*NpfN*Dp

mp
2 umspW3, l3dp4

m 1

2mN*
0

q” + mN*
0

E − mN*
0 g5p”2uspW1, l1dIFN*ssId. sA14d

N*sP13d pole diagram:

k
fN*NpfN*Dp

mp
2 umspW3, l3dg5p”4

1

2mN*
0

Pmnsqd

E − mN*
0 p2nuspW1, l1dIFN*ssId. sA15d

N*sD13,D33d pole diagrams:

− k
fN*NpfN*Dp

mp
3 umspW3, l3dp”4

1

2mN*
0

Pmnsqd

E − mN*
0 g5p”2p2nuspW1, l1dIFN*ssId. sA16d

IFN*ss1/2d=−Î6 and IFN*ss3/2d=Î5
3.

5. hN\hN

N*sS11d pole diagram:
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k
fN*Nh
2

mp
2 uspW3, l3dp”4

1

2mN*
0

q” + mN*
0

E − mN*
0 p”2uspW1, l1dIFN*ssId. sA17d

N*sP13d pole diagram:

k
fN*Nh
2

mp
2 uspW3, l3dp4m

1

2mN*
0

Pmnsqd

E − mN*
0 p2nuspW1, l1dIFN*ssId. sA18d

N*sD13d pole diagram:

k
fN*Nh
2

mp
4 uspW3, l3dg5p”4p4m

1

2mN*
0

Pmnsqd

E − mN*
0 g5p”2p2nuspW1, l1dIFN*ssId, sA19d

IFN*ss1/2d=1.

6. hN\rN

N*sS11d pole diagram:

− ik
fN*NhgN*Nr

mp

uspW3, l3dg5e”*spW4, l4d
1

2mN*
0

q” + mN*
0

E − mN*
0 p”2uspW1, l1dIFN*ssId. sA20d

N*sD13d pole diagram:

ik
fN*NhfN*Nr

mp
2mr

uspW3, l3dsp”4em
* spW4, l4d − p4me”*spW4, l4dd

Pmnsqd

2mN*sE − mN*
0 d

p2n
g5p”2uspW1, l1dIFN*ssId, sA21d

IFN*ss1/2d=Î3.

7. hN\pD

N*sS11d pole diagram:

k
fN*NhfN*Dp

mp
2 umspW3, l3dp4

mg5 1

2mN*
0

q” + mN*
0

E − mN*
0 p”2uspW1, l1dIFN*ssId. sA22d

N*sP13d pole diagram:

k
fN*NhfN*Dp

mp
2 umspW3, l3dg5p”4

1

2mN*
0

Pmnsqd

E − mN*
0 p2nuspW1, l1dIFN*ssId. sA23d

N*sD13d pole diagram:

− k
fN*NhfN*Dp

mp
3 umspW3, l3dp”4

1

2mN*
0

Pmnsqd

E − mN*
0 g5p”2p2nuspW1, l1dIFN*ssId, sA24d

IFN*ss1/2d=−Î2.

8. rN\rN

N*sS11d pole diagram:

kgN*Nr
2 uspW3, l3dg5e”*spW4, l4d

1

2mN*
0

q” + mN*
0

E − mN*
0 g5e”spW2, l2duspW1, l1dIFN*ssId. sA25d

N*sD13,D33d pole diagrams:
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k
fN*Nr
2

mr
2 uspW3, l3dfp”4e*spW4, l4d − p4me”*spW4, l4dg

Pmnsqd

2mN*sE − mN*
0 d

fp”2en
*spW2, l2d − p2ne”*spW2, l2dguspW1, l1dIFN*ssId, sA26d

IFN*ss1/2d=3,IFN*ss3/2d=1.

9. rN\pD

N*sD13,D33d pole diagrams:

ik
fN*NrfN*Dp

mpmr

umspW3, l3dp”4

Pmnsqd

2mN*sE − mN*
0 d

fp”2en
*spW2, l2d − p2ne”*spW2, l2dguspW1, l1dIFN*ssId, sA27d

IFN*ss1/2d=−Î6,IFN*ss3/2d=Î5
3.

10. pD\pD

N*sS11,S31d pole diagrams:

− k
fN*Dp
2

mp
2 umspW3, l3dp4

mg5 1

2mN*
0

q” + mN*
0

E − mN*
0 g5p2

nunspW1, l1dIFN*ssId. sA28d

N*sP31d pole diagram:

k
fN*Dp
2

mp
2 umspW3, l3dp4

m 1

2mN*
0

q” + mN*
0

E − mN*
0 p2

nunspW1, l1dIFN*ssId. sA29d

N*sP13d pole diagram:

k
fN*Dp
2

mp
2 umspW3, l3dg5p”4

1

2mN*
0

Pmnsqd

E − mN*
0 g5p”2unspW1, l1dIFN*ssId. sA30d

N*sD13,D33d pole diagrams:

k
fN*Dp
2

mp
2 umspW3, l3dp”4

1

2mN*
0

Pmnsqd

E − mN*
0 p”2unspW1, l1dIFN*ssId. sA31d

IFN*ss1/2d=2,IFN*ss3/2d= 5
3.
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