
Pion-pion scattering amplitude. IV. Improved analysis with once subtracted
Roy-like equations up to 1100 MeV
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We improve our description of �� scattering data by imposing additional requirements on our previous

fits, in the form of once-subtracted Roy-like equations, while extending our analysis up to 1100 MeV. We

provide simple and ready to use parametrizations of the amplitude. In addition, we present a detailed

description and derivation of these once-subtracted dispersion relations that, in the 450 to 1100 MeV

region, provide an additional constraint which is much stronger than our previous requirements of forward

dispersion relations and standard Roy equations. The ensuing constrained amplitudes describe the existing

data with rather small uncertainties in the whole region from threshold up to 1100 MeV, while satisfying

very stringent dispersive constraints. For the S0 wave, this requires an improved matching of the low and

high energy parametrizations. Also for this wave we have considered the latest low energy K‘4 decay

results, including their isospin violation correction, and we have removed some controversial data points.

These changes on the data translate into better determinations of threshold and subthreshold parameters

which remove almost all disagreement with previous chiral perturbation theory and Roy equation

calculations below 800 MeV. Finally, our results favor the dip structure of the S0 inelasticity around

the controversial 1000 MeV region.
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I. INTRODUCTION

In a series of papers [1–3] that we will denote by PY05,

KPY06, and KPY08, respectively, we have provided sev-

eral sets of precise phenomenological fits to �� scattering

data. The interest in a precise and model-independent

description of the data available in this process is twofold:

On the one hand, it could be used at low energies to extract

information about the parameters of chiral perturbation

theory (ChPT) [4], quark masses, and the size of the chiral

condensate, pionic atom decays, or CP violation in the

kaonic system. On the other hand, in the intermediate

energy region, it could provide model-independent infor-

mation to identify the properties of hadronic resonances,

particularly the scalar ones which are related to the sponta-

neous chiral symmetry breaking of QCD and the possible

existence of glueball states.

Pion-pion scattering is very special due to the strong

constraints from isospin, crossing, and chiral symmetries,

but mostly from analyticity. The latter allows for a very

rigorous dispersive integral formalism that relates the am-

plitude at any energy with an integral over the whole

energy range, increasing the precision and providing in-

formation on the amplitude even at energies where data are

poor. Our aim is to provide reliable and model-independent

�� scattering amplitudes that describe data and are con-

sistent, within uncertainties, with dispersion relations.

Note that, since we would like to test ChPT, we are not

using it in our analysis, and that, in order to calculate

dispersive integrals up to infinity, we have been using

Regge parametrizations obtained from a fit to data on

nucleon-nucleon, meson-nucleon, and pion-pion total

cross sections [5]. In this work we will further improve

our data analysis by imposing in the fits an additional set of

once-subtracted dispersion relations, that we will also de-

rive and describe in detail, showing that they are much

more precise in the intermediate energy region than those

we have used up to now.

In general, for each paper of this series (or also in [6]),

we have first obtained a set of phenomenological ‘‘uncon-

strained’’ fits to data (UFD), which was fairly consistent

with the dispersive requirements. Next, starting from that

UFD set, we obtained ‘‘constrained’’ fits to data (CFD) by

imposing simultaneous fulfillment of dispersion relations.

These constrained fits not only describe data, but are

remarkably consistent with the strong analyticity require-

ments. Furthermore, the output of the dispersive integrals

is model independent and very precise.

The constraints we imposed in the first two papers of this

series were just a complete set of forward dispersion

relations (FDR), plus some crossing sum rules. In the third

paper, apart from including the most recent and reliable

data up to that date on K‘4 decays [7,8], we also imposed

Roy equations [9], because they constrain the t � 0 be-

havior of the amplitude, while ensuring s� t crossing

symmetry. These equations, which had already been used*Deceased.
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in the 1970s to analyze some of the existing data [10], as

derived by S.M. Roy, have two subtractions and provide a

strong constraint in the low energy part of the partial

waves. For this reason there has recently been a consid-

erable effort to analyze them in relation to ChPT [11]. They

have also recently been used to eliminate [12] the long-

standing ambiguity about ‘‘up’’ or ‘‘down’’ type solutions

of the S0 wave data analyses. Since Roy equations are

written in terms of partial waves, they lead, if supple-

mented with further theoretical input from ChPT [13], to

precise predictions for resonance poles like the much

debated f0ð600Þ. Despite being listed with huge uncertain-
ties in the Particle Data Book [14], several analyses using

analytic methods or dispersive techniques with chiral con-

straints [6,15], as well as those using Roy equations [13],

are in fair agreement about its pole position, around

450–i250 MeV. However, its nature remains controversial,

since it might not be an ordinary meson [16]. A precise

analysis of �� scattering data may help clarify the situ-

ation by studying the f0ð600Þ parameters (like the coupling

[17]), and the connection of the pole to QCD parameters

[18], although one has to bear in mind [19] the difficulties

to interpret the coupling in terms of simple intuitive mod-

els. Nevertheless, let us remark that here we only aim at a

precise description of data, which could later be used for

those purposes among many others, but the interpretation

of this resonance and the extension to the complex plane

are beyond the scope of this work.

Back to Roy equations, when used only with data, as in

our case, the S2 wave scattering length, which is very

poorly known experimentally, completely dominates the

Roy equation uncertainties, which become very large

above roughly 450 MeV, for the S0 and S2 waves. For

that reason, Roy equations do not provide a significant

additional constraint for the amplitudes beyond that en-

ergy, once they are already constrained with FDR. In this

work we will overcome that caveat with additional once-

subtracted Roy-like equations that have a much weaker

dependence on scattering lengths. The fact that these addi-

tional equations have a much smaller uncertainty above

roughly 450 MeV will force us to refine the matching of

our S0 wave parametrizations.

Let us remark, though, that our parametrizations are

consistent with those in KPY08 within 1 standard devia-

tion, with the only exception being the S0 wave. However,

the new central values satisfy Roy equations and the new

once-subtracted dispersion relations better. Moreover, we

will now be able to extend the Roy equations analysis, both

with one and two subtractions, up to 1115 MeV, instead of

just the K �K threshold.

Once again we remark that the functional form of

the amplitude parametrizations becomes irrelevant once

the imaginary part of the amplitude is used in the dispersive

integrals, whose results are model independent. With the

understanding that running the dispersive representation

could be tedious for the reader, we provide results in terms

of our simple and ready-to-use CFD parametrizations,

which are very good approximations to the dispersive

result.

The plan of this work goes as follows: In Sec. II we very

briefly comment on the simple unconstrained data fits

(detailed in Appendix A) of all partial waves obtained in

previous works. Only the S0 wave is given in more detail in

Sec. III to introduce the new improvements. These are of

two kinds: On the one hand, the data have changed, since

we are taking into account the final and more precise

NA48=2 data [20], including the threshold-enhanced iso-

spin violation correction to all K‘4 data, and getting rid of

the controversial K ! 2� datum. On the other hand, we

have improved our parametrization, by imposing a con-

tinuous derivative matching between the low and inter-

mediate energy regions and allowing for more flexibility

in the parametrization around the f0ð980Þ region.
In Sec. IV, after introducing FDRs and Roy equations

very briefly, we present the once-subtracted dispersion

relations and compare their structure with the standard

Roy equations. Next, in Sec. V we impose these new rela-

tions together with the constraints already used in previous

works (FDRs, sum rules, standard Roy equations . . .) to
obtain the final representation for the amplitudes, i.e., the

CFD set of amplitudes. In Sec. VI we study the threshold

parameters and Adler zero determinations stemming from

this constrained fit through the use of additional sum rules

and dispersive integrals. Then, in the discussion section,

we compare these CFD with our previous results and other

works in the literature, and we comment on the effect of

considering different choices of data or parametrizations as

a starting point to obtain our final result. In particular,

we show how our results favor a ‘‘dip’’ structure in the

S0 wave inelasticity right above 1000MeV, which has been

the subject of a long-standing controversy [21]. Finally, we

present our conclusions. In the appendixes we provide a list

of all parametrizations and parameters of the UFD and

CFD, as well as the detailed derivation of the once-

subtracted relations together with all relevant integral ker-

nels. In Appendix D we provide a table with the phase

shifts in the elastic region, as obtained from the dispersive

representation.

II. THE UNCONSTRAINED FITS TO DATA

A. Our previous works

To explain the motivation for further improvements in

our previous amplitudes, we briefly describe next the re-

sults of the previous articles.

(i) In PY05 [1] we obtained simple and easy-to-use

phenomenological parametrizations of �� scatter-

ing data whose consistency was checked by means of

FDR and several crossing sum rules. The P, S2, D0,

D2, F, G0, and G2 partial waves were described by

simple fits to �� scattering data up to 1.42 GeV.
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In the elastic regime, the P wave was obtained from a

fit to the pion form factor. For the S0 wave, given the

fact that there are several conflicting sets of data, we

first fitted each set separately and then performed

another global fit only in the energy regions where

different data sets are consistent. Surprisingly, some

of the most commonly used data sets failed to pass

these consistency tests, although the global fit was in

fairly good agreement with FDR. Hence, it could be

used as a starting point for a constrained fit to data.

This CFD was obtained by imposing FDR and cross-

ing sum rules to be satisfied within errors, in the

elastic regime and up to 925 MeV. As a result, a

precise description of the data up to 925 MeV was

obtained by means of a constrained fit, satisfying the

FDR and sum rule requirements remarkably well.

(ii) In KPY06 [2] we refined our parametrizations above

K �K threshold, including more �� data but, most

importantly, �� ! K �K data in a coupled channel

fit. These reduced uncertainties forced us to slightly

refine the UFD parametrizations of our D0, D2, and

P waves between 1 and 1.42 GeV as well as the

Regge parameters. This led to a remarkable im-

provement in the consistency of the �0�0 FDR.

(iii) In KPY08 [3] we also considered Roy equations [9]

for our amplitudes below K �K threshold. The UFD

fits, where we had previously incorporated [6] the

most reliable low energy data from K‘4 decays to

that date [8], satisfied Roy equations fairly well and

the agreement was remarkably good once they

were imposed into a new set of CFD.

Since, in this work, we are going to consider a set of

dispersion relations in addition to the dispersive constraints

we have just described, our starting point will be the UFD

set already obtained in KPY08, which we describe only

very briefly in the next subsections, but explain in detail in

Appendix A. The only exception will be the S0 wave,

which we describe in Sec. III. The reasons are the appear-

ance of new data [20], the existence of modifications on the

analysis of the old experimental results, and, in addition,

the fact that we have found that the new constraints are

strong enough to require a better matching, with a continu-

ous derivative, between the low and intermediate energy

parametrizations.

B. Notation

For �� ! �� scattering amplitudes of definite isospin

I in the s channel, wewrite a partial wave decomposition as

follows:

FðIÞðs;tÞ¼ 8

�

X

‘

ð2‘þ1ÞP‘ðcos�ÞtðIÞ‘ ðsÞ;

tðIÞ‘ ðsÞ¼
ffiffiffi
s

p

2k
f̂ðIÞ‘ ðsÞ; f̂ðIÞ‘ ðsÞ¼�ðIÞ

‘ ðsÞe2i�ðIÞ
‘
ðsÞ�1

2i
; (1)

where�ðIÞ
‘ ðsÞ and�ðIÞ

‘ ðsÞ are the phase shift and inelasticity of
the I, ‘ partial wave, ‘ is the angular momentum, and k is the
center-of-mass momentum. In the elastic case, � ¼ 1 and

f̂
ðIÞ
‘ ðsÞ ¼ sin�ðIÞ

‘ ðsÞei�ðIÞ
‘
ðsÞ: (2)

Note that I ¼ 0, 1, 2 and that whenever I is even (odd) then ‘
is even (odd), and thus wewill omit the isospin index for odd

waves. We may refer to partial waves either by their I, ‘
quantum numbers or by the usual spectroscopic notation S0,

S2, P, D0, D2, F, G0, G2, etc. . . .
In addition, we recall the expressions for the so-called

threshold parameters, which are the coefficients of the

amplitude expansion in powers of center-of-mass momenta

around threshold:

s1=2

2M�k
2‘þ1

Ref̂ðIÞ‘ ðsÞ ’ aðIÞ‘ þ bðIÞ‘ k2 þOðk4Þ: (3)

Note that aðIÞ‘ and bðIÞ‘ are the usual scattering lengths and

slope parameters. Customarily, these are given inM� units.

C. Parametrizations for S2, P, D, F, and G waves

The S2, P, D0, D2, F, and G waves are described by very

simple expressions. For the S2, P, and D0 waves, we use

separate parametrizations for the ‘‘low energy region,’’ i.e.

energies s1=2 < s1=2M � 1 GeV, and the ‘‘intermediate en-

ergy region,’’ which extends from the matching energy s1=2M

up to 1.42 GeV. For each wave, s1=2M is typically the energy

where inelastic processes cannot be neglected. Note that,

above 1.42 GeV we will assume that �� amplitudes are

given by Regge formulas, which correspond to fits to

experimental data (see [5] and KPY06 for details).

In the low energy region, where the elastic approxima-

tion is valid, we use a model-independent parametrization

for each partial wave tðIÞ‘ , which ensures elastic unitarity:

tðIÞ‘ ¼
ffiffiffi
s

p

2k

1

cot�ðIÞ
‘ ðsÞ � i

:

To ensure maximal analyticity in the complex plane,

cot�ðIÞ
‘ ðsÞ is then expanded in powers of the conformal

variable

wðsÞ ¼
ffiffiffi
s

p � ffiffiffiffiffiffiffiffiffiffiffiffiffi
si � s

p
ffiffiffi
s

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
si � s

p ;

where si is a convenient scale for each wave, to be precised
later, always larger than the s range where conformal map-

ping is used. The use of a conformal variable allows for a

very rapid convergence—at most, two or three terms are

needed in the expansion—so that each wave is represented

by only three to five parameters, corresponding to the co-

efficients of the expansion and the position of the zeros and

poles when we have found it convenient to factorize them

explicitly [6]. We remark again that the use of a conformal

expansion does not imply any model dependence.
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In the intermediate energy inelastic region, we have used

purely polynomial expansions both for the phase shifts and

inelasticities in terms of the typical energy or momenta

involved in the process.

All these simple parametrizations have been fitted to a

large number of experimental data on�� phase shifts or, in

the case of the P wave, to the vector form factor data, which

gives much more precise results. In Appendix A, we pro-

vide the detailed parametrizations for each partial wave,

together with the resulting parameters and their uncertain-

ties, from now on denoted by p
exp
i and �pi, respectively.

Let us remark that, as a first step, each partial wave has

been fitted independently of each other, without imposing

any constraint from dispersion relations, and that is why we

refer to such initial fits as unconstrained fits to data or UFD.

In KPY08 we showed that these UFD provided a good

description of data, and a fairly reasonable consistency in

terms of dispersion relations. Of course, the consistency is

much better, remarkable indeed, once we impose the disper-

sion relations as constraints to the fit, but then all waves

become correlated. The uncorrelated fits, apart from provid-

ing the starting point of our calculation, and although they are

less reliable than our final constrained results, could be of

relevance if new and more precise data become available for

a given partial wave, since then only that particular partial

wave should be modified, without affecting the others.

III. S0 WAVE PARAMETRIZATION

This is the only wave that changes in the new sets of

unconstrained data fits. This is due to three reasons that we

will explain in separate subsections.

A. Isospin violation in K‘4 decays

There has been a recent calculation [22] showing that, due

to threshold enhancements, isospin corrections in K‘4 de-

cays [7,8,20] could be larger than naively expected. A lead-

ing order ChPT calculation has been provided to correct the

phase-shift determination in the isospin limit, which should

be valid within the whole range of K‘4 decays. Note that the

uncertainties in the previous UFD set in [6] were obtained

taking into account systematic errors on the data, including

possible isospin corrections, but only of natural size. Since

the most recent data from K‘4 decays play a relevant role in

the S0 wave of our UFD set, and the suggested isospin

breaking effect is unnaturally large, we will modify the S0

wave by correcting the K‘4 data as suggested in [22], so that

it can be used in our isospin limit formalism. Note that this

isospin correction was already made available in [8] and

again in the final NA48=2 results [20].

B. The K ! 2� data

Let us emphasize again that this is a data analysis, and,

as such, it depends on whether we include or not certain

experimental results that are somewhat controversial. This

is, for instance, the case of the phase-shift difference

obtained from K ! 2� decay [23] that we used in KPY08:

�ð0Þ
0 ðM2

KÞ � �ð2Þ
0 ðM2

KÞ
¼ ð57:27� 0:82exp � 3rad � 1ChPT apprÞ�: (4)

The extraction of the �� scattering phase from this decay

is affected by large uncertainties that have to be estimated

from ChPT. A similar value is obtained if using the Particle

Data Group data and the prescription for radiative correc-

tions in [24]. In [6] we took the simple linear sum of

the errors quoted in [23], which is larger than the usual

quadrature addition. However, the use of the datum above

has been questioned in [25], also suggesting that it could

be partly responsible for the differences between our

approaches in the intermediate energy region. It is true

that this data point always lies somewhat above our pa-

rametrizations of KPY08, 51:7� 1:2� for the UFD and

50:4� 1:1� for the CFD, and even more so from those in

[11], 47:7� 1:5�. While preparing this work, a reanalysis

has appeared [26] taking into account more precise experi-

mental data and other improvements including an update

of the low energy constants, yielding

�ð0Þ
0 ðM2

KÞ � �ð2Þ
0 ðM2

KÞ ¼ ð52:5� 0:8exp � 2:8theorÞ�: (5)

This is still compatible with the value in Eq. (4), but seems

in much better agreement with �� scattering determina-

tions. However, this new extraction uses as an input the

S0 phase-shift value from a �� scattering analysis using

Roy equations and ChPT, obtained by the Bern group [11].

Thus it would be somewhat circular to use it as input in our

approach. Furthermore, we have studied the alternative

scenarios with and without the K ! 2� value in our fits,

finding that the scenario without it is slightly preferred by

dispersion relations. For these reasons, we will present

results for fits removing the K ! 2� controversial datum.

As a consequence, our new unconstrained fits have some-

what smaller errors than those in KPY08, which makes

dispersion relations harder to satisfy.

C. Improved parametrization and matching condition

between low and intermediate energies

In previous works, only continuity, but not a continuous

derivative, was imposed for the S0 phase shift at the

matching point, then chosen at s1=2M ¼ 932 MeV. It has
been suggested [27] that such a crude matching could

explain the roughly 2� level discrepancies in the S0 wave

between the KPY08 analysis and that of the Bern group

[11] in the 450–800 MeV region. We have checked that the

improved matching by itself only affects the S0 wave

sizably in the f0ð980Þ region, although the effect is rather

small below. However, this improved matching adds to-

gether with the two effects in kaon decays discussed above,

to become a relatively larger effect that certainly improves

the agreement with the predicted S0 wave in [11].
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In this work we want to keep the same low energy

conformal parametrization of KPY08 or [6]. However, to

improve the flexibility of the parametrization we will keep

one more term in this expansion. Actually, it has been

pointed out that the difference between the parametrization

in KPY08 and that of [11] could be due to the fact that our

conformal parametrization at low energies was not suffi-

ciently flexible [28]. The additional parameter does not

improve significantly the fulfillment of dispersion relations

nor the data fit, but the output of the dispersion relations

with one parameter less would violate very slightly the

elastic unitarity condition around 500 MeV. For that rea-

son, we keep this additional term, and use

cot�ð0Þ
0 ðsÞ ¼ s1=2

2k

M2
�

s� 1
2
z20

�
z20

M�

ffiffiffi
s

p þ B0 þ B1wðsÞ

þ B2wðsÞ2 þ B3wðsÞ3
�

; (6)

wðsÞ ¼
ffiffiffi
s

p � ffiffiffiffiffiffiffiffiffiffiffiffiffi
s0 � s

p
ffiffiffi
s

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
s0 � s

p ; s0 ¼ 4M2
K; (7)

where the new values for the UFD parameters are

B0¼7:26�0:23; B1¼�25:3�0:5;

B2¼�33:1�1:2; B3¼�26:6�2:3; z0¼M�; (8)

which are obtained with the same procedure as in [6] but

now including the additional B3 and the isospin correc-

tions, and getting rid of the K ! 2� data, as already

commented in Secs. III A and III B above. Namely, in

this fit we have considered the data on K‘4 decays [7],

including the final K‘4 decay data from NA48=2 [20]

(which supersedes [8]), and a selection of all the existing

and often conflicting �� scattering data [29,30]. This

selection corresponds to an average of the different experi-

mental solutions that passed a consistency test with for-

ward dispersion relations and other sum rules in the initial

work PY05. To this average, we assigned a large uncer-

tainty to cover the difference between the initial data sets.

For the sake of brevity, we simply refer to that work, or the

Appendix of Ref. [6], for a complete and detailed descrip-

tion of the data selection.

Uncertainties in Eq. (8) come from data only. In order to

use the UFD by itself, a systematic uncertainty due to

parametrization dependence [32] should be taken into

account. But as we have seen, possible parametrizations

are strongly restricted by imposing dispersion relations and

unitarity in their output, thus reducing dramatically this

source of systematic uncertainty. Hence, we will only

quote the data uncertainty for the CFD. Of course, since

dispersion relations are imposed within uncertainties, the

residual parametrization dependence is reflected in the

error bars from the result of the dispersive representation,

which we give in Table XII of Appendix D.

Despite this amplitude being used only in the physical

region, we have explicitly factorized a zero at sA ¼ z20=2 ¼
M2

�=2 ’ ð98:7 MeVÞ2 for these unconstrained fits. This

corresponds to the position of the so-called Adler zero,

required by chiral symmetry [31], at leading order in

ChPT. Note, however, that this zero lies very close to the

border of the convergence region of the conformal

expansion (see Fig. 16 in KPY08), which is therefore not

very well described by the expression above. Hence, z0
should not really be interpreted as the exact position of

the Adler zero, but just as another parameter of our parame-

trization. Of course, the physical low energy region, which

is the only one relevant for the dispersive representation,

lies well inside the convergence region of the conformal

expansion, and is very well described by Eq. (6). Actually,

we will show in Sec. VI below that, when this parametriza-

tion is used inside the dispersive representation, one finds an

Adler zero in the correct position.

Let us now turn to the intermediate energy region. In

previous works, a two-channel K-matrix formalism, fol-

lowing the experimental reference in [30], was used to

describe the region around the K �K threshold. This is a

rather popular formalism to describe multichannel scatter-

ing of two-body states, but has several disadvantages for

our purposes. One, of course, is the use of only two chan-

nels, �� and K �K, neglecting possible inelasticity contri-

butions from 4� or other channels. These are rather small,

but since we aim at a precision determination, we should

allow for more flexibility on the inelasticity, whereas the

two-channel K matrix yields a strong relation between

phase and inelasticity. The second caveat is the huge cor-

relation between K-matrix parameters, which makes it very

hard to improve by means of constrained fits, as we will do

later on. Finally, a very strong disadvantage is that the phase

dependence on the K-matrix parameters is so complicated

that it is not possible to make an analytic matching with the

low energy parametrization, and a numerical matching is

muchmore ineffective and harder to implement. Let us note

that some of these caveats were already removed when

using some very naive polynomial parametrizations con-

sidered in Appendix B of KPY06. We will use those same

parametrizations here but with additional terms in the

expansion to compensate the loss of flexibility due to the

improved matching conditions. In particular, between the

matching point and 1.42 GeV, we will use

�ð0Þ
0 ðsÞ ¼

(
d0 þ a jk2j

MK
þ b jk2j2

M2
K

þ c jk2j3
M3

K

ð0:85 GeVÞ2 < s < 4M2
K

d0 þ B
k2
2

M2
K

þ C
k4
2

M4
K

þD�ðs� 4M2
�Þ k2

3

M2
�

4M2
K < s < ð1:42 GeVÞ2;

(9)
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where k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s=4�M2
K

q

, k3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s=4�M2
�

q

, and d0 is the

phase shift at the two-kaon threshold. Note, however, that

we have lowered the matching point to s1=2M ¼ 850 MeV,
since we have found empirically that this helps improve the

dispersion relation fulfillment, as the slope is somewhat

smaller there. As a final remark, we have added a term

proportional to the � momentum, to reflect the opening of

the �� channel, which is shown to have some relevance in

the description of the data [33]. In this respect, we want to

clarify a common source of confusion about Roy (or

GKPY) equations: These relations include all possible

coupled channel contributions, or at least are consistent

with them, as long as they are in agreement with the

experimental inelasticity. This simple term is purely phe-

nomenological, and given the size of the experimental

errors, this additional term is more than enough to just

describe the cusp due to the presence of this channel.

However, it yields very slightly, but favorable, differences

in the fulfillment of dispersion relations.

By defining �M ¼ �ðsMÞ and �0
M ¼ d�ðsMÞ=ds, which

are obtained from Eq. (6), and kM ¼ jk2ðsMÞj, it is rather
straightforward to impose continuity and a continuous

derivative for the phase shift at sM, to find

�ð0Þ
0 ðsÞ ¼

(
d0

�

1� jk2j
kM

�
2

þ �M
jk2j
kM

�

2� jk2j
kM

�

þ jk2jðkM � jk2jÞ
�

8�0
M þ c ðkM�jk2jÞ

M3
K

�

ð0:85 GeVÞ2 < s < 4M2
K

d0 þ B
k2
2

M2
K

þ C
k4
2

M4
K

þD�ðs� 4M2
�Þ k2

3

M2
�

4M2
K < s < ð1:42 GeVÞ2:

(10)

As previously commented, with the exception of the K !
2� datum, the inclusion of isospin corrections to K‘4 data

explained above, and our use of the final NA48=2 results

[20], our treatment and selection of data for the phase are

exactly the same as followed in the previous works [2,6], so

we will not repeat them here. In Table Vof Appendix A, we

provide the values for the d0, c, B, C, and D parameters

resulting from the unconstrained fit to those data. In Fig. 1

we show the resulting phase from the unconstrained data fit

to the S0 wave phase shift up to 1420MeV, and in Fig. 2 we

show the low energy region in detail, including the isospin

violation correction [22] that we have subtracted from all

the K‘4 data. Note that this correction amounts to slightly

less than 1� in the region from threshold to 400 MeV,

which is not much at high energies, but very relevant close

to threshold.

In Fig. 3 we show a comparison of the phase shift

resulting from the new UFD with the improved matching

versus the one obtained in KPY08. The changes at low

energy are due to the update on the K‘4 data and their

isospin corrections, together with the fact that we now

discard the K ! 2� datum. The bump in the 500 to

800 MeV region observed in KPY08 has almost disap-

peared. Thus, the improvement on the data and its correc-

tions almost completely reduces the disagreement of our

UFD description with the phases in [11]—the line labeled

CGL in the plot—although our central values are still
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FIG. 1 (color online). The new S0 wave UFD, where the dark

band covers the uncertainties, versus the existing phase-shift data

from [29,30]. Note that the K ! 2� point has been excluded

from the fit as explained in the text.
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FIG. 2 (color online). The new S0 wave UFD, where the dark

band covers the uncertainties, versus the ‘‘old’’ phase-shift data

from K‘4 decays [7] together with the final NA48=2 results,

which supersede the data from the same experiment [8] that we

used in KPY08. We are also showing the isospin violation

correction [22], which has been included in the data shown

here. Finally, we show the results of the CFD parametrization

to be explained in Sec. V, which are almost indistinguishable

from the UFD curve.
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larger in the 550–800 MeV region. Furthermore, as we will

see later, for the constrained fits we are in even better

agreement with [11]. The changes above the matching

point are sizable for the phase, mostly around the sharp

phase increase usually associated with the f0ð980Þ reso-
nances, as can be seen in Fig. 3, where the central value for

the new phase is compared with that in KPY08. Note the

much smoother behavior in the matching region for the

new UFD parametrization and the more dramatic �KK
threshold effect.

Concerning the S0 wave inelasticity, we approximate it

to 1 up to the two-kaon threshold, and use the following

parametrization above that energy:

�ð0Þ
0 ðsÞ ¼ exp

��k2ðsÞ
s1=2

�

~�1 þ ~�2
k2

s1=2
þ ~�3

k22
s

�
2

� ~�4�ðs� 4M2
�Þ

k3ðsÞ
s1=2

�

; (11)

for 4M2
K < s < ð1:42 GeVÞ2. By neglecting the term pro-

portional to the � momentum, which is numerically very

small as seen in Appendix A, and by reexpanding the above

equation in powers of k2=s
1=2 up to third order, we recover

the polynomial expression in KPY06, but the definition

above ensures the 0 � �ð0Þ
0 � 1 physical condition,

whereas the simple polynomial in KPY06 did not.

For the inelasticity data, we follow again the same

selection as in previous works of this series, but now we

do not include the data from Kamiński et al. [29] in the �2

calculation; we only consider the 1973 data of Hyams et al.

[29] and Protopopescu et al. [29]. The reason is that the

main source of uncertainty is systematic, and if we include

the large number of points of Kamiński et al. with their

huge statistical errors, the outcome of the fit has much

smaller errors than the original systematic uncertainties.

By keeping only the other two sets, which are incompat-

ible, we obtain a fit with a large �2=d:o:f:, and by rescaling
the uncertainties in the inelasticity parameters, we mimic

the dominant systematic uncertainties much better. Of

course, our results are still in very good agreement with

Kamiński et al. Was the systematic uncertainty not domi-

nant, this would not be necessary. In Table V of

Appendix A, we provide the values for the ~�i parameters,

and in Fig. 4 we show the results of the unconstrained fit to

the S0 wave inelasticity data up to 1420 MeV.

Finally, let us remark that the inelasticity is the scatter-

ing parameter that suffers the biggest change with respect

to the KPY08-KPY06 parametrization, as can be seen in

Fig. 5. The new parametrization shows a big dip in the

inelasticity between 1 and 1.1 GeV, whereas the KPY08

one does not. As already commented in PY05, this is a

long-standing controversy (see, for instance, [21] and

references therein) between different sets of data coming

from pure �� ! �� scattering versus those coming from

�� ! �KK analysis. Actually, in PY05 (see Fig. 6 there)

we considered both possibilities: We found that forward

dispersion relations favored the ‘‘nondip solution’’ very

slightly, but we kept the ‘‘dip-solution’’ in order to use

the phase and inelasticity coming from the same experi-

ment. In KPY06 we found a similar situation, but since the

K matrix slightly preferred again the nondip solution, this

time we decided to use it. However, in terms of fulfillment,

the difference is minute for FDRs, and even more so for

standard Roy equations, since, as we have already com-

mented and we will see in detail below, the uncertainties in

the subtraction constants become so large above 500 MeV
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FIG. 3. Fit to the S0 wave phase shift, with the improved

continuous derivative matching (UFD, continuous line) versus

the simpler one used in KPY08. We also show the phase

predicted in [11] (CGL).
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FIG. 4 (color online). The new S0 inelasticity fit (UFD set) to

the �� ! �� scattering data of Hyams et al. (1973) and

Protopopescu et al. As explained in the text, we do not fit the

Kamiński et al. data [29], although our fit is compatible with

them. The dark band covers our uncertainties. For all data sets,

see Fig. 18.
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that we cannot use them to discard either of the two

scenarios. The existing set of dispersion relations did not

allow us to make a really conclusive statement about the

inelasticity in the 1 GeV region.

One of the main results of this work is the derivation and

use of once-subtracted Roy-like dispersion relations, the

GKPY equations presented in Sec. IVD below, which are

more precise in the 1 GeV region and clearly favor the

solution with a dip, thus helping to settle this dip versus

nondip controversy.

IV. DISPERSION RELATIONS AND SUM RULES

From the theoretical side, �� scattering is very special

due to the strong constraints from isospin, crossing, and

chiral symmetries, but mostly from analyticity. The latter

allows for a very rigorous dispersive integral formalism

that relates the �� amplitude at any energy with an inte-

gral over the whole energy range, increasing precision and

providing information on the amplitude even at energies

where data are poor, or in the complex plane.

Let us emphasize once more that the dispersive approach

is model independent, since it makes the data parametri-

zation irrelevant once it is included in the integral. The

previous works [3,6] of this series made use of two com-

plementary dispersive approaches, forward dispersion re-

lations and Roy equations, that we briefly review next,

before introducing the new set of once-subtracted Roy-

like equations.

A. Forward dispersion relations

They are calculated at t ¼ 0, so that the unknown large-t
behavior of the amplitude is not needed. There are two

symmetric and one antisymmetric isospin combinations to

cover the isospin basis. For further convenience, we will

write them as a difference �iðsÞ that should vanish if the

dispersion relation is satisfied exactly. In particular, the two

symmetric ones, for�0�þ and�0�0, have one subtraction

and imply the vanishing of

�iðsÞ � ReFiðs; 0Þ � Fið4M2
�; 0Þ �

sðs� 4M2
�Þ

�

� P:P:
Z 1

4M2
�

ð2s0 � 4M2
�Þ ImFiðs0; 0Þds0

s0ðs0 � sÞðs0 � 4M2
�Þðs0 þ s� 4M2

�Þ
;

(12)

where Fi stands for the F0þðs; tÞ or F00ðs; tÞ amplitudes,

and ‘‘P.P.’’ stands for the principal part of the integral. They

are very precise, since all the integrand contributions are

positive. The antisymmetric isospin combination It ¼ 1
does not require subtractions and implies the vanishing of

the following difference:

�ðIt¼1ÞðsÞ � FðIt¼1Þðs;0Þ� 2s� 4M2
�

�

� P:P:
Z 1

4M2
�

ds0
ImFðIt¼1Þðs0;0Þ

ðs0 � sÞðs0 þ s� 4M2
�Þ

: (13)

All FDRs are calculated up to
ffiffiffi
s

p ¼ 1420 MeV.

B. Roy equations

These are an infinite set of coupled equations [9],

equivalent to nonforward dispersion relations plus t� s
crossing symmetry. They are well suited to study poles of

resonances and scattering data, since they are written di-

rectly in terms of partial waves tðIÞ‘ of definite isospin I and
angular momentum ‘. Remarkably, S.M. Roy managed to

rewrite the complicated left cut contribution as a series of

integrals over the physical region. In the original work of

Roy and all applications until now, the convergence of the

integrals was ensured by making two subtractions.

As we did with FDR, we will recast each one of the Roy

equations as the difference

�
ðIÞ
‘ ðsÞ � RetðIÞ‘ ðsÞ� STI

‘ðsÞ�DTI
‘ðsÞ

�
X2

I0¼0

X1

‘0¼0

P:P:
Z smax

4M2
�

ds0KII0
‘‘0ðs; s0Þ ImtI

0
‘0ðs0Þ; (14)

that should vanish when the equation is exactly satisfied.

Roy equations provide as output the real part of partial

waves below 1115 MeV. Although, in principle, one could

consider output for waves up to higher ‘, in this work we

are interested in results for ‘ ¼ 0, 1 only. Hence, we have

separated those waves explicitly below smax.
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FIG. 5 (color online). Fit to the S0 wave inelasticity (UFD)

with the improved continuous derivative matching (continuous

line) versus the simpler one used in KPY08 (dashed line). The

dark band covers the uncertainties of the former, whereas the

dotted curves enclose the uncertainties of the latter. Note that the

drop in the inelasticity right above 1 GeV has become much

deeper. In contrast to Fig. 4, we only show the data coming from

�� ! K �K and the �� ! �� on which the KPY08 fit is based.

For all data sets, see Fig. 18.
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As it was done in KPY08, below s1=2max ¼ 1420 MeV, we
consider the imaginary parts from all our ‘ � 4 partial wave
parametrizations as input. Above that energy, we take into

account all waves together, parametrized with Regge the-

ory—see Appendix A 8. The KII0
‘‘0ðs; s0Þ are known kernels,

and thus wewill refer to the integral terms as ‘‘kernel terms’’

orKTðsÞ. The ‘‘driving terms’’DTI
‘ðsÞ have the same struc-

ture as the kernel terms, but their input contains both the

contribution from ‘ ¼ 2, 3 partial waves up to s1=2max ¼
1420 MeV, and the Regge parametrizations above. We

have explicitly checked that the ‘ ¼ 4 contribution below

smax is irrelevant, so that we will refer just to waves up to

‘ ¼ 3. Finally, the so-called subtraction terms are given by

STI
‘ðsÞ ¼ a00�I0�‘0 þ a20�I2�‘0 þ

s� 4M2
�

12M2
�

ð2a00 � 5a20Þ

�
�

�I0�‘0 þ
1

6
�I1�‘1 �

1

2
�I2�‘0

�

: (15)

It is very relevant to remark once more that these equa-

tions have two subtractions, as can be seen by the presence

of the term proportional to ðs� 4M2
�Þð2a00 � 5a20Þ. This

strong energy dependence of STðsÞ makes these twice-

subtracted Roy equations very suitable for low energy

studies, and even more so when complemented with theo-

retical predictions of the scattering lengths coming from

ChPT [11].

Roy equations are valid up to
ffiffiffi
s

p � 8M� ’ 1120 MeV.
However, we will see that the uncertainties in the scattering

lengths, when propagated to high energies, become too

large above roughly 450 MeV, due to the term proportional

to s. For this reason, in KPY08 it did not make sense to deal

with the complications of a precise description around �KK
threshold, and thus we implemented them up to 2MK. One

of the main novelties of the present work is that, since the

once-subtracted Roy-like equations explained below will

have much smaller uncertainties in the �KK threshold re-

gion, we have now implemented these new equations, to-

gether with the standard Roy equations, up to 1115 MeV.

C. Two sum rules

Apart from FDRs and Roy equations, two sum rules that

relate high energy (Regge) parameters for t � 0 to low

energy P and D waves have been considered throughout

previous works. In Table XII in Appendix D we provide the

S0, P, and S2 phase shifts that result from using the CFD set

inside the dispersive representation.

The first sum rule (PY05) is nothing but the vanishing of

the following difference:

I �
Z 1

4M2
�

ds
ImFðIt¼1Þðs; 4M2

�Þ � ImFðIt¼1Þðs; 0Þ
s2

�
Z 1

4M2
�

ds
8M2

�½s� 2M2
�� ImFðIs¼1Þðs; 0Þ

s2ðs� 4M2
�Þ2

; (16)

where the contributions of the S waves cancel and only the

P and D waves contribute (we also include F and G waves,

but they are negligible). At high energy, the integrals are

dominated by the rho Reggeon exchange.

The second sum rule we consider is given in Eqs. (B.6)

and (B.7) of the second reference in [11], which requires

the vanishing of

J �
Z 1

4M2
�

ds

�
4ImF0ð0Þðs; 0Þ � 10ImF0ð2Þðs; 0Þ

s2ðs� 4M2
�Þ2

� 6ð3s� 4m2
�Þ

ImF0ð1Þðs; 0Þ � ImFð1Þðs; 0Þ
s2ðs� 4M2

�Þ3
�

: (17)

Here, F0ðIÞðs; tÞ � @FðIÞðs; tÞ=@ cos�. At high energy, the
integral is dominated by isospin zero Regge trajectories.

D. GKPY equations

The main novelty of this work is that we present and use

a new set of Roy-like dispersion relations for�� scattering

amplitudes. For brevity, we will call them GKPY equa-

tions, as we have already done when presenting some

partial and preliminary results in several references

[34,35]. In brief, their derivation follows the same steps

as for Roy equations, starting from fixed t dispersion

relations for a complete isospin basis, which S.M. Roy

subtracted twice to ensure that the integrals converged

when extended to infinity. However, by using the complete

set of isospin amplitudes F00, F0þ, and F
ðIt¼1Þ, it is easy to

see that one subtraction is enough. Actually, the first two

amplitudes are s� u symmetric, and the contributions

from the s and u channels, which would be divergent by

themselves alone, cancel when considered simultaneously.

The FðIt¼1Þ amplitude is dominated by the rho Regge

exchange, and neither the left nor the right cut is divergent

with one subtraction. We provide the detailed derivation in

Appendix B, which leads to the vanishing of the following

difference:

�
GKPYðIÞ
‘ � RetðIÞ‘ ðsÞ � STI

‘ �DTI
‘ðsÞ

�
X2

I0¼0

X1

‘0¼0

P:P:
Z smax

4M2
�

ds0KII0
‘‘0ðs0; sÞ ImtðI

0Þ
‘0 ðs0Þ:

(18)

The subtraction terms STI
‘ are linear combinations of

scattering lengths aI0, and can be found in Appendix B. A

very relevant observation for this work is that, in contrast to

the standard Roy equations, the subtraction terms in GKPY

do not depend on s.
The integral and driving terms DTI

‘ðsÞ in Eq. (18) are

analogous to the kernel and driving terms in Roy equations,

but the integrals contain the KII0
‘‘0 kernels, instead of the

KII0
‘‘0 . The explicit expressions for K

II0
‘‘0 are lengthy, and we

provide them in Appendix C. Note that, as the once-

subtracted GKPY equations have kernel terms that behave
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as�1=s2 at higher energies, instead of the�1=s3 behavior
in Roy equations, the weight of the high energy region is

larger. Nevertheless, the contribution to the driving terms

coming from energies above 1.42 GeV is generically

smaller than the contribution coming from the D and F

waves below 1.42 GeV, which means that their influence is

still under control.

E. Roy versus GKPY equations

Figure 6 presents a decomposition of Roy equations for

the S0, P, and S2 waves into four parts: the ‘‘in’’ part that

represents what our parametrizations give for RetðIÞ‘ , the

subtracting terms STðsÞ, the kernel terms KTðsÞ, and the

driving terms DTðsÞ. Note that, for these equations to be

satisfied exactly, the first contribution should equal the sum

of the other three. The numerical calculations have been

performed by taking the UFD amplitudes described in the

previous sections as input. For illustration, we have drawn

as a gray area the region that violates the unitarity bound

jRetj � �s1=2=4k (note that � ¼ 1 in the elastic region).

For comparison, we present in Fig. 7 the same decompo-

sitions for the GKPY equations. Note the very different

scales on both sets of figures.

As can be seen in Fig. 6, the STðsÞ and KTðsÞ terms in

Roy equations become huge at higher energies and suffer a

large cancellation against each other. This cancellation is

particularly strong for the S0 wave, where, for a suffi-

ciently large energy, both terms are much larger than the

unitarity bound. For instance, they are larger by roughly a

factor of 4 at 750 MeV, and of 8 at 1100 MeV.

In contrast, as seen in Fig. 7 for the GKPY equations,

Eq. (18), the ST terms are constant and, in fact, much

smaller than the KTðsÞ terms, which are clearly the domi-

nant ones. Therefore, no big cancellations between any two

terms are needed in order to reconstruct the total real part

of the amplitude. Moreover, we have checked that the high

energy part, which has been parametrized by means of

Regge theory, corresponds to somewhat less than half of

the total DTðsÞ contribution. Therefore, although the

DTðsÞ terms in the GKPY equations are larger than in

Roy equations due to the fact that there is one subtraction

less, the contribution coming from the amplitudes above

1420 MeV is still small compared with the dominant term

KTðsÞ. Thus, the high energy behavior is still well under

control.

Note that, to keep the plots clear, we have only provided

central values for the moment. In the next section we will

provide the total uncertainties (the uncertainties of each

separated contribution were presented in an article [35]

using a very preliminary UFD set). For our purposes it is

enough to remark that uncertainties follow a similar pattern

to these central values. In particular, the STðsÞ term in Roy

equations for scalar waves has a large uncertainty due to

the poor experimental knowledge of the a20 scattering

length, which becomes larger and larger, proportionally
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FIG. 6. Using the UFD set as input, we show the decomposi-

tion of Roy equations into the subtracting term ST, the kernel

term KT, and the driving term DT for the S0, P, and S2 waves.

Note the different scales used on each plot. The gray areas lie

beyond the unitarity bound.
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to s, as the energy grows, becoming dominant above

roughly 450 MeV. In contrast, since the GKPY ST term

is constant and there are no large cancellations, the result-

ing GKPY equations have a much smaller uncertainty in

that region. Actually, the errors for the GKPYequations in

the three waves come almost completely from the KTðsÞ
terms. At low energies, the effect is reversed and Roy

equations provide a much more stringent constraint than

GKPY. Therefore, and as we will show next, they become

complementary ways of checking our data parametriza-

tions at different energies.

F. Consistency check of unconstrained fits

In order to provide a consistency measure for our pa-

rametrizations with respect to the dispersive relations and

sum rules presented in the previous sections, we will make

use (as we did in previous works) of a quantity similar to an

averaged �2=ðd:o:f:Þ distribution. In particular, we can

consider that a dispersion relation i is well satisfied at a

point sn if the difference �i, defined in Eqs. (12)–(14) and

(18), is smaller than its uncertainty ��i. Thus, when the

average discrepancy verifies

�d 2
i �

1

number of points

X

n

�
�iðsnÞ
��iðsnÞ

�
2

� 1; (19)

we consider that the corresponding dispersion relation is

well satisfied within uncertainties in the energy region

spanned by the points sn. In practice, the values of s1=2n

are taken at intervals of 25 MeV between threshold and the

maximum energy, where we study each dispersion relation

(1420 MeV for FDR and 1115 MeV for Roy and GKPY

equations). In addition, we have added a point below

threshold at s ¼ 2M2
� for the F00 and F0þ FDRs.

Similarly, we define discrepancies for the sum rules in

Eqs. (16) and (17), as follows:

�d 2
I ¼

�
I

�I

�
2

; �d2J ¼
�
J

�J

�
2

: (20)

In order to calculate the uncertainties ��iðsnÞ, �I, �J,
we have followed two approaches: On the one hand, we

have simply added in quadrature the effect of varying each

parameter independently in our parametrizations from pi

to pi � �pi. The errors are symmetric since, in order to be

conservative, we have always taken the largest variation as

the final error when changing the sign of �pi. This is rather

simple but does not take their correlations into account. On

the other hand, we have also estimated the uncertainties

using a Monte Carlo Gaussian sampling [34] of all CFD

parameters (within 6 standard deviations). The uncertain-

ties are then slightly asymmetric, corresponding to the

independent left and right widths of the generated distri-

bution for 105 events. This is, of course, much more time

consuming, although in this way we can keep part of the

correlations in the results. However, we have checked that
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FIG. 7. Using the UFD set as input, we show the decomposi-

tion of GKPY equations into the subtracting term ST, the kernel
term KT, and the driving term DT for the S0, P, and S2 waves.

Note the different scales used here and in Fig. 6. The gray areas

lie beyond the unitarity bound.
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both methods yield very similar results, because the errors

coming from each individual parameter are small and the

number of parameters is large. The difference between

using one method or another is almost negligible [34]

and thus, for simplicity, we are providing numbers and

figures with the first one, which would be much easier to

reproduce should someone use our parametrizations.

In Table I we show the averaged squared discrepancies
�d2i that result when we use the UFD set described in Secs. II

and III. We are showing these discrepancies up to two

different energy regions, 932 MeV and 1420 MeV for

FDRs, and up to 992 MeV and 11115 MeV for both Roy

and GKPY equations (note that we have kept the same

definition of energy regions as in KPY08, so that we can

compare easily with the results obtained there). Let us

remark that these discrepancies are ‘‘squared distances,’’

similar to a �2, and so we will abuse the language and talk

about average ‘‘standard deviations,’’ which correspond to

the square root of �d2i . Still, one has to keep in mind that

these dispersion relations have not been fitted yet.

Let us first concentrate in the low energy part below

932 MeV or 992 MeV. We can observe that FDRs are

reasonably well satisfied: Discrepancies are never beyond

1.3 standard deviations. Roy equations are also well sat-

isfied, with a discrepancy below 1.2 standard deviations.

However, the GKPYequations are much more demanding:

The UFD set satisfies the S2 wave equation fairly well, but

it does not satisfy the S0 and P wave relations so well. Still,

no dispersion relation lies beyond 1.6 standard deviations.

This is not too bad, given the fact that we have not fitted the

dispersion relations, but there is clear room for improve-

ment. Let us recall that this is just how experimental data

satisfy these constraints; there is no theory on the

UFD set.

If we now also include the region above 932 MeV for

FDRs or above 992 MeV for Roy and GKPYequations, we

find that the agreement deteriorates considerably: Four

relations lie between 1.4 and 1.65 average standard devia-

tions, but not beyond that. Fortunately, we will get much

better fulfillment of dispersion relations in all regions by

allowing for a small variation of the parameters in the

constrained fits to be discussed below.

Let us also remark that the two sum rules, Eqs. (16) and

(17), are satisfied within 1.9 and 0.3 standard deviations.

Even for the first one, this is still a fair agreement, because,

in practice, both of them correspond to a 1 order of

magnitude cancellation between the low and high energy

contributions to the sum rules, which, in these UFD sets,

are determined from uncorrelated data fits.

Also in Table I we show the average discrepancies for

the old UFD set in KPY08. With regard to FDRs and Roy

equations, it is evident that the new UFD fit is doing worse

than the one in KPY08. Nevertheless, one should keep in

mind that the new S0 wave has reduced its uncertainty at

low energies by somewhat more than 10%, because the

published NA48=2 data are more precise and also because

we are discarding the controversial K ! 2� datum. For

that reason, one would have expected the averaged squared

discrepancies to now look bigger by as much as 20% or

30% whenever the S0 wave contributes significantly to the

dispersion relation. With this correction in mind, the dete-

rioration is not so significant. Nevertheless, we want to

insist that this is basically due to the new results ofNA48=2
and our getting rid of the K ! 2� datum. The data have

changed.

Why do we then claim to have improved the S0 wave in

this work? The answer comes from GKPYequations, which,

as we already explained, are much more precise than Roy

TABLE I. Average discrepancies �d2i of the unconstrained data fits (UFD set) for each

dispersion relation. We compare the results of the parametrization obtained in this work (new

UFD) with those in KPY08 (old UFD set). The huge discrepancies seen in KPY08 for GKPY

equations all come from energies above �500 MeV. This is the main reason to improve our

unconstrained S0 fit, as explained in Sec. III C.

�d2i New UFD Old UFD New UFD Old UFD

FDRs s1=2 � 932 MeV s1=2 � 1420 MeV

�0�0 0.31 0.12 2.13 0.29

�þ�0 1.03 0.84 1.11 0.86

It¼1 1.62 0.66 2.69 1.87

Roy equations s1=2 � 992 MeV s1=2 � 1100 MeV

S0 0.64 0.54 0.56 0.47

S2 1.35 1.63 1.37 1.68

P 0.79 0.74 0.69 0.65

GKPY equations s1=2 � 992 MeV s1=2 � 1100 MeV

S0 1.78 5.0 2.42 8.6

S2 1.19 0.49 1.14 0.58

P 2.44 3.1 2.13 2.7

Average 1.24 1.46 1.58 1.97
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equations above roughly 450 MeV for the S0 wave, given

the present experimental input. It is clear that the KPY08

UFD parametrization satisfies the S0 GKPY equation very

poorly at any energy and is not satisfying the low energy P

GKPY equation very well. For that reason, we have im-

proved the matching and the data selection, so that our new

UFD parametrization, which will be our starting point for

the constrained fits, satisfies GKPY equations much better

without spoiling FDR and Roy equations. The improvement

due to the new unconstrained S0 wave fit is obvious from

Table I, particularly in the S0 GKPY equation. Up to

1100 MeV, the old UFD set from KPY08 had an averaged

squared discrepancy of 8.6, whereas the new UFD set has

2.42. This huge improvement on the S0 wave has been

compensated by some deterioration in other relations at

high energy, so that the averaged discrepancy up to high

energies is reduced only from 1.97 to 1.58. Note that the

change in the inelasticity parameter, that now shows a much

bigger dip in the 1000 to 1100 MeV region, as shown in

Fig. 5, plays a relevant role in this dramatic improvement.

This dip structure is thus favored by the GKPY equations,

something that could not be seen with standard Roy equa-

tions since their uncertainties in that region are huge. We

will discuss this in detail in Sec. VIIB. At low energies, the

average squared discrepancy has been reduced very little,

from 1.46 down to 1.24. Of course, let us remark once again

that our uncertainties are now 10%–15% smaller in the S0

wave at low energies, so that the improvement is actually

bigger than it seems just from the numbers in the table.

Let us mention here that the inclusion of the new terms

parametrizing a crude dependence on the � momentum

above �� threshold help reduce the average squared dis-

tances by 6%, namely, from 1.68 to 1.58. In particular, the

average squared discrepancies �d2i for the S0 GKPY equa-

tion decrease from 3.02 to 2.42 and for the F00 FDR

equation from 2.35 to 2.13.

Up to now, we have studied the overall uncertainties, but

in Fig. 8 we show to what extent FDRs are satisfied by the

UFD set, as a function of energy. Of course, the best fulfill-

ment is found at lower energies. In Fig. 9 we show how the

usual, twice-subtracted Roy equations are satisfied by the

UFD set. Here, as we did in Sec. IVE, we denote by ‘‘in’’

what our parametrizations give for RetðIÞ‘ , whereas we de-

note by ‘‘out’’ the result of the dispersive representation

fromRoy equations, namely, the subtraction constant terms,

plus the kernel terms, plus the driving terms in Eq. (14).

Finally, in Fig. 10 we show how the new, once-subtracted,

GKPYequations are satisfied by the UFD set. We follow the

same in and out notation as for Roy equations.

Comparing Fig. 9 with Fig. 10, it is clear that, given the

present experimental input, the uncertainty band for GKPY

equations is much smaller than that for Roy equations

above 450 MeV, whereas the opposite occurs at lower

energies. Therefore, as we have emphasized repeatedly,

the new GKPY equations represent a much stronger
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FIG. 8 (color online). Results for forward dispersion relations.

Dashed lines: real part, evaluated directly with the UFD parame-

trizations. Continuous lines: the result of the dispersive integrals.

The dark bands cover the uncertainties in the difference between

both. From top to bottom: (a) the �0�0 FDR, (b) the �0�þ FDR,

and (c) the FDR for It ¼ 1 scattering. The dotted vertical line

stands at the �KK threshold.
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constraint in the intermediate energy region than standard

Roy equations.

In summary, with the new S0 unconstrained fit, all

dispersion relations are satisfied in the different energy

regions within less than 1.6 standard deviations in the

low energy regime, and 1.7 including the intermediate

energies. This is a fairly reasonable fulfillment, given

the fact that the information about analyticity has not

been included as a constraint in the UFD description.

Nevertheless, it is obvious that there is room for improve-

ment, which is what we will do by obtaining constrained

data fits in the next section.

V. FITS TO DATA CONSTRAINED BY

DISPERSION RELATIONS

In previous works (PY05, KPY08) we had improved the

consistency of our description of �� scattering amplitudes

by imposing FDR and Roy equation fulfillment within

uncertainties. As we have just seen in the previous section,

the GKPY equations provide a much more stringent con-

straint in the intermediate energy region than standard

Roy equations, and thus it now makes sense to impose

the new GKPY equations as an additional constraint in a

new set of constrained fits to data (CFD set).

A. Minimization procedure

Our goal is then to obtain a fit to data, by changing the

UFD parametrizations slightly, that fulfills each dispersion

relation within errors. As we did in [3], we will now use the

average discrepancies �d2i , defined in Eqs. (19) and (20), to

obtain these constrained fits, by minimizing

X

i

W2
i
�d2i þ �d2I þ �d2J þ

X

k

�
pk � p

exp
k

�pk

�
2

; (21)

where i runs over the three FDRs, as well as the three Roy
and the three GKPYequations. Here, we denote by p

exp
k all

the parameters of the UFD parametrizations for each wave

or Regge trajectory. In this way, we force the previous data

parametrizations to satisfy dispersion relations and sum

rules within uncertainties. In KPY06 and KPY08 a com-

mon weight of W2
i � 9 was estimated from the typical

number of degrees of freedom needed to describe the

shapes of the output. This value ensured that every single

dispersion relation was fairly well described by the KPY08

constrained data fits up to the matching energy used in that

work, namely, 932 MeV.

However, we are now considering partial waves up to

1115 MeV. For most waves, this extension does not alter

significantly their shape, and Wi ¼ 3 is still a good weight.

Nevertheless, we have less points in the region above

932 MeV, and if we want the fit to give not just a good

average �d2i , but also a good description for each wave, some

of these waves need further weight on the high energy

region, in particular, if their UFD �d2i was larger than 2. For

this purpose, we have increased Wi up to 3.5 for the high

energy parts of the F00, F
ðIt¼1Þ, as well as 4.2 for the GKPY

P wave in the whole energy region. Finally, we have in-

creased Wi up to 7 for the high energy part of the

S0 GKPY equation. The latter was to be expected, since in

this region there is a lot more structure, both in the phase and

inelasticity, due to the presence of the f0ð980Þ. These values
are not arbitrary, since they have been obtained by increasing

eachWi gradually, starting from 3, until the �d2i are below or

very close to 1 uniformly throughout thewhole energy range,

for all dispersion relations obtained from the constrained fit.

This uniformity is very relevant to avoid dispersive con-

straints being badly satisfied in some small energy region

despite the averaged �d2i still remaining below 1.

Before proceeding further, let us recall that, strictly

speaking, the quantity that we minimize in Eq. (21) is

not a �2, but that each individual �d2i is a measure of how

well each dispersion relation is satisfied.

B. Variation of the S2 Adler zero

As we have seen in Sec. III C, in the parametrization of

each scalar wave, we explicitly factorized a zero in the

subthreshold region. These are the Adler zeros required

by chiral symmetry constraints [31]. Actually, we fixed

them to
ffiffiffiffiffiffiffi

sS0A

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
�=2

p

’ 99 MeV and
ffiffiffiffiffiffiffi

sS2A

q

�
ffiffiffiffiffiffiffiffiffiffi

2M2
�

p

’
197 MeV, which are their current algebra values (leading

order ChPT). Of course, once these UFD parametrizations

are used inside the S0 and S2 Roy or GKPYequations, we

can also obtain the dispersive result for the S0 and S2 Adler

zeros, which we provide in Table II.

In order to determine the positions of Adler zeros better

when making constrained fits in KPY08, we allowed them

to change within the dispersive uncertainties obtained from

the UFD set. However, in this work we will not insist on

z0=
ffiffiffi

2
p

reproducing the S0 wave Adler zero very precisely.

The reason is that, as we see in Table II, the uncertainties

in
ffiffiffiffiffiffiffi

sS0A

q

obtained either from Roy or GKPY equations are

huge, and setting z0 free introduces a spurious and

TABLE II. Adler zero positions
ffiffiffiffiffi
sA

p
, in MeV, for the S0 and S2 waves, obtained from Roy or GKPY equations using the

parametrizations from either the UFD or CFD set.

Roy equations with UFD GKPY equations with UFD Roy equations with CFD GKPY equations with CFDffiffiffiffiffiffiffi

sS0A

q

112� 24 120� 30 83� 32 85� 34
ffiffiffiffiffiffiffi

sS2A

q

189� 11 200� 6 200� 10 201� 5
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extremely correlated source of error. In addition, in

KPY08, the z0 central value moved in the wrong direction

[36]. In addition, as already explained in Sec. III C, the S0

wave Adler zero lies close to the border of the conformal

circle, i.e., wðsS0A Þ ’ �1, where the conformal expansion

converges very slowly. We simply have to accept that our

S0 wave conformal expansion is not very accurate around

the Adler zero. Of course, this is irrelevant for the integrals

in the physical region and has a negligible influence on the

set of constrained fits we will obtain next.

In contrast, the S2 Adler zero obtained from the disper-

sive representation moves very little from its current alge-

bra value, and its uncertainty is rather small. The reason for

this difference in uncertainties is, for a good part, that the

S0 wave Adler zero lies very close to the left cut, whereas

the S2 Adler zero is not so far from threshold and is quite

well determined when data are used as input of either Roy

or, even better, GKPY equations. For that reason, we still

allow the S2 Adler zero to vary when making the con-

strained fits, using as a starting point the weighted average

of the values obtained from the UFD set inside Roy and

GKPY equations, namely,
ffiffiffiffiffiffiffi

sS2A

q

¼ 197:7� 5:1 MeV.

C. Constrained fits to data

The resulting parameters for the CFD are gathered in the

tables of AppendixA. It is reassuring to observe that, except

for the S0 wave at intermediate energies, the values of the

parameters do not change much from the UFD to the CFD

sets, as could be expected, since, as we saw in Table I, the

UFD fulfillment of dispersive constraints only needed some

improvement, but not a radical change. In particular, the

GKPYequation for the S0 wave is very well satisfied in the

CFD at the expense of an average change of 0.82 standard

deviations in the high energy parameters and al-

most no change in the low energy ones. Certainly, most of

this change is concentrated in the parameters c and ~�1 in

Eqs. (10) and (11). We will discuss below that the resulting

phase after this change still describes the phase shift and

inelasticity data fairly well, but tends to make the f0ð980Þ
somewhat wider. The D2 wave is the one that deviates most

from its unconstrained parametrization, but its parameters

are, on average, within 1.4 standard deviations of their UFD

value. This could be expected, aswas already commented in

our previous works [1,3], since, together with the S0 at high

energy, it is probably the one where data have the worst

quality. The parameters of the other waves, or those of the

Regge parametrizations, do not deviate—on average—

beyond 0.6 standard deviations from their UFD values. In

Table XII in Appendix Dwe provide the S0, P, and S2 phase

shifts that result from using the CFD set inside the disper-

sive representation.

In Table III we list the averaged discrepancies that result

when we use the CFD inside the dispersion relations. Let

us remark that all discrepancies are now below 1, and are

very similar both for the low energy region and also when

including the high energy region. This shows a remarkable

average consistency and homogeneity for this new set of

data parametrizations. Let us recall that we only constrain

our fits to satisfy dispersion relations up to 1420 MeV for

FDR and 1115 MeV for Roy and GKPY equations.

Consequently, we expect the dispersive representation to

be somewhat worse satisfied in the region near the maxi-

mum energy under consideration. This is indeed observed

since the average squared discrepancies are somewhat

smaller below 1 GeV than up to the maximum energy,

where we usually find the point satisfying the dispersion

relations worse.

Furthermore, as already commented, the updated selec-

tion and treatment of the S0 wave data has decreased the S0

wave uncertainties by roughly 10% to 15%. This means

that the consistency shown by the average discrepancies in

Table III is even better than it looks when comparing with

similar results given in KPY08 for FDR and Roy equations,

since we are getting a very good consistency with slightly

smaller uncertainties.

As we did for the UFD set, we now show in Figs. 11–13

how well the CFD set satisfies FDR, Roy, and GKPY

equations, respectively. The improvement in the consis-

tency of the CFD set over the UFD is evident by comparing

these plots with their UFD counterparts in Figs. 8–10.

Finally, the two sum rules in Eqs. (16) and (17) are also

remarkably well satisfied, within 0.93 and 0.1 standard

deviations, respectively. In particular, the 1.9 standard

deviations for the sum rule in Eq. (17) using the UFD set

are reduced dramatically, and this implies now a 2 orders of

magnitude cancellation between the low and high energy

contributions.

VI. THRESHOLD PARAMETERS

AND ADLER ZEROS

Apart from the additional GKPY equations, the main

novelty of this work is the S0 wave improvement, both in

TABLE III. Average discrepancies �d2i of the CFD for each

dispersion relation.

FDRs s1=2 � 932 MeV s1=2 � 1420 MeV

�0�0 0.32 0.51

�þ�0 0.33 0.43

It¼1 0.06 0.25

Roy equations s1=2 � 992 MeV s1=2 � 1100 MeV

S0 0.02 0.04

S2 0.21 0.26

P 0.04 0.12

GKPY equations s1=2 � 992 MeV s1=2 � 1100 MeV

S0 0.23 0.24

S2 0.12 0.11

P 0.68 0.60

Average 0.22 0.28
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FIG. 12 (color online). Results for Roy equations. Dashed lines
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FIG. 11 (color online). Results for forward dispersion rela-

tions. Dashed lines: real part, evaluated directly with the CFD

parametrizations. Continuous lines: the result of the dispersive

integrals. The dark bands cover the uncertainties in the differ-

ence between both. From top to bottom: (a) the �0�0 FDR,

(b) the �0�þ FDR, and (c) the FDR for It ¼ 1 scattering. The

dotted vertical line stands at the �KK threshold.
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its parametrization and data analysis. Thus, naively, one

may not expect a big variation in the low energy part of the

other waves with respect to previous works.

However, let us recall that, as we did in KPY08, we

calculate most threshold parameters from sum rules. Thus,

the changes in the S0 wave can also affect the calculation

of these low energy parameters for other waves. In par-

ticular, when using sum rules with one subtraction, the

intermediate energy part of our parametrizations, now con-

strained by GKPY equations, also plays a relevant role in

our final results. In this section we will thus recalculate all

these threshold parameters with the new CFD set. Actually,

we will find that not only the S0 wave, but also the D wave

threshold parameters suffer sizable modifications.

Finally, in previous works we did not use the dispersive

or sum rule techniques to determine, with precision, the

position of Adler zeros, which are required by chiral

symmetry in the subthreshold region of the S0 and S2

waves, and are therefore of interest for chiral perturbation

theory. Also in this section we will determine them using

the Roy and GKPYequations with the CFD set as input for

the integrals.

A. Sum rules for threshold parameters

We list in Table IV the values of the threshold parame-

ters for all the partial waves we considered in this analysis,

namely, S0, S2, P, D0, D2, and F. In addition, we provide

values for að0Þ0 � að2Þ0 , 2að0Þ0 � 5að2Þ0 , and �ð0Þ
0 ðM2

KÞ �
�ð2Þ
0 ðM2

KÞ, since these parameters are of relevance for

pion atoms, scalar threshold parameters, and kaonic de-

cays. In the second and third columns, we provide the

results from the UFD and CFD sets. We already com-

mented that the CFD parametrizations change only very

slightly compared to the UFD, and this is well corroborated

by the fact that all the UFD and CFD results in Table IVare

compatible with one another within roughly 1 standard

deviation.

In the fourth column, we use the very reliable CFD set

inside several sum rules, which we detail next only very

briefly, since they had already been given in detail in

KPY08. First, we use the well-known Olsson sum rule:

2að0Þ0 � 5að2Þ0 ¼ 3M�

Z 1

4M2
�

ds
ImFðIt¼1Þðs; 0Þ
sðs� 4M2

�Þ
; (22)

which is dominated at high energies by the �-Regge ex-

change, and can thus have only one subtraction. Apart from

the normalization, this is just the FDR in Eq. (13), but

evaluated at threshold.

Next, for ‘ 	 1, we use the Froissart-Gribov represen-

tation:
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FIG. 13 (color online). Results for GKPY equations. Dashed

lines (in): real part, evaluated directly with the CFD parametriza-

tions. Continuous lines (out): the result of the dispersive repre-

sentation. The gray bands cover the uncertainties in the difference

between both. From top to bottom: (a) S0 wave, (b) S2 wave, and

(c) P wave. Note how these uncertainties are much smaller above

450 MeV than those from the standard Roy equations shown in

Fig. 12. The dotted vertical line stands at the �KK threshold.
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a‘ ¼
ffiffiffiffi
�

p
�ð‘þ 1Þ

4M��ð‘þ 3=2Þ
Z 1

4M2
�

ds
ImFðs; 4M2

�Þ
slþ1

;

b‘ ¼
ffiffiffiffi
�

p
�ð‘þ 1Þ

2M��ð‘þ 3=2Þ
Z 1

4M2
�

ds

�
�
4 ImF0

cos�ðs; 4M2
�Þ

ðs� 4M2
�Þs‘þ1

� ð‘þ 1ÞImFðs; 4M2
�Þ

s‘þ2

�

; (23)

with ImF0
cos� � ð@=@ cos�sÞImF, where cos�s is the angle

between the initial and final pions. For amplitudes with

fixed isospin in the t channel, an extra factor of 2 (due to

the identity of particles) has to be added to the left-hand

side of the equation above.

In addition, we use the following sum rule that we

derived in [1]:

b1 ¼
2

3M�

Z 1

4M2
�

ds

�
1

3

�
1

ðs� 4M2
�Þ3

� 1

s3

�

ImFðIt¼0Þðs; 0Þ

þ 1

2

�
1

ðs� 4M2
�Þ3

þ 1

s3

�

ImFðIt¼1Þðs; 0Þ

� 5

6

�
1

ðs� 4M2
�Þ3

� 1

s3

�

ImFðIt¼2Þðs; 0Þ
�

; (24)

together with another two sum rules, derived in [3], in-

volving either the S0 and S2 slopes,

bð0Þ0 þ2bð2Þ0 ¼ lim
s!4M2þ

�

P:P:
Z 1

4M2
�

ds0

� 6M�ð2s0�4M2
�ÞImF00ðs0Þ

s0ðs0þs�4M2
�Þðs0�4M2

�Þðs0�sÞ ; (25)

or the S2 slope parameter and the P wave scattering length:

3að1Þ1 þbð2Þ0 ¼ lim
s!4M2þ

�

P:P:
Z 1

4M2
�

ds0

� 4M�ð2s0�4M2
�ÞImF0þðs0Þ

s0ðs0þs�4M2
�Þðs0�4M2

�Þðs0�sÞ : (26)

Note that, as explained in [3], the limits above are to be

taken for s > 4M2
�. In practice, for the value of a1 we

simply use its Froissart-Gribov representation, and we

are left with a sum rule representation for both bð0Þ0 and bð2Þ0 .

The results for all these sum rules are listed in the fourth

column of Table IV.

The fifth column, which contains what we consider our

best values, is obtained as follows: For 2að0Þ0 � 5að2Þ0 , bð0Þ0 ,

bð2Þ0 , a1, and b1, we take the average between the sum rules

above and the direct value of the CFD set, since they are

basically independent. However, for the D0, D2, and

F waves, in order to stabilize the fits, we had already

constrained the value of the threshold parameters by means

of the Froissart-Gribov representation in the UFD set (see

[1]). Hence, in those cases, it makes no sense to average

either the UFD or CFD direct result with the Froissart-

TABLE IV. Threshold parameters in the customary M� ¼ 1 units and the �ð0Þ
0 ðM2

KÞ � �ð2Þ
0 ðM2

KÞ phase difference. The values in the

second and third columns are obtained directly from the UFD and CFD parametrizations, respectively. The fourth column is obtained

using the CFD set inside sum rules.

UFD CFD Sum rules with CFD Best values KPY08 values

að0Þ0 0:218� 0:009 0:221� 0:009 0:220� 0:008e 0:223� 0:009

að2Þ0 �0:052� 0:010 �0:043� 0:008 �0:042� 0:004e �0:044� 0:004

að0Þ0 � að2Þ0 0:270� 0:009 0:264� 0:009 0:262� 0:006e 0:267� 0:009

2að0Þ0 � 5að2Þ0 0:696� 0:054 0:657� 0:043 0:648� 0:016a 0:650� 0:015 0:668� 0:017

�ð0Þ
0 ðM2

KÞ � �ð2Þ
0 ðM2

KÞ 47:4� 0:9� 47:3� 0:9� 47:3� 0:9� 50:9� 1:2�

bð0Þ0 0:276� 0:007 0:278� 0:007 0:278� 0:008d 0:278� 0:005 0:290� 0:006

bð2Þ0 �0:085� 0:010 �0:080� 0:009 �0:082� 0:004d �0:082� 0:004 �0:081� 0:003

a1ð�103Þ 37:3� 1:2 38:5� 1:2 37:7� 1:3b 38:1� 0:9 38:1� 0:9

b1ð�103Þ 5:18� 0:23 5:07� 0:26 6:0� 0:9b, 5:48� 0:17c 5:37� 0:14 5:12� 0:15

að0Þ2 ð�104Þ 18:7� 0:4 18:8� 0:4 17:8� 0:3b 17:8� 0:3 18:33� 0:36

að2Þ2 ð�104Þ 2:5� 1:1 2:8� 1:0 1:85� 0:18b 1:85� 0:18 2:46� 0:25

að0Þ2 ð�104Þ �4:2� 0:3 �4:2� 0:3 �3:5� 0:2b �3:5� 0:2 �3:82� 0:25

bð2Þ2 ð�104Þ �2:7� 1:0 �2:8� 0:8 �3:3� 0:1b �3:3� 0:1 �3:59� 0:18

a3ð�105Þ 5:2� 1:3 5:1� 1:3 5:65� 0:23b 5:65� 0:21 6:05� 0:29
b3ð�105Þ �4:7� 2:6 �4:6� 2:5 �4:06� 0:27b �4:06� 0:27 �4:41� 0:36

aFrom Eq. (22).
bFrom Eq. (23).
cFrom Eq. (24).
dFrom Eqs. (25) and (26).
eIn addition, for the best values of the S0 and S2 scattering lengths, we have refitted their CFD values constrained to satisfy the Olsson
sum rule, Eq. (22), which is also used to obtain the best value for their difference and its uncertainty, Eqs. (27) and (28).
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Gribov representation for að0Þ2 , að2Þ2 , bð0Þ2 , and a3, which is

therefore considered our best result. The only exceptions

are bð2Þ2 and b3, since those values were not constrained in

the initial UFD, but their uncertainty from the CFD is an

order of magnitude larger than from the sum rule, which is

the value we quote as the best one.

Let us remark that the S0 and S2 scattering lengths,

which are of special interest for ChPT, are refined by

refitting them again to the CFD direct results and the

Olsson sum rule simultaneously. Obviously, the resulting

errors are strongly correlated, and the corresponding cor-

relation ellipse is shown in Fig. 14. The uncertainties can

be uncorrelated by using two new variables, x, y, defined as

að0Þ0 ¼ 0:220þ 0:130xþ 0:337y;

að2Þ0 ¼ �0:042� 0:337xþ 0:130y;

að0Þ0 � að2Þ0 ¼ 0:262þ 0:467xþ 0:206y;

x ¼ 0� 0:076; y ¼ 0� 0:023;

(27)

which give the numbers listed in the tables as our ‘‘Best

values’’:

að0Þ0 ¼ 0:220� 0:008;

að2Þ0 ¼ �0:042� 0:004;

að0Þ0 � að2Þ0 ¼ 0:262� 0:006;

(28)

in units of M�.

For the sake of comparison, we list in the sixth column

our results from KPY08, where we did not impose the

GKPYequations nor did we add the several improvements

to the amplitudes and the data implemented in this work.

Note that the low energy parameters are quite consistent

with our previous results; i.e. many central values lie

within 1 standard deviation of our KPY08 results, and

most of them overlap within 1 standard deviation. There

are, of course, the expected exceptions: First, the

�ð0Þ
0 ðM2

KÞ � �ð2Þ
0 ðM2

KÞ central value changes by 3 standard

deviations, mostly due to the fact that we have discarded

here the controversial K ! �� datum. Next, the S0 slope

bð0Þ0 changes by 2 standard deviations, and this is mostly

due to the inclusion of the isospin violation correction in

the low energy K‘4 data. One could have expected that the

scattering length að0Þ0 may have suffered a large shift for the

same reason, but it has only decreased by about a third of a

standard deviation. Hence, most of the change due to the

K‘4 isospin correction is concentrated on the slope parame-

ter. In addition, as we already anticipated, both D wave

scattering lengths have decreased by roughly 2 standard

deviations.

Although it will be commented in detail in the discus-

sion section, let us note that these new results are in much

better agreement with the results in [11] than were those in

KPY08.

As commented in Sec. V, we can also check here that

the new uncertainties are slightly smaller, but only by

10%–15%, than in KPY08, due to discarding the

K ! �� conflicting input and keeping the S0 Adler zero

fixed, and to the more precise NA48=2 published data. The

að0Þ0 � að2Þ0 uncertainty in (28) has decreased by almost

50%, although this is not only due to our improvement of

the S0 wave, but mainly to the fact that we are now

calculating it differently, using Eqs. (27).

B. Determination of Adler zeros

As already explained, chiral symmetry requires the ex-

istence of zeros in the amplitude close to s ¼ 0 for the

scalar waves S0 and S2 [31]. We have explicitly factorized

them in our amplitudes at sS0A ¼ z20=2 and sS2A ¼ 2z22; see
Eqs. (6) or (A1) and (A5). As a starting point, we have first

fixed them to the ChPT leading order estimate by setting

z0 ¼ z2 ¼ M� for the UFD parametrizations. We then

used these parametrizations inside Roy or GKPYequations

to recalculate the position of these Adler zeros, which were

listed in the first two columns of Table II.

In previous works, we allowed the z0 and z2 parameters

to change in the CFD set, expecting them to be accurately

fixed by imposing the dispersion relations. Unfortunately,

as discussed in Sec. VB, this does not work for the

S0 wave. The reason is that its Adler zero is very close

to the left cut, in a region where, on the one hand, neither

Roy nor GKPY equations provide a precise determination

of the zero position (see Table II) and, on the other hand,

the conformal expansion converges badly. For that reason,

we have simply kept the S0 parameter z0 fixed to M� on

both the UFD and CFD sets. Being so far from the thresh-

old region, this effect is irrelevant inside the dispersive

integrals. Thus, only the S2 Adler zero is allowed to change

when obtaining the CFD set, but only within the UFD

uncertainties obtained from Roy and GKPY equations.

In this section we go one step further and we finally

provide, in the last two columns of Table II, the value of the

S0 and S2 wave Adler zeros obtained when the CFD set is
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FIG. 14 (color online). The 1 and 2 standard deviation ellipses

(thick and dashed lines, respectively) in the ðað0Þ0 ; að2Þ0 Þ plane. The
rectangle covers the uncertainties of our best results in Eq. (28),

obtained from the uncorrelated expressions in Eq. (27).
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used inside Roy and GKPYequations. The CFD S0 zero is

closer to its expected position (around 80 MeV) than the

UFD result, but note that the uncertainty gets worse be-

cause of this displacement towards the left cut. In sum-

mary, we do not have enough precision to pin down the

location of this S0 Adler zero accurately.

In contrast, the S2 Adler zero is determined quite pre-

cisely by GKPY equations (and to a lesser extent by Roy

equations), and the resulting z2 parameter, if allowed to

vary, is almost identical to its UFD determination. Thus, as

explained in Sec. VB, we have allowed
ffiffiffi

2
p

z2 to vary

within the weighted average between the GKPY and Roy

equation results of the UFD set. The resulting Adler zero,

when read directly from the CFD parametrization, is
ffiffiffiffiffiffiffi

sS2A

q

¼
ffiffiffi

2
p

z2 ¼ 201� 5 MeV, which is almost identical

to the values obtained by using the CFD set inside Roy or

GKPYequations—listed in Table II. This confirms that it is

correct to identify the Adler zero with the
ffiffiffi

2
p

z2 term in our

S2 wave conformal parametrization.

VII. DISCUSSION

First of all, we want to remark that ours is just a data

analysis, and we are not predicting the value of any ob-

servable, just determining them from experiment. In con-

trast to other approaches [11], we are not solving FDR,

Roy, or GKPY equations, but just imposing them as con-

straints on the data analysis. Actually, all these equations

have been obtained with several approximations; for in-

stance, they are obtained in the isospin limit, and we only

expect them to describe the real world up to some uncer-

tainty of the order of 3%. In addition, all Roy equation

studies we are aware of—including this one—neglect any

inelasticity to four or more pion states below the two-kaon

threshold. This is certainly a very small effect, but is

nevertheless an approximation.

Being a data analysis, our parametrizations change when

the data change. In particular, in this work we have updated

the NA48=2 data [8] with their final results [20], which

have smaller uncertainties. In addition, we have incorpo-

rated the threshold-enhanced isospin correction in [22] to

allK‘4 data. Moreover, we have discarded the controversial

K ! �� datum [23]. Furthermore, the increased precision

provided by the once-subtracted dispersion relations that

we have introduced in this work requires an improved

parametrization with a continuous derivative matching.

This additional constraint and the requirement that the

output of the dispersion relations should satisfy the elastic

unitarity bound—which is automatic in the input parame-

trizations—have made us also add an additional parameter

to the S0 wave parametrization at low energies. As we will

see below, the S0 wave parametrization at intermediate

energies favors the ‘‘dip scenario’’ for the S0 inelasticity

between 1000 and 1100 MeV. In this discussion section

we will show in detail the new CFD set, particularly the

S0 wave, comparing it to other works, and we will discuss

the consequences of these modifications.

A. The new CFD S0 wave

In Fig. 15 we show the resulting CFD S0 wave from

threshold up to 1420 MeV, versus the data from different

sets in the literature [29,30]. Note the smooth matching at

850 MeVand the kink at K �K threshold. This is in contrast

with our old KPY08 results, already shown in Fig. 3, which

have a spurious kink at the matching point (932 MeV in

that work), and a much less pronounced kink at K �K
threshold. The difference between the UFD and CFD S0

wave phase shift at low energies, which we showed in

Fig. 2, is almost imperceptible.

To ease the comparison of this CFD result with the UFD

set for all energies, we have plotted their central values

together in Fig. 16. It can be noted that the change above

K �K threshold is again almost imperceptible up to

1200 MeV. The only sizable differences between the phase

of the UFD and CFD parametrizations are above

1200 MeV, where our parametrizations are less reliable

since Roy and GKPY equations only extend up to

1115 MeV, and on the sharp phase rise in the 900 MeV

to 2mK ¼ 992 MeV region due to the f0ð980Þ resonance,
which is clearly less steep in the CFD case than in the UFD.

The latter is one of the reasons why the CFD solution

satisfies GKPY equations well within uncertainties, but

the UFD lies somewhere around 2 standard deviations

away (see Tables I and III, respectively).

In addition, we also show in Fig. 16 the results from

[11], which are in good agreement with ours, but lie

slightly lower, only above 550 MeV (see discussion be-

low). Actually, our CFD solution does not show the

‘‘hunchback’’ between 500 and 900 MeV seen in

KPY08, as already shown in Fig. 3.

400 600 800 1000 1200 1400

s
1/2

 (MeV)

0

50

100

150

200

250

300

CFD
Old K decay data

Na48/2
K->2 π  decay

Kaminski et al.
Grayer et al. Sol.B

Grayer et al. Sol. C

Grayer et al. Sol. D

Hyams et al. 73

δ
0

(0)

FIG. 15 (color online). The new CFD for the S0 wave versus

the existing phase-shift data from [29,30]. The dark band covers

the uncertainties.
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Concerning the S0 inelasticity, we show in Fig. 17 the

difference between the UFD and CFD sets. It can be

noticed that the difference lies essentially within the un-

certainties (gray area), although the dip structure above

1000 MeV becomes even deeper in the CFD set. Finally, in

Fig. 18 we show the CFD inelasticity versus all the existing

experimental data.

Since the UFD set already provided a good description

of the inelasticity data obtained from �� ! �� experi-

ments, as shown in Fig. 4, so does the CFD. For the same

reason, it also fails to reproduce the inelasticity data from

�� ! K �K, as we had already shown for the UFD case in

Fig. 5. Note that this is due to the fact that both our UFD

and CFD solutions show a dip structure between

1 and 1.1 GeV, which is seen in the data coming from

�� ! ��, but not in those coming from �� ! K �K. This
is a long-standing problem (see [21] and references

therein) that we will address in the next subsection, show-

ing that the ‘‘nondip’’ scenario is not able to satisfy the

dispersive representation well even when allowing for a

large deviation from the phase-shift data.

B. S0 inelasticity: The nondip scenario is disfavored

In order to show how much the nondip scenario is

disfavored, we will first repeat the same procedure of this

whole paper, but starting from the S0 inelasticity fitted to

the nondip data, as shown in Fig. 19, while keeping the

same UFD parametrization for all other waves and for

the S0 phase. We will refer to this set as ‘‘ndUFD.’’ The

resulting averaged discrepancies �d2i are relatively similar to

those in Table I for our UFD, except for the S0 wave GKPY

equations up to
ffiffiffi
s

p � 1100 MeV, whose averaged �d2i rises
from 2.42 to 4.77. This already disfavors the nondip

scenario.

Of course, the dip-scenario UFD set was not doing very

well either, but we were able to improve it by constraining

the fit to data with dispersion relations, i.e., the CFD set.

One could wonder if a similar quality fit can also be

obtained by imposing the dispersive constraints, but start-

ing from the ndUFD. Thus, we followed again the proce-

dure described in previous sections, but now in order to

arrive at a ndCFD set. Surprisingly, the S0 inelasticity

barely changes, but the improvement comes from a bigger

variation of the phase in the two-kaon subthreshold region.

The resulting average discrepancies �d2i are, in general,

larger than for our CFD set, sometimes by a factor of 2,

but still below 1. This may look like an agreement, but one
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FIG. 16. Comparison between the phase of the CFD and UFD

for the S0 wave. We also plot the phase from the Roy equations

analysis in [11].
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FIG. 17 (color online). Comparison between the UFD and

CFD S0 wave inelasticity. The gray area corresponds to the

CFD uncertainty. A similar size area should be associated with

the UFD result, but for clarity we only show its central value.

Note the dip structure between 1 and 1.1 GeV.
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FIG. 18 (color online). CFD S0 wave inelasticity versus ex-

perimental data.
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should not be misguided now by these relatively low

averaged �d2i because, contrary to the CFD set where dis-

crepancies are below 1 uniformly over the whole energy

region, for the ndCFD set they are larger in the f0ð980Þ
resonance region.

In particular, in the interval between 950 and 1050 MeV,

for the CFD set, the GKPY S0 equations have �d2 ¼ 1:02,
whereas the ndCFD set has �d2 ¼ 3:49. This averaged

discrepancy is unacceptable now, since this time we are

using the dispersion relations as constraints to our fits.

In addition, the crossing sum rule in Eq. (16) grows to
�d2I ¼ 2:0.
Furthermore, as we show in Fig. 20, in the region from

900 MeV up to K �K threshold, the resulting phase of this

ndCFD scenario lies above all data points with a

�2=#points ¼ 3:4, which is a very bad fit, given the fact

that these are data. In contrast, the CFD set has

�2=#points ¼ 0:98 in this region and is just a small modi-

fication from theUFDphase, which has�2=#points ¼ 0:63.
Moreover, the ndCFD parameters lie far from the original

ndUFD ones, with the c parameter more than 6 standard

deviations away from its ndUFD value. These numbers

clearly show the incompatibility of the ndCFD set with the

S0 wave �� ! �� phase-shift scattering data. This dis-

agreement cannot be mended by adding systematic uncer-

tainties, since in this region we had already included large

systematic uncertainties (see KPY08 and PY05 for details)

and all points have total uncertainties of more than 10�.
One could wonder if our minimization procedure, that

was good enough to reach �d2i < 1 for the dip scenario, is

badly tuned for the nondip one. This, of course is the role of

the Wi weights in Eq. (21). For this reason, we have

repeated the above procedure adding additional weight

to the GKPY S0 wave equation above 900 MeV. The

resulting ndCFD2 yields �d2 ¼ 2:06 for the GKPY S0

equation. Besides, the crossing sum rule in Eq. (16) is

also �d2i ¼ 1:43. Although they still disfavor this solution,

these numbers by themselves are not too bad. However, the

phase-shift data between 950 and 1050 MeV has

�2=#points ¼ 5:9, so that it is described even worse than

with the previous ndCFD.

Since we cannot fix the dispersive constraints without

spoiling the data phase description, as a final check, we

have allowed for larger errors in the inelasticity parameters

of the nondip scenario, and applied the dispersive con-

straints. In so doing, we can obtain �d2i < 1 uniformly

over all energy regions for all GKPY equations except

for the S0 wave between 950 and 1050 MeV, for which

we obtain 1.42. However, the central value of the inelas-

ticity for the resulting constrained nondip fit starts devel-

oping a dip as seen in Fig. 19. Therefore, we describe

neither the nondip nor the dip scenario.

In conclusion, the nondip scenario, even when con-

strained with dispersion relations, is not able to describe

the data and simultaneously satisfy forward dispersion

relations, Roy and GKPY equations, plus certain crossing

sum rules.

C. Comparison with other works

The results listed in Table IV for threshold parameters

are remarkably compatible with the predictions of [11]

using chiral perturbation theory and Roy equations:
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FIG. 19 (color online). S0 wave inelasticity versus the nondip

�� ! K �K data. We first show the ndUFD set obtained from a fit

to these nondip data. Next, we show the ndCFD set obtained

with enlarged errors to try to fulfill dispersion relations. This

constrained fit satisfies the dispersive constraints better, but

does not describe these nondip data, coming closer to the best

CFD set, which actually describes the alternative dip data from

�� ! ��.
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FIG. 20 (color online). Comparison of the UFD, CFD, and

ndCFD solutions for the S0 phase in the 850 to 1050 MeV

region. Note that the ndCFD parametrization is largely incon-

sistent with data, despite the fact that we are plotting the PY05

averaged data, which include our estimations of the large domi-

nant systematic uncertainties.
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að0Þ0 ¼ 0:220� 0:005; að2Þ0 ¼ �0:0444� 0:0010:

The agreement with that reference has also improved a

great deal since the �ð0Þ
0 ðM2

KÞ � �ð2Þ
0 ðM2

KÞ ¼ ð47:3� 0:9Þ�
value, obtained directly from our CFD set, is now com-

pletely consistent with their value of ð47:7� 1:5Þ�. Of
course, for this agreement, it is essential that we do not

consider the K ! �� datum. Also, all the D wave thresh-

old parameters are now in good agreement with those used

in [11]. The remaining differences with respect to that

work are rather small: The largest one is a 2.1 standard

deviation disagreement, with respect to their predicted

value b1 ¼ ð5:67� 0:13Þ � 10�3. In general, and up to

500 MeV, the results of [11] fall within roughly 1 standard

deviation of our analysis. For instance, at the kaon mass,

our CFD S0 wave phase shift is �ð0Þ
0 ðMKÞ ¼ 39:1� 0:6�,

identical to theirs to the last digit, but our S2 wave is

�ð2Þ
0 ðMKÞ ¼ �8:2� 0:6�, 0.3� more than theirs, which is

half a standard deviation. This good agreement does not

deteriorate much above that energy. For instance, at

800 MeV, which is their matching point between the

calculated phase shifts and their input, they use an input

value of �ð0Þ
0 ¼ 82:3� 3:4�. In contrast, we obtain �ð0Þ

0 ¼
85:2� 0:5� directly from the CFD set, whereas we find

�ð0Þ
0 ¼ 85:7� 1:6� when using the same CFD set inside

GKPY equations, that is, one of their standard deviations.

Above 800 MeV their amplitudes are part of the input and

not solutions of Roy equations.

Finally, we would like to remark that our best values for

the scalar scattering lengths in Eq. (28) are in very good

agreement with the experimental results from pionic atoms

[37,38], which yield

að0Þ0 � að2Þ0 ¼ 0:280� 0:013ðstÞ � 0:008ðsystÞM�1
� ;

að0Þ0 � að2Þ0 ¼ 0:264þ0:033
�0:020M

�1
� ;

or K3� decays [39]:

að0Þ0 � að2Þ0 ¼ 0:2571� 0:0048ðstÞ � 0:0025ðsystÞ
� 0:0014ðextÞM�1

� :

Had we used them as additional constraints with the sta-

tistical and systematic errors added linearly as we did with

other decays, the difference with our best results would

have been barely modified.

As we commented in Sec. III B, the phase difference

�ð0Þ
0 ðM2

KÞ��ð2Þ
0 ðM2

KÞ¼ ð52:5�0:8exp�2:8expÞ� has been

recently reanalyzed [26]. This is a considerable shift

from the previous value of ð57:27� 0:82exp � 3rad �
1ChPT apprÞ�, in much better agreement with ours and other

previous dispersive analyses. Note that the new number is

also in good agreement with our results in Table IV.

VIII. SUMMARY

In this work, we have presented the derivation of a once-

subtracted set of Roy-like dispersion relations—the GKPY

equations. We have shown and explained that above

450 MeV, and up to 1115 MeV, they provide stronger

constraints on�� scattering amplitudes than other existing

sets of dispersion relations.

We have then applied these new equations as constraints

in our fits to data—together with the standard Roy equa-

tions and forward dispersion relations—in order to obtain a

precise description of �� scattering amplitudes. In con-

trast to previous works, we have extended the Roy and

GKPYequations analysis from 932 MeV up to their appli-

cability limit of 1100 MeV. Forward dispersion relations

are considered up to 1420 MeV.

We have also made use of the final and very precise data

on K‘4 decays from NA48=2, including the isospin viola-

tion corrections proposed in [22], and we have removed a

conflicting data point from K ! 2� decay. With these

changes in the data selection, most of the disagreement

with previous Roy equation calculations [11] has disap-

peared below 800 MeV. The largest discrepancy that

remains is on the P wave slope parameter, but just at the

2 standard deviation level.

In addition, we have improved our S0 wave parametri-

zation to ensure a continuous matching between the low

and intermediate energy parametrizations. Both parametri-

zations have been made more flexible, which allows the

phase and inelasticity to include contributions from states

different from �� and K �K, above the K �K threshold.

There are two sets of fits to data: UFD or CFD. In the

UFD set each wave is independent of all others, but disper-

sion relations are satisfied only up to the two sigma level (in

the sense explained in the text). In contrast, the CFD waves

are all correlated, but they fulfill all dispersion relations

under consideration within less than 1 standard deviation in

the whole energy region. The CFD set can be considered as

a very precise parametrization of experimental data con-

sistent with the requirements of analyticity, unitarity, and

crossing symmetry. Using this CFD set as an input in

different sum rules and the dispersion relations themselves,

we have also provided a precise determination of phases in

the elastic regime, threshold parameters, and Adler zeros.

In addition, and concerning the conflicting data for the

S0 wave inelasticity between the two-kaon threshold and

1100MeV, the use of the new GKPYequations has allowed

us to show that the sudden drop around 1050 MeV in the

S0 wave inelasticity, or dip solution, is clearly favored with

respect to the nondip solution. Actually, for the nondip

inelasticity scenario to fulfill dispersion relations, it would

require a very poor description of the phase-shift data, even

when allowing for large systematic uncertainties.

In conclusion, we provide fits to data in terms of simple

and ready-to-use parametrizations for the S0, S2, P, D0,

D2, and F partial waves, between threshold and 1420 MeV.

R. GARCÍA-MARTÍN et al. PHYSICAL REVIEW D 83, 074004 (2011)

074004-24



Additional simple Regge parametrizations are given above

that energy. In particular, the CFD set satisfies remarkably

well all the analyticity and crossing symmetry constraints

in the form of once- and twice-subtracted Roy equations

and forward dispersion relations.
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Note added in proof.—While this article was in proofs,

one of us [42] has shown that our F and D waves satisfy the

F and D wave GKPYequations fairly well up to 800 MeV,

even though these equations have not been imposed in the

constrained fits here. Above that energy the agreement

deteriorates, and one could think about improving the D

and F waves by including in our fit the D and F wave

GKPY equations. However, we have seen that the F waves

are negligible for our results here. In addition, since just a

few percent change is all that seems to be needed for the D0

wave, which is more relevant than the D2 wave for the

driving terms used here, we estimate that the net effect

would be within the uncertainties of the results we provide

here for the constrained S and P waves.

APPENDIX A: PARTIALWAVE

PARAMETRIZATIONS

In the following, we provide the parametrizations

we use for each partial wave and, then, the parameters

for the UFD and CFD sets. For brevity, we do not explain

again why a specific parametrization for each wave

has been chosen, since such details can be found in

KPY08 [3]. In what follows we use M� ¼ 139:57 MeV,
MK ¼ 496 MeV, and M� ¼ 547:51 MeV.

1. S0 wave

This wave has been thoroughly discussed in the main

text. However, for the sake of completeness, we repeat here

the form of the parametrizations and provide the values of

the parameters for the UFD and CFD sets in Table V.

For this wave we have set the matching point between

the intermediate and low energy parametrizations at s1=2M ¼
0:85 GeV. Thus, at low energies s � sM, we use

cot�ð0Þ
0 ðsÞ ¼ s1=2

2k

M2
�

s� 1
2
z20

�
z20

M�

ffiffiffi
s

p þ B0 þ B1wðsÞ

þ B2wðsÞ2 þ B3wðsÞ3
�

;

wðsÞ ¼
ffiffiffi
s

p � ffiffiffiffiffiffiffiffiffiffiffiffiffi
s0 � s

p
ffiffiffi
s

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
s0 � s

p ; s0 ¼ 4M2
K: (A1)

Above that energy, and up to 1.42 GeV, we use the KPY06

polynomial parametrization for the phase shift, but with

one more term in the expansion. For definiteness, we

provide here the polynomial parametrization once it has

been matched to Eq. (A1) above, by imposing continuity

and a continuous derivative at s ¼ sM, namely,

�ð0Þ
0 ðsÞ ¼

8
><

>:

d0
�

1� jk2j
kM

	
2 þ �M

jk2j
kM

�

2� jk2j
kM

	

þ jk2jðkM � jk2jÞ
�

8�0
M þ c ðkM�jk2jÞ

M3
K

	

ð0:85 GeVÞ2 < s < 4M2
K

d0 þ B
k2
2

M2
K

þ C
k4
2

M4
K

þD�ðs� 4M2
�Þ k2

3

M2
�

4M2
K < s < ð1:42 GeVÞ2;

(A3)

where k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s=4�M2
K

q

. Note that we have defined

�M ¼ �ðsMÞ and �0
M ¼ d�ðsMÞ=ds, which are obtained

from Eq. (A1), and kM ¼ jk2ðsMÞj.

Finally, we assume an elastic S0 wave, �ð0Þ
0 ¼ 1,

up to the two-kaon threshold, whereas above that energy,

we use

TABLE V. S0 wave parameters for the UFD and CFD sets. The

first four lines correspond to the low energy parametrization,
ffiffiffi
s

p � 0:85 GeV, and the last nine to the parametrization up to
ffiffiffi
s

p ¼ 1:42 GeV.

S0 wave UFD CFD

B0 7:26� 0:23 7:14� 0:23

B1 �25:3� 0:5 �25:3� 0:5

B2 �33:1� 1:2 �33:2� 1:2

B3 �26:6� 2:3 �26:2� 2:3

z0 M� M�

d0 ð227:1� 1:3Þ� ð226:5� 1:3Þ�
c ð�660� 290Þ� ð�81� 290Þ�
B ð94:0� 2:3Þ� ð93:3� 2:3Þ�
C ð40:4� 2:9Þ� ð48:7� 2:9Þ�
D ð�86:9� 4:0Þ� ð�88:3� 4:0Þ�
~�1 4:7� 0:2 4:9� 0:2
~�2 �15:0� 0:8 �15:1� 0:8
~�3 4:7� 2:6 4:7� 2:6
~�4 0:38� 0:34 0:32� 0:34
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�ð0Þ
0 ðsÞ ¼ exp

��k2ðsÞ
s1=2

�

~�1 þ ~�2
k2

s1=2
þ ~�3

k22
s

�
2

� ~�4�ðs� 4M2
�Þ

k3ðsÞ
s1=2

�

: (A4)

We have collected the values of the parameters for the

UFD and CFD sets in Table V.

2. S2 wave

As we have already done with the S0 wave, we have also

set the matching point between intermediate and low en-

ergy parametrizations for this wave at s1=2M ¼ 850 MeV.

Thus, at energies s1=2 � s1=2M we use

cot�ð2Þ
0 ðsÞ ¼ s1=2

2k

M2
�

s� 2z22
fB0 þ B1wlðsÞg;

wlðsÞ ¼
ffiffiffi
s

p � ffiffiffiffiffiffiffiffiffiffiffiffiffi
sl � s

p
ffiffiffi
s

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
sl � s

p ; s1=2l ¼ 1:05 GeV;

(A5)

whereas at intermediate energies, 850 MeV � s1=2 �
1420 MeV, we use

cot�ð2Þ
0 ðsÞ ¼ s1=2

2k

M2
�

s� 2z22
fBh0 þ Bh1½whðsÞ � whðsMÞ�

þ Bh2½whðsÞ � whðsMÞ�2g;
where

whðsÞ ¼
ffiffiffi
s

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sh � s

p
ffiffiffi
s

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sh � s

p ;

s1=2h ¼ 1:42 GeV;

Bh0 ¼ B0 þ B1wlðsMÞ;

Bh1 ¼ B1

@wlðsÞ
@whðsÞ









s¼sM

¼ B1

sl
sh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sh � sM

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sl � sM

p
� ffiffiffiffiffiffi

sM
p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sh � sM
p

ffiffiffiffiffiffi
sM

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sl � sM

p
�
2

: (A6)

Note that, with these definitions, both the parametrization

and its derivative are continuous at the matching point.

Note that we have explicitly factorized the Adler zero at

sA ¼ 2z22. For the unconstrained fit, z2 is fixed to the pion

mass. As explained in the main text in Sec. VB, we then

calculate the Adler zero position using Roy and GKPY

equations, and feed the weighted average into the con-

strained fit. This change is very small in terms of the total

values and uncertainties of other quantities, but it is rele-

vant in the differences when calculating the fulfillment of

GKPY equations.

For the S2 inelasticity we use a purely phenomenologi-

cal parametrization,

�ð2Þ
0 ¼ 1� �ð1� sl=sÞ3=2;

for s1=2 > 1:05 GeV and �ð2Þ
0 ¼ 1 otherwise.

The S2 wave parameters for UFD and CFD sets are

given in Table VI.

3. P wave

For this wave we have set the matching point between

low and intermediate energy parametrizations at s1=2M ¼
2MK. Thus, at low energies s1=2 � 2MK, we use

cot�1ðsÞ ¼
s1=2

2k3
ðM2

� � sÞ
�
2M3

�

M2
�

ffiffiffi
s

p þ B0 þ B1wðsÞ
�

;

wðsÞ ¼
ffiffiffi
s

p � ffiffiffiffiffiffiffiffiffiffiffiffiffi
s0 � s

p
ffiffiffi
s

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
s0 � s

p ; s1=20 ¼ 1:05 GeV;

(A7)

where the � mass is fixed to M� ¼ 773:6� 0:9 MeV. At

intermediate energies, 2MK � s1=2 � 1420 MeV, we use a
purely phenomenological parametrization:

�1ðsÞ ¼ 	0 þ 	1ð
ffiffiffi
s

p
=2MK � 1Þ þ 	2ð

ffiffiffi
s

p
=2MK � 1Þ2;

�1ðsÞ ¼ 1� �1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4M2
K=s

q

� �2ð1� 4M2
K=sÞ; (A8)

where 	0 is fixed from the value of �1ð4M2
KÞ obtained from

the low energy parametrization, so that the phase shift is

continuous. Note the possible presence of a discontinuity

in the derivative, allowed by the presence of the K �K
threshold. The values of the UFD and CFD parameters

are given in Table VII.

4. The D0 wave

As it was the case for the P wave, the matching energy

between low and intermediate energies is now taken at

s1=2M ¼ 2MK. At low energies, s1=2 � 2MK, we parametrize

this wave by

cot�ð0Þ
2 ðsÞ ¼ s1=2

2k5
ðM2

f2
� sÞM2

�fB0 þ B1wðsÞg;

wðsÞ ¼
ffiffiffi
s

p � ffiffiffiffiffiffiffiffiffiffiffiffiffi
s0 � s

p
ffiffiffi
s

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
s0 � s

p ; s1=20 ¼ 1:05 GeV;

(A9)

TABLE VI. S2 wave parameters for the UFD and CFD sets.

S2 wave UFD CFD

B0 �80:4� 2:8 �79:4� 2:8

B1 �73:6� 10:5 �63:0� 10:5

z2 M� 143:5� 3:2 MeV

Bh2 112� 38 32� 38

� 0:28� 0:12 0:28� 0:12

TABLE VII. P wave parameters for the UFD and CFD sets.

P wave UFD CFD

B0 1:055� 0:011 1:043� 0:011

B1 0:15� 0:05 0:19� 0:05

	1 1:57� 0:18 1:39� 0:18

	2 �1:96� 0:49 �1:70� 0:49

�1 0:10� 0:06 0:00� 0:06

�2 0:11� 0:11 0:07� 0:11
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where the mass of the f2ð1270Þ resonance is fixed atMf2 ¼
1275:4 MeV. In the intermediate region, 2MK � s1=2 �
1420 MeV, we use a rather similar parametrization:

cot�ð0Þ
2 ðsÞ ¼ s1=2

2k5
ðM2

f2
� sÞM2

�fB0h þ B1hwhðsÞg;

whðsÞ ¼
ffiffiffi
s

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sh � s

p
ffiffiffi
s

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sh � s

p ; s1=2h ¼ 1:45 GeV:

(A10)

Imposing continuity at the matching point fixes Bh0 from

the value of �ð0Þ
2 ð4M2

KÞ obtained from the low energy

parametrization. We take the inelasticity to be different

from 1 only for s > 4M2
K, in which case we write

�ð0Þ
2 ¼ 1� �

�
1� 4M2

K=s

1� 4M2
K=M

2
f2

�
5=2

�

1þ r

�

1� k2ðsÞ
k2ðM2

f2
Þ

��

:

(A11)

The parameters of the D0 wave are given in Table VIII.

5. The D2 wave

We use the following parametrization from threshold up

to 1420 MeV:

cot�ð2Þ
2 ðsÞ ¼ s1=2

2k5
M4

�s

4ðM2
� þ�2Þ� s

fB0 þB1wðsÞþB2wðsÞ2g;

wðsÞ ¼
ffiffiffi
s

p � ffiffiffiffiffiffiffiffiffiffiffiffiffi
s0 � s

p
ffiffiffi
s

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
s0 � s

p ; s1=20 ¼ 1:45 GeV; (A12)

and we consider that the inelasticity differs from 1 for

s1=2 > 1:05 GeV, as follows:

�ð2Þ
2 ðsÞ ¼ 1� �ð1� ŝ=sÞ3; ŝ1=2 ¼ 1:05 GeV; (A13)

which is almost negligible up to 1.25 GeV. The values of

the parameters for the UFD and CFD sets are given in

Table IX.

6. The F wave

We neglect the inelasticity up to 1420 MeV and simply

use the following parametrization from threshold:

cot�3ðsÞ ¼
s1=2

2k7
M6

�

�
2	M�

ffiffiffi
s

p þ B0 þ B1wðsÞ
�

;

wðsÞ ¼
ffiffiffi
s

p � ffiffiffiffiffiffiffiffiffiffiffiffiffi
s0 � s

p
ffiffiffi
s

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
s0 � s

p ; s1=20 ¼ 1:45 GeV:

(A14)

The parameters for the UFD and CFD sets are given in

Table X. Note that they do not change at all from one set to

another.

7. The G waves

The contribution of the G0 and G2 waves was shown to

be completely negligible for the calculations. The details

can be found in the Appendix of KPY08 [3].

8. Regge parametrizations

Next we show the Regge parametrizations that we use in

the high energy region, i.e. above 1420 MeV. The forward

(t ¼ 0) Regge parametrizations were obtained from fits to

high energy data [5]. For the t � 0 behavior we [3] simply

covered the uncertainties between the different fits in [40].

These Regge fits are expected to represent experimental

data when 1:42 GeV � s1=2 � 20 GeV and 4M2
� 	 t 	

�0:4 GeV2, somewhat less reliably for the most negative

t values. This is enough to describe the region of interest that
reaches t ¼ �0:42 GeV2. In particular, for the � Regge

trajectory, we use the following expression for the imaginary

part, which is all we need in the dispersive integrals:

ImFðIt¼1Þðs; tÞ ¼ 
�

1þ ��ðtÞ
1þ ��ð0Þ

’ðtÞebt
�
s

ŝ

�
��ðtÞ

;

��ðtÞ ¼ ��ð0Þ þ t�0
� þ

1

2
t2�00

�;

’ðtÞ ¼ 1þ d�tþ e�t
2; (A15)

where we fix

ŝ ¼ 1 GeV2; b ¼ 2:4� 0:2 GeV�2;

�0
� ¼ 0:90 GeV�2; �00

� ¼ �0:3 GeV�4;

d� ¼ 2:4� 0:5 GeV�2; e� ¼ 0� 2:5 GeV�4;

(A16)

whereas the rest of the parameters are allowed to vary in the

fits.

TABLE VIII. D0 wave parameters for the UFD and CFD sets.

D0 wave UFD CFD

B0 12:47� 0:12 12:40� 0:12

B1 10:12� 0:16 10:06� 0:16

Bh1 43:7� 1:8 43:2� 1:8

� 0:284� 0:030 0:254� 0:030

r 2:54� 0:31 2:29� 0:31

TABLE IX. D2 wave parameters for the UFD and CFD sets.

D2 wave UFD CFD

B0 ð2:4� 0:5Þ103 ð4:1� 0:5Þ103
B1 ð7:8� 1:0Þ103 ð8:6� 1:0Þ103
B2 ð23:7� 4:2Þ103 ð25:5� 4:2Þ103
� 196� 25 MeV 233� 25 MeV

� 0:2� 0:2 0:0� 0:2

TABLE X. F wave parameters for the UFD and CFD sets.

F wave UFD CFD

B0 ð1:09� 0:03Þ105 ð1:09� 0:03Þ105
B1 ð1:41� 0:04Þ105 ð1:41� 0:04Þ105
	 0:051� 105 0:051� 105
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For both the Pomeron P and the P0 pole, we have used,
for s1=2 ¼ 1420 MeV,

ImFðIt¼0Þðs; tÞ ¼ Pðs; tÞ þ P0ðs; tÞ;

Pðs; tÞ ¼ 
P�PðtÞ�PðtÞ
1þ �PðtÞ

2
ebt

�
s

ŝ

�
�PðtÞ

;

�PðtÞ ¼ 1þ t�0
P; �PðtÞ ¼ 1þ cPt;

P0ðs; tÞ ¼ 
P0�P0ðtÞ �P0ðtÞ½1þ �P0ðtÞ�
�P0ð0Þ½1þ �P0ð0Þ� e

bt

�
s

ŝ

�
�P0 ðtÞ

;

�P0ðtÞ ¼ �P0ð0Þ þ t�0
P0 ; �P0ðtÞ ¼ 1þ cP0t;

(A17)

where, once again, we fix

ŝ¼ 1 GeV2; b¼ 2:4�0:2 GeV�2;

�0
P ¼ 0:20�0:10 GeV�2; �0

P0 ¼ 0:90 GeV�2;

cP ¼ 0:0�1:0 GeV�2; cP0 ¼�0:4�0:4 GeV�2;

(A18)

and allow the rest of the parameters to vary in the fits.

Finally, the Regge exchange of isospin two is parame-

trized as

ImFðIt¼2Þ ¼ 
2e
bt

�
s

ŝ

�
��ðtÞþ��ð0Þ�1

: (A19)

In Table XI we show the values of the Regge parameters

obtained from the direct fit to high energy data (UFD) and

how they are modified when imposing the dispersive con-

straints in the fits (CFD).

APPENDIX B: DERIVATION OF THE

ONCE-SUBTRACTED DISPERSION RELATIONS

A once-subtracted dispersion relation for a scattering

amplitude of definite isospin I has the following expres-

sion:

FðIÞðs; tÞ ¼ FðIÞðs0; tÞ þ
s� s0
�

Z 1

4M2
�

ds0
ImFðIÞðs0; tÞ

ðs0 � s0Þðs0 � sÞ

þ s� s0
�

Z �1

�t
ds0

ImFðIÞðs0; tÞ
ðs0 � s0Þðs0 � sÞ ; (B1)

with s0 the subtraction point. This expression assumes that

the point s is regular. However, we are especially interested
in what happens for s in the physical region, that is, on the

cuts of the function Fðs; tÞ. The usual prescription is to

define the amplitude for physical values of s as

Fphysðs; tÞ ¼ lim
�!0þ

Fðsþ i�; tÞ:

With this prescription, we have

FðIÞ
physðs; tÞ ¼ lim

�!0þ
FðIÞðsþ i�; tÞ

¼FðIÞðs0; tÞ

þ s� s0þ i�

�

Z 1

4M2
�

ds0
ImFðIÞðs0; tÞ

ðs0� s0Þðs0� s� i�Þ

þ s� s0þ i�

�

Z �1

�t
ds0

ImFðIÞðs0; tÞ
ðs0� s0Þðs0� s� i�Þ :

To obtain the physical amplitude, we must take the limit

� ! 0þ in this expression. Suppose s is on the right-hand

cut (RHC), 4M2
� < s <1. Since

1

x� i�
¼ P:P:

�
1

x

�


 i��ðxÞ; � ! 0þ;

we can write the RHC integral as

s� s0
�

P:P:
Z 1

4M2
�

ds0
ImFðIÞðs0; tÞ

ðs0 � s0Þðs0 � sÞ þ i ImFðIÞðs; tÞ;

whereas the left-hand cut (LHC) integral presents no prob-

lems when � vanishes. Then we have

FðIÞ
physðs; tÞ ¼ FðIÞðs0; tÞ þ i ImFðIÞðs; tÞ

þ s� s0
�

P:P:
Z 1

4M2
�

ds0
ImFðIÞðs0; tÞ

ðs0 � s0Þðs0 � sÞ

þ s� s0
�

Z �1

�t
ds0

ImFðIÞðs0; tÞ
ðs0 � s0Þðs0 � sÞ :

Thus the dispersive integrals only reconstruct the real part

of the amplitude, instead of the total amplitude. Had we

chosen s to be on the LHC, the reasoning would be

analogous, but the principal value should be taken on the

LHC integral, instead of on the RHC one. We finally obtain

TABLE XI. UFD and CFD parameters for the �, Pomeron, and

I ¼ 2 Regge contributions to �� scattering amplitudes.

Regge parameters UFD CFD


� 1:22� 0:14 1:48� 0:14

��ð0Þ 0:46� 0:02 0:53� 0:02


P 2:54� 0:04 2:50� 0:04

cP 0:0� 1:0 GeV�2 0:6� 1:0 GeV�2

cP0 �0:4� 0:4 GeV�2 �0:38� 0:4 GeV�2


P0 0:83� 0:05 0:80� 0:05

�P0 ð0Þ 0:54� 0:02 0:53� 0:02


2 0:2� 0:2 0:08� 0:2
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ReFðIÞ
physðs; tÞ ¼ ReFðIÞðs0; tÞ

þ s� s0
�

P:P:
Z 1

4M2
�

ds0
ImFðIÞðs0; tÞ

ðs0 � s0Þðs0 � sÞ

þ s� s0
�

P:P:
Z �1

�t
ds0

ImFðIÞðs0; tÞ
ðs0 � s0Þðs0 � sÞ ;

with the principal value taken on the cut on which s lies.

This is valid for any s on the cuts of FðIÞðs; tÞ, i.e., for
physical s. We can now recast the LHC integral on the

s channel in Eq. (B1) in terms of the u-channel RHC by

renaming the dummy variable s0 as u0 in the LHC integral

and performing the substitution

u0 ! 4M2
� � s0 � t:

Taking both integrands under the same integral sign, and

choosing s0 ¼ 0—in analogy with Roy’s derivation—we

obtain

ReFðIÞðs; tÞ ¼ ReFðIÞð0; tÞ þ s

�

Z 1

4M2
�

ds0

�
�
ImFðIÞðs0; tÞ
s0ðs0 � sÞ � ImFðIÞðu0; tÞ

u0ðu0 � sÞ

�

:

Each of these integrals is potentially divergent if taken by

itself, due to the Pomeron contribution coming from the

It ¼ 0 channel, which grows like ImFðIt¼0Þðs; tÞ � s for

large s. We now show that this is not the case when taken

together.

Bose statistics require that the It ¼ 0 amplitude be

symmetric under s� u exchange,

FðIt¼0Þðs; tÞ ¼ FðIt¼0Þðu; tÞ:

Since the amplitudes with well-defined isospin in the s and
t channels are related via the usual crossing matrices,

Cst ¼
1=3 1 5=3
1=3 1=2 �5=6
1=3 �1=2 1=6

0

@

1

A;

Csu ¼
1=3 �1 5=3
�1=3 1=2 5=6
1=3 1=2 1=6

0

@

1

A;

we know that each amplitude with well-defined isospin in

the s channel has a contribution from each of the ampli-

tudes with well-defined isospin in the t channel. In par-

ticular, the contribution from the It ¼ 0 channel to the

integrand can be written as

�
1

s0ðs0 � sÞ �
1

u0ðu0 � sÞ

�

ImFðIt¼0Þðs0; tÞ

¼ ðsþ t� 4M2
�Þð2s0 þ t� 4M2

�Þ ImFðIt¼0Þðs0; tÞ
s0ðs0 � sÞðs0 þ t� 4M2

�Þðs0 þ sþ t� 4M2
�Þ

:

The s02 terms in the numerator cancel out, and the inte-

grand decays as 1=s02 when s0 ! 1, so that the integral

converges. This is in contrast with the expected 1=s0

asymptotic behavior, which would spoil convergence.

The contributions from the other t-channel isospin contri-

butions It ¼ 1, 2 are not problematic, since they grow as

ðs0Þ� with �< 1, and are convergent even if taking the

integrals separately. Note that this cancellation does not

depend on the explicit parametrizations we use for the

Pomeron but, rather, on very general asymptotic properties

of the amplitudes.

In order to rewrite the RHC contribution from the u
channel in terms of amplitudes on the RHC s channel,

we take into account the crossing symmetry relation:

FðIÞð4M2
� � s0 � t; tÞ ¼

X

I0
CII0
suF

ðI0Þðs0; tÞ; (B2)

with Csu the crossing matrix defined above. Also,

FðIÞð0; tÞ ¼
X

I00
CII00
st F

ðI00Þðt; 0Þ; (B3)

and we now write a dispersion relation for FðI00Þðt; 0Þ:

FðI00Þðt; 0Þ ¼ FðI00Þðt0; 0Þ

þ t� t0
�

Z 1

4M2
�

ds0
�

ImFðI00Þðs0; 0Þ
ðs0 � tÞðs0 � t0Þ

�

P

I000
CI00I000
su ImFðI000Þðs0; 0Þ

ð4M2
� � t� s0Þð4M2

� � s0 � t0Þ

�

: (B4)

Again, in analogy with Roy, we take t0 ¼ 4M2
�. Thus

ReFðIÞðs; tÞ ¼
X

I0
CII0
st F

ðI0Þð4M2
�; 0Þ þ

s

�
P:P:

Z 1

4M2
�

ds0
�
ImFðIÞðs0; tÞ
s0ðs0 � sÞ �

P

I0
CII0
su ImFðI0Þðs0; tÞ

ðs0 þ t� 4M2
�Þðs0 þ sþ t� 4M2

�Þ

�

þ t� 4M2
�

�
P:P:

Z 1

4M2
�

ds0
X

I00
CII00
st

�
ImFðI00Þðs0; 0Þ

ðs0 � tÞðs0 � 4M2
�Þ

�

P

I000
CI00I000 ImFðI000Þðs0; 0Þ

s0ðs0 þ t� 4M2
�Þ

�

:
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Now, to project into partial waves, we define first the

following kernels:

K‘‘0ðs; s0Þ ¼
s

�s0ðs� s0Þ
Z 1

0
dxP‘ðxÞP‘0ðyÞ;

L‘‘0ðs; s0Þ ¼
s

�

Z 1

0
dxP‘ðxÞ

P‘0ðyÞ
u0ðu0 � sÞ ;

M‘ðs; s0Þ ¼
1

�ðs0 � 4M2
�Þ

Z 1

0
dxP‘ðxÞ

t� 4M2
�

s0 � t
;

N‘ðs; s0Þ ¼
1

�s0
Z 1

0
dxP‘ðxÞ

4M2
� � t

u0
;

(B5)

where P‘ðxÞ and P‘0ðyÞ are Legendre polynomials, and

t ¼ ðs� 4M2
�Þðx� 1Þ
2

;

u0 ¼ 4M2
� � s0 � t;

y ¼ u0 � t

u0 þ t
:

Note we have taken advantage of the symmetry of the

integrands to change the integration limits from ð�1; 1Þ
to (0, 1).

With the normalization chosen in Sec. II B, and recalling

that að1Þ0 ¼ 0, we find

RetðIÞ‘ ðsÞ

¼�‘

X

I00
CII00
st a

ðI00Þ
0 þ

X

‘0
ð2‘0þ1Þ

Z 1

4M2
�

ds0
�

K‘‘0ðs;s0ÞImtðIÞ
‘0 ðs0Þ

�L‘‘0ðs;s0Þ
X

I0
Csu
II0 ImtðI

0Þ
‘0 ðs0Þþ

X

I00
Cst
II00½M‘ðs;s0ÞImtðI

00Þ
‘0 ðs0Þ

�N‘ðs;s0Þ
X

I000
Csu
I00I000 ImtðI

000Þ
‘0 ðs0Þ�

�

:

In order to simplify the previous expression, we define

KII0
‘‘0ðs;s0Þ¼ ð2‘0þ1Þ½K‘‘0ðs;s0Þ�II0 �L‘‘0ðs;s0ÞðCsuÞII

0

þM‘ðs;s0ÞðCII0
st Þ�N‘ðs;s0ÞðCstCsuÞII

0�: (B6)

We thus arrive at the final result used in Eq. (18):

Re tðIÞ‘ ðsÞ ¼ STI
‘ þDTI

‘ðsÞ

þ
X2

I0¼0

X1

‘0¼0

P:P:
Z smax

4M2
�

ds0KII0
‘‘0ðs; s0Þ ImtI

0
‘0ðs0Þ;

where, for simplicity, the high energy part of the integrals

(s0 > smax) and the higher partial waves (‘0 > 1) are

grouped in the so-called driving terms DTI
‘ðsÞ. The sub-

traction terms STI
‘, which are now constant, are

ST I
‘ ¼ �‘

X

I00
CII00
st a

I00
0 ;

with the �‘ coefficients defined in Eq. (B7). For our

purposes we will only need �0 ¼ 1 and �1 ¼ 1=2. Note

that the subtraction term STI
‘ is a constant, and does not

depend on s. This is a relevant feature of GKPY equations

versus Roy equations, as explained in Sec. IVE.

�‘ ¼
Z 1

0
dxP‘ðxÞ

¼
ffiffiffiffi
�

p

2�ð1� ‘
2
Þ�ð3þ‘

2
Þ

¼

8
><

>:

1 ‘ ¼ 0

0 ‘ ¼ 2m;m > 0
ð�1Þm

2mþ1ðmþ1Þ!
Q

m�1
k¼0 ½2m� ð2kþ 1Þ� ‘ ¼ 2mþ 1:

(B7)

APPENDIX C: INTEGRAL KERNELS

IN GKPY EQUATIONS

All kernels in Eqs. (B5) and (B6) can be calculated

analytically. One has to note, however, that the L‘‘0ðs; s0Þ
and N‘ðs; s0Þ kernels are singular at u0 ¼ 0, namely, x ¼
�ð2s0 � s� 4M2

�Þ=ðs� 4M2
�Þ, where a principal value

over the integral is understood.

In this work we need 18 KII0
‘‘0ðs; s0Þ kernels, since we

are considering the dispersion relation for the S0, P, and

S2 waves, but using S0, P, S2, D0, D2, and F waves as

input. However, following [41], we know that, since the K,
L, M, and N kernels in Eqs. (B5) and (B6) do not depend

on isospin, theKII0
‘‘0ðs; s0Þ are not all independent and can be

expressed in terms of four of the K‘‘0 above, and eight

combinations of the other kernels, which we call I‘‘0ðs; s0Þ.
Namely,

K00
00 ¼ K00 � I00=3; K02

00 ¼�5

3
I00; K01

01 ¼ 3I01;

K00
02 ¼ 5ðK02 � 1

3
I02Þ; K02

02 ¼�25
3
I02; K01

03 ¼ 7I03;

K10
10 ¼ I10=3; K12

10 ¼�5
6
I10; K11

11 ¼ 3ðK11 � 1
2
I11Þ;

K10
12 ¼ 5

3
I12; K12

12 ¼�25
6
I12; K11

13 ¼ 7ðK13 � 1
2
I13Þ;

K20
00 ¼�I00=3; K22

00 ¼ K00 � I00=6; K21
01 ¼�3

2
I01;

K20
02 ¼�5

3
I02; K22

02 ¼ 5ðK02 � 1
6
I02Þ; K21

03 ¼�7
2
I03;

where
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I00 ¼ L00 �M0 þ N0; I01 ¼ L01 þM0 � N0;

I10 ¼ L10 þM1 þ N1; I11 ¼ L11 �M1 � N1;

I02 ¼ L02 �M0 þ N0; I03 ¼ L03 þM0 � N0;

I12 ¼ L12 þM1 þ N1; I13 ¼ L13 �M1 � N1:

(C1)

The analytic expressions for the K‘‘0 kernels are

K00 ¼ � s

�s0ðs� s0Þ ;

K02 ¼ � sð4M2
� þ s� 2s0Þ

2�s0ðs0 � 4M2
�Þ2

;

K11 ¼
sð8M2

� þ s� 3s0Þ
6�s0ðs� s0Þðs0 � 4M2

�Þ
;

K13 ¼
sð4M2

� þ s� 2s0Þ2
8�s0ðs0 � 4M2

�Þ3
:

(C2)

The diagonal kernels K00ðs; s0Þ and K11ðs; s0Þ contain a

singularity at s ¼ s0, which is the only type of singularity

in the GKPY equations.

By defining the following ai functions,

a1 ¼
s0

sþ s0 � 4M2
�

; a2 ¼
ðsþ 2s0 � 4M2

�Þ2
4ðsþ s0 � 4M2

�Þ2
;

a3 ¼ � s2 � 4ðs0 � 2M2
�Þ2

4ðs0 � 4M2
�Þðsþ s0 � 4M2

�Þ
;

a4 ¼ �ðs� 2s0 þ 4M2
�Þðsþ s0 � 4M2

�Þ
ðs0 � 4M2

�Þðsþ 2s0 � 4M2
�Þ

;

a5 ¼
s0ð�sþ 2s0 � 4M2

�Þ
ðs0 � 4M2

�Þðsþ 2s0 � 4M2
�Þ

;

a6 ¼ �ðs� 2s0 þ 4M2
�Þðsþ 2s0 � 4M2

�Þ
4ðs0 � 4M2

�Þs0
;

(C3)

the analytical expressions for the I‘‘0ðs; s0Þ can be recast as

I00ðs;s0Þ¼2
ðs�4M2

�Þðs0�2M2
�Þ=ðs0�4M2

�Þþs0 logða1Þ
�s0ðs�4M2

�Þ
;

(C4)

I01ðs; s0Þ ¼ � 2ðs0 � 2M2
�Þ

�ðs0 � 4M2
�Þs0

� 2
ðs0 � 4M2

�Þs0 logða1Þ þ ss0 logða2Þ
�ðs� 4M2

�Þðs0 � 4M2
�Þs0

; (C5)

I02ðs; s0Þ ¼
1

�

�
6s

ðs0 � 4M2
�Þ2

þ 1

s0 � 4M2
�

þ 1

s0

�

þ 1

�ðs� 4M2
�Þ

�

2 logða1Þ þ
6sðsþ s0 � 4M2

�Þ logða2Þ
ðs0 � 4M2

�Þ2
�

; (C6)

I03ðs; s0Þ ¼ � 1

�ðs� 4M2
�Þ

�ðs� 4M2
�Þð2s03 þ 10ðs� 2M2

�Þs02 þ ð25s2 � 60M2
�sþ 64M4

�Þs0 � 64M6
�Þ

ðs0 � 4M2
�Þ3s0

þ 2 logða1Þ þ
2sð10s2 þ 15ðs0 � 4M2

�Þsþ 6ðs0 � 4M2
�Þ2Þ logða2Þ

ðs0 � 4M2
�Þ3

�

; (C7)

I10ðs; s0Þ ¼ � 2

�ðs� 4M2
�Þ2ðs0 � 4M2

�Þs0
½s2M2

� þ 2s02s� 8s0sM2
� � 8sM4

� � 8s02M2
� þ 32s0M4

� þ 16M6
�

þ ðs0 � 4M2
�Þs0 logða1Þsþ 2s0ðs02 � 6s0M2

� þ 8M4
�Þ logða1Þ�; (C8)

I11ðs; s0Þ ¼
2

�ðs� 4M2
�Þ2

�ð2s0 þM2
�Þs2 þ 2ðs02 � 8s0M2

� � 4M4
�Þs� 8ðs02 � 4M2

�s
0 � 2M4

�ÞM2
�

ðs0 � 4M2
�Þs0

þ 1

s0 � 4M2
�

½sðsþ 3s0 � 8M2
�Þ logða3Þ � ðs2 þ 2ðs0 � 2M2

�Þsþ 2ðs02 � 6s0M2
� þ 8M4

�ÞÞ logða4Þ�

þ 2ðs0 � 2M2
�Þ logða5Þ � s logða6Þ

�

; (C9)
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I12ðs; s0Þ ¼
1

2�ðs� 4M2
�Þ2

�

�2ðs� 4M2
�Þð9s0s2 þ 2ð6s02 � 17s0M2

� � 4M4
�Þsþ 4ðs03 � 8s02M2

� þ 14M4
�s

0 þ 8M6
�ÞÞ

ðs0 � 4M2
�Þ2s0

þ 4

ðs0 � 4M2
�Þ2

½sð3s2 þ 3ð3s0 � 8M2
�Þsþ 7s02 � 44M2

�s
0 þ 64M4

�Þ logða�1
3 Þ þ ð3s3 þ 3ð3s0 � 8M2

�Þs2

þ 6ðs02 � 6s0M2
� þ 8M4

�Þsþ 2ðs0 � 4M2
�Þ2ðs0 � 2M2

�ÞÞ logða4Þ� � 8ðs0 � 2M2
�Þ logða5Þ þ 4s logða6Þ

�

; (C10)

I13ðs; s0Þ ¼
1

2�ðs� 4M2
�Þ2

�
2ðs� 4M2

�Þð85s0s3 þ 5s0ð33s0 � 100M2
�Þs2 þ ð72s03 � 510s02M2

� þ 784M4
�s

0 þ 96M6
�ÞsÞ

3ðs0 � 4M2
�Þ3s0

� 4

ðs0 � 4M2
�Þ3

½sð10s3 þ 5ð7s0 � 20M2
�Þs2 þ 12ð3s02 � 19s0M2

� þ 28M4
�Þs

þ ðs0 � 4M2
�Þ2ð13s0 � 28M2

�ÞÞ logða�1
3 Þ þ ð10s4 þ 5ð7s0 � 20M2

�Þs3 þ 12ð3s02 � 19s0M2
� þ 28M4

�Þs2

þ 12ðs0 � 4M2
�Þ2ðs0 � 2M2

�Þsþ 2ðs0 � 4M2
�Þ3ðs0 � 2M2

�ÞÞ logða4Þ� þ
8ðs� 4M2

�Þðs02 � 4M2
�s

0 � 2M4
�Þ

ðs0 � 4M2
�Þs0

þ 8ðs0 � 2M2
�Þ logða5Þ � 4s logða6Þ

�

: (C11)

The behavior around threshold is also interesting when considering the expansions of the kernels around s� 4M2
�. In

particular, the threshold expansions of KII0
‘‘0ðs; s0Þ around s ¼ 4M2

� behave like aþ bðs� 4M2
�Þ þ . . . .

TABLE XII. Phases from the dispersive data analysis. Central values are obtained as a

weighted average between the output of Roy and GKPY equations, using the CFD fit as input.

We do not weight the uncertainty but take the smallest of the two, since both results come from

the same data.

ffiffiffi
s

p
(MeV) �0

0ð�Þ �1
1ð�Þ �2

0ð�Þ
310 7:1� 0:3 0:2� 0:1 �1:5� 0:1
340 11:7� 0:5 0:6� 0:1 �2:5� 0:1

370 16:5� 0:7 1:2� 0:1 �3:5� 0:1
400 21:5� 1:0 1:9� 0:2 �4:6� 0:2

430 26:6� 1:3 2:8� 0:2 �5:7� 0:2
460 31:9� 1:8 3:9� 0:2 �6:7� 0:3

490 36:9� 3:0 5:3� 0:2 �7:8� 0:3

520 40:7� 7:5 7:0� 0:2 �8:9� 0:3

550 50:5� 5:4 9:1� 0:2 �9:9� 0:4

580 54:7� 3:2 12:0� 0:2 �11:0� 0:4

610 59:3� 2:5 15:9� 0:3 �12:0� 0:5

640 63:8� 2:1 20:7� 0:5 �13:1� 0:6

670 68:1� 1:8 28:7� 0:5 �14:1� 0:6

700 72:2� 1:7 40:6� 2:6 �15:1� 0:7

730 76:2� 1:6 56:1� 1:1 �16:2� 0:8

760 80:3� 1:6 79:0� 0:8 �17:2� 0:9

790 84:3� 1:6 101:8� 0:8 �18:2� 1:0

820 88:6� 1:7 118:0� 0:9 �19:2� 1:1

850 93:5� 1:8 128:3� 1:9 �20:2� 1:2

880 99:7� 2:2 142:0� 2:0 �21:2� 1:3

910 108:8� 3:4 147:0� 1:3 �22:1� 1:4

940 122:7� 7:0 150:5� 1:2 �22:9� 1:5

970 152:0� 6:3 153:3� 1:2 �23:9� 1:7
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APPENDIX D: ROY-GKPY WEIGHTED PHASES

In Table XII we give the central values of the phase in the elastic regions, as the weighted average obtained from the

output of Roy and GKPY equations, when using the CFD set as input. We do not weight the uncertainty but take the

smallest of the two outputs, since both results come from the same data. These results could be understood as a traditional

‘‘energy-dependent data analysis.’’

[1] J. R. Pelaez and F. J. Yndurain, Phys. Rev. D 71, 074016

(2005).

[2] R. Kaminski, J. R. Pelaez, and F. J. Yndurain, Phys. Rev. D

74, 014001 (2006); 74, 079903(E) (2006).

[3] R. Kaminski, J. R. Pelaez, and F. J. Yndurain, Phys. Rev. D

77, 054015 (2008).

[4] J. Gasser and H. Leutwyler, Ann. Phys. (N.Y.) 158, 142

(1984).

[5] J. R. Pelaez and F. J. Yndurain, Phys. Rev. D 69, 114001

(2004).

[6] R. Garcia-Martin, J. R. Pelaez, and F. J. Yndurain, Phys.

Rev. D 76, 074034 (2007).

[7] L. Rosselet, P. Extermann, J. Fischer et al., Phys. Rev. D

15, 574 (1977); S. Pislak et al. (BNL-E865 Collaboration),

Phys. Rev. Lett. 87, 221801 (2001).

[8] J. R. Batley et al. (NA48=2 Collaboration), Eur. Phys. J. C
54, 411 (2008).

[9] S.M. Roy, Phys. Lett. 36B, 353 (1971).

[10] J. L. Basdevant, C. D. Froggatt, and J. L. Petersen, Phys.

Lett. 41B, 178 (1972); Nucl. Phys. B72, 413 (1974); M.R.

Pennington, Ann. Phys. (N.Y.) 92, 164 (1975).

[11] G. Colangelo, J. Gasser, and H. Leutwyler, Nucl. Phys.

B603, 125 (2001); B. Ananthanarayan, G. Colangelo, J.

Gasser, and H. Leutwyler, Phys. Rep. 353, 207 (2001).

[12] R. Kaminski, L. Lesniak, and B. Loiseau, Phys. Lett. B

551, 241 (2003).

[13] I. Caprini, G. Colangelo, and H. Leutwyler, Phys. Rev.

Lett. 96, 132001 (2006).

[14] K. Nakamura et al. (Particle Data Group), J. Phys. G 37,

075021 (2010).

[15] A. Dobado and J. R. Pelaez, Phys. Rev. D 56, 3057 (1997);

J. A. Oller and E. Oset, Nucl. Phys. A620, 438 (1997);

Z. Y. Zhou, G. Y. Qin, P. Zhang et al., J. High Energy Phys.

02 (2005) 043; G. Mennessier, S. Narison, and W. Ochs,

Nucl. Phys. B, Proc. Suppl. 181–182, 238 (2008).

[16] R. L. Jaffe, Phys. Rev. D 15, 267 (1977); AIP Conf. Proc.

964, 1 (2007); Prog. Theor. Phys. Suppl. 168, 127

(2007).

[17] M.R. Pennington, Phys. Rev. Lett. 97, 011601 (2006);

J. A. Oller and L. Roca, Eur. Phys. J. A 37, 15 (2008); J.

Bernabeu and J. Prades, Phys. Rev. Lett. 100, 241804

(2008); R. Kaminski, G. Mennessier, and S. Narison,

Phys. Lett. B 680, 148 (2009).

[18] J. R. Pelaez, Phys. Rev. Lett. 92, 102001 (2004); J. R.

Pelaez and G. Rios, Phys. Rev. Lett. 97, 242002 (2006).

[19] N. N. Achasov and G.N. Shestakov, Phys. Rev. Lett. 99,

072001 (2007).

[20] J. R. Batley et al. (NA48/2 Collaboration), Eur. Phys. J. C

70, 635 (2010).

[21] K. L. Au, D. Morgan, and M. R. Pennington, Phys. Rev. D

35, 1633 (1987); D. Morgan and M.R. Pennington, Phys.

Rev. D 48, 1185 (1993); B. S. Zou and D.V. Bugg, Phys.

Rev. D 48, R3948 (1993); D. V. Bugg, Eur. Phys. J. C 47,

45 (2006).

[22] G. Colangelo, J. Gasser, and A. Rusetsky, Eur. Phys. J. C

59, 777 (2008).

[23] A. Aloisio et al. (KLOE Collaboration), Phys. Lett. B 537,

21 (2002); V. Cirigliano, G. Ecker, H. Neufeld, and A.

Pich, Eur. Phys. J. C 33, 369 (2004); V. Cirigliano, C.

Gatti, M. Moulson, and M. Palutan (FlaviaNet Kaon

Working Group), arXiv:0807.5128.

[24] O. Nachtmann and E. de Rafael, CERN Report No. TH-

1031, 1969 (unpublished); P. Pascual and F. J. Ynduráin,
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(1973); R. Kamiński, L. Lesniak, and K. Rybicki, Z. Phys.

C 74, 79 (1997); Eur. Phys. J. direct C 4, 1 (2002); B.

Hyams et al., Nucl. Phys. B100, 205 (1975); M. J. Losty

et al., Nucl. Phys. B69, 185 (1974); W. Hoogland et al.,

Nucl. Phys. B126, 109 (1977); N. B. Durusoy et al., Phys.

Lett. 45B, 517 (1973).

[30] G. Grayer et al., Nucl. Phys. B75, 189 (1974).

[31] S. L. Adler, Phys. Rev. 137, B1022 (1965).

[32] I. Caprini, Phys. Rev. D 77, 114019 (2008).

[33] N. N. Achasov, S. A. Devyanin, and G.N. Shestakov, Z.

Phys. C 22, 53 (1984); N. N. Achasov and A.V. Kiselev,

Phys. Rev. D 73, 054029 (2006); 74, 059902

(2006).

[34] R. Kaminski, R. Garcia-Martin, P. Grynkiewicz, J. R.

Pelaez, and F. J. Yndurain, Int. J. Mod. Phys. A 24, 402

(2009).

[35] R. Kaminski, R. Garcia-Martin, P. Grynkiewicz, and J. R.

Pelaez, Nucl. Phys. B, Proc. Suppl. 186, 318

(2009).

[36] We thank H. Leutwyler for his comments and suggestions

on this issue.

[37] B. Adeva, A. Romero, and O. Vazquez Doce, Eur. Phys. J.

A 31, 522 (2007).

[38] B. Adeva et al. (DIRAC Collaboration), Phys. Lett. B 619,

50 (2005).

PION-PION . . .. IV. IMPROVED ANALYSIS . . . PHYSICAL REVIEW D 83, 074004 (2011)

074004-33

http://dx.doi.org/10.1103/PhysRevD.71.074016
http://dx.doi.org/10.1103/PhysRevD.71.074016
http://dx.doi.org/10.1103/PhysRevD.74.014001
http://dx.doi.org/10.1103/PhysRevD.74.014001
http://dx.doi.org/10.1103/PhysRevD.74.079903
http://dx.doi.org/10.1103/PhysRevD.77.054015
http://dx.doi.org/10.1103/PhysRevD.77.054015
http://dx.doi.org/10.1016/0003-4916(84)90242-2
http://dx.doi.org/10.1016/0003-4916(84)90242-2
http://dx.doi.org/10.1103/PhysRevD.69.114001
http://dx.doi.org/10.1103/PhysRevD.69.114001
http://dx.doi.org/10.1103/PhysRevD.76.074034
http://dx.doi.org/10.1103/PhysRevD.76.074034
http://dx.doi.org/10.1103/PhysRevD.15.574
http://dx.doi.org/10.1103/PhysRevD.15.574
http://dx.doi.org/10.1103/PhysRevLett.87.221801
http://dx.doi.org/10.1140/epjc/s10052-008-0547-0
http://dx.doi.org/10.1140/epjc/s10052-008-0547-0
http://dx.doi.org/10.1016/0370-2693(71)90724-6
http://dx.doi.org/10.1016/0370-2693(72)90456-X
http://dx.doi.org/10.1016/0370-2693(72)90456-X
http://dx.doi.org/10.1016/0550-3213(74)90152-7
http://dx.doi.org/10.1016/0003-4916(75)90268-7
http://dx.doi.org/10.1016/S0550-3213(01)00147-X
http://dx.doi.org/10.1016/S0550-3213(01)00147-X
http://dx.doi.org/10.1016/S0370-1573(01)00009-6
http://dx.doi.org/10.1016/S0370-2693(02)03021-6
http://dx.doi.org/10.1016/S0370-2693(02)03021-6
http://dx.doi.org/10.1103/PhysRevLett.96.132001
http://dx.doi.org/10.1103/PhysRevLett.96.132001
http://dx.doi.org/10.1088/0954-3899/37/7A/075021
http://dx.doi.org/10.1088/0954-3899/37/7A/075021
http://dx.doi.org/10.1103/PhysRevD.56.3057
http://dx.doi.org/10.1016/S0375-9474(97)00160-7
http://dx.doi.org/10.1088/1126-6708/2005/02/043
http://dx.doi.org/10.1088/1126-6708/2005/02/043
http://dx.doi.org/10.1016/j.nuclphysbps.2008.09.043
http://dx.doi.org/10.1103/PhysRevD.15.267
http://dx.doi.org/10.1063/1.2823850
http://dx.doi.org/10.1063/1.2823850
http://dx.doi.org/10.1143/PTPS.168.127
http://dx.doi.org/10.1143/PTPS.168.127
http://dx.doi.org/10.1103/PhysRevLett.97.011601
http://dx.doi.org/10.1140/epja/i2008-10600-0
http://dx.doi.org/10.1103/PhysRevLett.100.241804
http://dx.doi.org/10.1103/PhysRevLett.100.241804
http://dx.doi.org/10.1016/j.physletb.2009.08.039
http://dx.doi.org/10.1103/PhysRevLett.92.102001
http://dx.doi.org/10.1103/PhysRevLett.97.242002
http://dx.doi.org/10.1103/PhysRevLett.99.072001
http://dx.doi.org/10.1103/PhysRevLett.99.072001
http://dx.doi.org/10.1140/epjc/s10052-010-1480-6
http://dx.doi.org/10.1140/epjc/s10052-010-1480-6
http://dx.doi.org/10.1103/PhysRevD.35.1633
http://dx.doi.org/10.1103/PhysRevD.35.1633
http://dx.doi.org/10.1103/PhysRevD.48.1185
http://dx.doi.org/10.1103/PhysRevD.48.1185
http://dx.doi.org/10.1103/PhysRevD.48.R3948
http://dx.doi.org/10.1103/PhysRevD.48.R3948
http://dx.doi.org/10.1140/epjc/s2006-02562-2
http://dx.doi.org/10.1140/epjc/s2006-02562-2
http://dx.doi.org/10.1140/epjc/s10052-008-0818-9
http://dx.doi.org/10.1140/epjc/s10052-008-0818-9
http://dx.doi.org/10.1016/S0370-2693(02)01838-5
http://dx.doi.org/10.1016/S0370-2693(02)01838-5
http://dx.doi.org/10.1140/epjc/s2003-01579-3
http://arXiv.org/abs/0807.5128
http://dx.doi.org/10.1016/0550-3213(74)90299-5
http://arXiv.org/abs/0710.3050
http://dx.doi.org/10.1016/j.physletb.2009.08.027
http://dx.doi.org/10.1016/j.physletb.2009.08.027
http://dx.doi.org/10.1063/1.2714347
http://dx.doi.org/10.1016/0550-3213(73)90618-4
http://dx.doi.org/10.1016/0550-3213(74)90488-X
http://dx.doi.org/10.1016/0550-3213(74)90488-X
http://dx.doi.org/10.1103/PhysRevD.7.1279
http://dx.doi.org/10.1103/PhysRevD.7.1279
http://dx.doi.org/10.1007/s002880050372
http://dx.doi.org/10.1007/s002880050372
http://dx.doi.org/10.1007/s1010502c0004
http://dx.doi.org/10.1016/0550-3213(75)90616-1
http://dx.doi.org/10.1016/0550-3213(74)90131-X
http://dx.doi.org/10.1016/0550-3213(77)90154-7
http://dx.doi.org/10.1016/0370-2693(73)90658-8
http://dx.doi.org/10.1016/0370-2693(73)90658-8
http://dx.doi.org/10.1016/0550-3213(74)90545-8
http://dx.doi.org/10.1103/PhysRev.137.B1022
http://dx.doi.org/10.1103/PhysRevD.77.114019
http://dx.doi.org/10.1007/BF01577564
http://dx.doi.org/10.1007/BF01577564
http://dx.doi.org/10.1103/PhysRevD.73.054029
http://dx.doi.org/10.1103/PhysRevD.74.059902
http://dx.doi.org/10.1103/PhysRevD.74.059902
http://dx.doi.org/10.1142/S0217751X09043730
http://dx.doi.org/10.1142/S0217751X09043730
http://dx.doi.org/10.1016/j.nuclphysbps.2008.12.071
http://dx.doi.org/10.1016/j.nuclphysbps.2008.12.071
http://dx.doi.org/10.1140/epja/i2006-10230-6
http://dx.doi.org/10.1140/epja/i2006-10230-6
http://dx.doi.org/10.1016/j.physletb.2005.05.045
http://dx.doi.org/10.1016/j.physletb.2005.05.045


[39] J. R. Batley et al., Eur. Phys. J. C 64, 589 (2009); N.

Cabibbo and G. Isidori, J. High Energy Phys. 03 (2005)

021; G. Colangelo et al., Phys. Lett. B 638, 187 (2006);

M. Bissegger et al., Nucl. Phys. B 806, 178

(2009).

[40] W. Rarita, R. J. Riddell, C. B. Chiu, and R. J. N. Phillips,

Phys. Rev. 165, 1615 (1968); C. D. Froggatt and J. L.

Petersen, Nucl. Phys. B129, 89 (1977).

[41] G. Wanders, Eur. Phys. J. C 17, 323 (2000).

[42] R. Kaminski, arXiv:1103.0882.

R. GARCÍA-MARTÍN et al. PHYSICAL REVIEW D 83, 074004 (2011)

074004-34

http://dx.doi.org/10.1140/epjc/s10052-009-1171-3
http://dx.doi.org/10.1088/1126-6708/2005/03/021
http://dx.doi.org/10.1088/1126-6708/2005/03/021
http://dx.doi.org/10.1016/j.physletb.2006.05.017
http://dx.doi.org/10.1016/j.nuclphysb.2008.07.027
http://dx.doi.org/10.1016/j.nuclphysb.2008.07.027
http://dx.doi.org/10.1103/PhysRev.165.1615
http://dx.doi.org/10.1016/0550-3213(77)90021-9
http://dx.doi.org/10.1007/s100520000459
http://arXiv.org/abs/1103.0882

