
Pioneer: Verifying Code Integrity and Enforcing
Untampered Code Execution on Legacy Systems∗

Arvind Seshadri Mark Luk Elaine Shi
CMU/CyLab CMU/CyLab CMU/CyLab

Adrian Perrig Leendert van Doorn Pradeep Khosla
CMU/CyLab IBM CMU/CyLab

ABSTRACT

We propose a primitive, called Pioneer, as a first step towards ver-
ifiable code execution on untrusted legacy hosts. Pioneer does not
require any hardware support such as secure co-processors orCPU-
architecture extensions. We implement Pioneer on an Intel Pentium
IV Xeon processor. Pioneer can be used as a basic building block
to build security systems. We demonstrate this by building a kernel
rootkit detector.

Categories and Subject Descriptors:Software, Operating Sys-
tems, Security and Protection, Verification.

General Terms: Security.

Keywords: Verifiable Code Execution, Software-based Code At-
testation, Dynamic Root of Trust, Rootkit Detection, Self-check-
summing Code.

1 INTRODUCTION

Obtaining a guarantee that a given code has executed untampered
on an untrusted legacy computing platform has been an open re-
search challenge. We refer to this as the problem ofverifiable code
execution. An untrusted computing platform can tamper with code
execution in at least three ways: 1) by modifying the code before
invoking it; 2) executing alternate code; or 3) modifying execution
state such as memory or registers when the code is running.

In this paper, we propose asoftware-basedprimitive called Pi-
oneer1 as a first step towards addressing the problem of verifiable
code execution on legacy computing platform without relying on
secure co-processors or CPU architecture extensions such as virtu-
alization support. Pioneer is based on a challenge-response proto-
col between an external trusted entity, called thedispatcher, and an
untrusted computing platform, called theuntrusted platform. The

∗This research was supported in part by CyLab at the Carnegie Mellon University un-
der grant DAAD19-02-1-0389 from the Army Research Office, by NSF under grant
CNS-0509004, and by a gift from IBM, Intel and Microsoft. The views and conclu-
sions contained here are those of the authors and should not be interpreted as neces-
sarily representing the official policies or endorsements, either express or implied, of
ARO, Carnegie Mellon University, IBM, Intel, Microsoft, NSF, or the U.S.Govern-
ment or any of its agencies.
1We call our primitive Pioneer because it can be used to instantiate a trusted base on
an untrusted platform.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOSP’05,October 23—26, 2005, Brighton, United Kingdom.
Copyright 2005 ACM 1-59593-079-5/05/0010 ...$5.00.

dispatcher communicates with the untrusted platform over a com-
munication link, such as a network connection. After a successful
invocation of Pioneer, the dispatcher obtains assurance that: 1) an
arbitrary piece of code, called theexecutable, on the untrusted plat-
form is unmodified; 2) the unmodified executable is invoked for
execution on the untrusted platform; and 3) the executable is ex-
ecuted untampered, despite the presence of malicious software on
the untrusted platform.

To provide these properties, we assume that the dispatcher knows
the hardware configuration of the untrusted platform, and that the
untrusted platform cannot collude with other devices during verifi-
cation. We also assume that the communication channel between
the dispatcher and the untrusted platform provides the property of
message-origin authentication, i.e., the communication channel is
configured so that the dispatcher obtains the guarantee that the Pio-
neer packets it receives originate from the untrusted platform. Fur-
thermore, to provide the guarantee of untampered code execution,
we assume that the executable is self-contained, not needing to
invoke any other software on the untrusted platform, and that it
can execute at the highest processor privilege level with interrupts
turned off.

The dispatcher uses Pioneer to dynamically establish a trusted
computing base on the untrusted platform, called thedynamic root
of trust. All code contained in the dynamic root of trust is guar-
anteed to be unmodified and is guaranteed to execute in an un-
tampered execution environment. Once established, the dynamic
root of trust measures the integrity of the executable and invokes
the executable. The executable is guaranteed to execute in the un-
tampered execution environment of the dynamic root of trust. In
Pioneer, the dynamic root of trust is instantiated through theverifi-
cation function,aself-checkingfunction that computes a checksum
over its own instructions. The checksum computation slows down
noticeably if the adversary tampers with the computation. Thus,
if the dispatcher receives the correct checksum from the untrusted
platform within the expected amount of time, it obtains the guaran-
tee that the verification function code on the execution platform is
unmodified.

Pioneer can be used as a basic primitive for developing security
applications. We illustrate this by designing a kernel rootkit de-
tector. Our rootkit detector uses a software-based kernel integrity
monitor. Instead of using rootkit signatures or low level filesystem
scans to find files hidden by a rootkit, our kernel integrity monitor
computes periodic hashes of the kernel code segment and static data
structures to detect unauthorized kernel changes. The trusted com-
puter uses Pioneer to obtain a guarantee that the kernel integrity
monitor is unmodified and runs untampered. When implemented
on version 2.6 of the Linux kernel, our rootkit detector was able
to detect all publically-known rootkits for this series of the Linux
kernel.

An important property of Pioneer is that it enables software-
based code attestation [21]. Code attestation allows a trusted en-
tity, known as theverifier, to verify the software stack running on
another entity, known as theattestation platform. The verifier and
the attestation platform are usually different physical computing
devices. A measurement agent on the attestation platform takes
integrity measurements of the platform’s software stack and sends
them to the verifier. The verifier uses the integrity measurements
obtained from the attestation platform to detect modifications in the
attestation platform’s software stack.

The Trusted Computing Group (TCG) has released standards
for secure computing platforms, based on a tamper-resistant chip
called the Trusted Platform Module (TPM) [24]. The verifier can
use the TPM on the attestation platform to obtain the guarantee of
load-time attestation, whereby the verifier obtains a guarantee of
what code was loaded into the system memory initially. All code
is measured before it is loaded and the measurements are stored in-
side the TPM. In response to an attestation request, the attestation
platform sends the load-time measurements to the verifier.

The SHA-1 hash function is used as the measurement agent in
TCG. The collision resistance property of SHA-1 has been compro-
mised [25]. The adversary can exploit this vulnerability to create
a good version and a malicious version of an executable with the
same hash value. The adversary can then undetectably exchange
the good copy of the executable with the malicious copy on the
attestation platform. After obtaining the load-time measurements
from the attestation platform, the verifier believes that the attes-
tation platform loaded the good copy of the executable. In real-
ity, the attestation platform has loaded the malicious copy. Hence,
the load-time attestation guarantee provided by TCG does not hold
anymore. Also, other systems that rely on the load-time attestation
provided by TCG such as Terra, Intel’s LaGrande Technology and
AMD’s Pacifica are compromised as well [4, 11, 12].

It is not possible to update the TCG measurement agent using
software methods. The only way to update is to physically replace
hardware. TCG is designed this way to prevent an adversary from
replacing the measurement agent with a malicious version. How-
ever, this also means that whenever the cryptographic primitives
used by TCG are compromised, the only way to re-secure already
deployed systems is to physically replace their hardware.

The software-based code attestation provided by Pioneer does
not require any hardware extensions to the attestation platform. The
verifier depends on Pioneer to guarantee the verifiably correct ex-
ecution of the measurement agent. Pioneer-based code attestation
has three main advantages: 1) it can be updated using software
methods if the underlying primitives are compromised, 2) it works
on legacy systems that lack secure co-processors or other hardware
enhancements to protect the measurement agent from a malicious
attestation platform, and 3) it provides the property ofrun-time at-
testation, i.e., the verifier can verify the integrity of software run-
ning on the attestation platform at the present time. Run-time attes-
tation provides a stronger guarantee than the TCG-based load-time
attestation, since software can be compromised by dynamic attacks
after loading.

The paper is organized as follows. Section 2 describes the prob-
lem we address, our assumptions, and attacker model. In Section 3,
we give an overview of Pioneer. We then describe the design of the
verification function and its implementation on the Intel Pentium
IV Xeon processor in Sections 4 and 5, respectively. Section 6
describes our kernel rootkit detector. We discuss related work in
Section 7 and conclude in Section 8.

2 PROBLEM DEFINITION , ASSUMPTIONS &
ATTACKER M ODEL

In this section, we describe the problem we address, discuss the
assumptions we make, and describe our attacker model.

2.1 Problem Definition

We define the problem ofverifiable code execution, in which the
dispatcher wants a guarantee that some arbitrary code has executed
untampered on an untrusted external platform, even in the presence
of malicious software on the external platform.

The untrusted platform has a self-checking function, called the
verification function. The dispatcher invokes the verification func-
tion by sending a challenge to the untrusted platform. The verifica-
tion function returns a checksum to the dispatcher. The dispatcher
has a copy of the verification function and can independently verify
the checksum. If the checksum returned by the untrusted platform
is correct and is returned within the expected time, the dispatcher
obtains the guarantee that a dynamic root of trust exists on the un-
trusted platform. The code in the dynamic root of trust measures the
executable, sends the measurement to the dispatcher, and invokes
the executable. The executable runs in an untampered execution
environment, which was set up as part of instantiating the dynamic
root of trust. The dispatcher can verify the measurement since it
has a copy of the executable. Taken together, the correctness of the
checksum and correctness of the executable measurement provide
the guarantee of verifiable code execution to the dispatcher.

Even if malicious software runs on the untrusted platform, it can-
not tamper with the execution of the executable. The adversary
can perform an active DoS attack and thwart Pioneer from being
run at all. However, the adversary cannot cheat by introducing a
false negative, where the correct checksum value has been reported
within the expected time to the dispatcher, without the correct code
executing on the untrusted platform.

2.2 Assumptions

We assume that the dispatcher knows the exact hardware config-
uration of the untrusted platform, including the CPU model, the
CPU clock speed, and the memory latency. We also assume that
the CPU of the untrusted platform is not overclocked. In addition,
the untrusted platform has a single CPU, that does not have sup-
port for Symmetric Multi-Threading (SMT). For the x86 architec-
ture, we also assume that the adversary does not generate a System
Management Interrupt (SMI) on the untrusted platform during the
execution of Pioneer.

We assume the communication channel between the dispatcher
and the untrusted platform provides message-origin authentication
i.e., the dispatcher is guaranteed that all Pioneer packets it receives
originate at the untrusted platform. Also, we assume that the un-
trusted platform can only communicate with the dispatcher dur-
ing the time Pioneer runs. Equivalently, the dispatcher can de-
tect the untrusted platform attempting to contact other computing
platforms. We make this assumption to eliminate theproxy at-
tack, where the untrusted platform asks a faster computing device
(proxy), to compute the checksum on its behalf.

Assuming that the untrusted platform has only one wired com-
munication interface, we can provide message-origin authentica-
tion and eliminate the proxy attack by physically connecting the
untrusted platform to dispatcher with a cable. Also, if the untrusted
platform can only communicate over a Local Area Network (LAN),
the network administrators can configure the network switches such
that any packets sent by the untrusted platform will reach only the
dispatcher.

2.3 Attacker Model

We assume an adversary who has complete control over the soft-
ware of the untrusted platform. In other words, the adversary has
administrative privileges and can tamper with all software on the
untrusted platform including the OS. However, we assume that the
adversary does not modify the hardware on the untrusted platform.
For example, the adversary does not load malicious firmware onto
peripheral devices such as network cards or disk controllers, or re-
place the CPU with a faster one. In addition, the adversary does not
perform DMA-based attacks like scheduling a DMA-write causing
a benign peripheral device to overwrite the executable between the
time of measurement and time of invocation.

3 PIONEER OVERVIEW

In this section, we give an overview of the verification function and
describe the challenge-response protocol used to set up a dynamic
root of trust on the execution platform and to obtain the guarantee
of verifiable code execution.

3.1 The verification function

The verification function is the central component of the Pioneer
system. It is responsible for performing an integrity measurement
on the executable, setting up an execution environment for the ex-
ecutable that ensures untampered execution, and invoking the ex-
ecutable. As Figure 1 shows, the verification function has three
parts: a checksum code, a hash function and a send function.

1. Challenge

2.
C

om
pute

checksum

3. Checksum

4. Hash

5. Hash of code

6. Invoke

7. Result (optional)

Dispatcher Untrusted Platform

Verification funcVerification func

Checksum codeChecksum code

Send functionSend function

Hash functionHash function

ExecutableExecutable

Expected memory layout

Figure 1: Overview of Pioneer. The numbers represent the
temporal ordering of events.

Checksum code. The checksum code computes a checksum over
the entire verification function, and sets up an execution environ-
ment in which the send function, the hash function and the exe-
cutable are guaranteed to run untampered by any malicious soft-
ware on the untrusted platform. The checksum code computes a
fingerprint of the verification function, i.e., if even a single byte of
the verification function code is different, the checksum will be dif-
ferent with a high probability. Thus, a correct checksum provides
a guarantee to the dispatcher that the verification function code is
unmodified. However, an adversary could attempt to manipulate
the checksum computation to forge the correct checksum value in
spite of having modified the verification function. For example, the
adversary could detect when the checksum code reads the altered
memory locations and redirect the read to other memory locations
where the adversary has stored the correct values. To detect such
manipulations, we construct the verification function such that if an
adversary tries to manipulate the checksum computation, the com-
putation time will noticeably increase. Thus, a correct checksum

obtained within the expected amount of time is a guarantee to the
dispatcher that the verification function code on the untrusted plat-
form is unmodified and that there is an environment for untampered
execution on the untrusted platform. In other words, the dispatcher
obtains the guarantee that there is a dynamic root of trust on the
untrusted platform.

Hash function. We use SHA-1 as the hash function to perform the
integrity measurement of the executable. Although the collision re-
sistance property of SHA-1 has been compromised, we rely on the
second-preimage collision resistance property for which SHA-1 is
still considered secure. To achieve this property, we design the hash
function so that it computes the hash of the executable as a function
of a nonce that is sent by the dispatcher. Thus, the adversary cannot
take advantage of the compromised collision resistance property of
SHA-1 to create to two different copies of the executable both of
which have the same hash value. After the measurement, the hash
function invokes the executable.

Send function. The send function returns the checksum and in-
tegrity measurement to the dispatcher over the communication link.

3.2 The Pioneer Protocol

The dispatcher uses a challenge-response protocol to obtain the
guarantee of verifiable code execution on the untrusted platform.
The protocol has two steps. First, the dispatcher obtains an assur-
ance that there is a dynamic root of trust on the untrusted platform.
Second, the dispatcher uses the dynamic root of trust to obtain the
guarantee of verifiable code execution.

1. D : t1← current time,nonce
R
←{0,1}n

D→ P : 〈nonce〉
2. P : c← Checksum(nonce,P)
3. P→ D : 〈c〉

D : t2← current time
if (t2− t1 > ∆t) then exit with failure
else verify checksumc

4. P : h← Hash(nonce,E)
5. P→ D : 〈h〉

D : verify measurement resulth
6. P : transfer control toE
7. E→ D : 〈result (optional)〉

Figure 2: The Pioneer protocol. The numbering of events is
the same as in Figure 1. D is the dispatcher, P the verification
function, and E is the executable.

We describe the challenge-response protocol in Figure 2. The
dispatcher first sends a challenge containing a random nonce to the
untrusted platform, initiating the checksum computation of the ver-
ification function. The untrusted platform uses the checksum code
that is part of the verification function to compute the checksum.
The checksum code also sets up an execution environment to en-
sure that the send function, the hash function and the executable can
execute untampered. After computing the checksum, the checksum
code invokes the send function to return the checksum to the dis-
patcher. The dispatcher has a copy of the verification function and
can independently verify the checksum. Also, since the dispatcher
knows the exact hardware configuration of the untrusted platform,
the dispatcher knows the expected time duration of the checksum
computation. After the send function returns the checksum to the
dispatcher, it invokes the hash function. The hash function mea-
sures the executable by computing a hash over it as a function of
the dispatcher’s nonce and returns the hash of the executable to the
dispatcher using the send function. The dispatcher also has a copy

of the executable and can independently verify the hash value. The
hash function then invokes the executable, which optionally returns
the execution result to the dispatcher.

4 DESIGN OF THE CHECKSUM CODE

In this section, we discuss the design of the checksum code that is
part of the verification function. The design is presented in a CPU-
architecture-independent manner. First, we discuss the properties
of the checksum code, and explain how we achieve these properties
and what attacks these properties can prevent or help detect. Then,
we explain how we set up an execution environment in which the
hash function, the send function and the executable execute un-
tampered. In Section 5, we shall describe how to implement the
checksum code on an Intel Pentium IV Xeon processor.

4.1 Required Properties of the Checksum Code

The checksum code has to be constructed such that adversarial tam-
pering results in either a wrong checksum or a noticeable time
delay. We now describe the required properties of the checksum
code and explain how these properties achieve the goals mentioned
above.

Time-optimal implementation. Our checksum code needs to be
the checksum code sequence with the fastest running time; other-
wise the adversary could use a faster implementation of the check-
sum code and use the time saved to forge the checksum. Unfor-
tunately, it is an open problem to devise a proof of optimality for
our checksum function. Promising research directions to achieve a
proof of optimality are tools such as Denali [15] or superopt [10]
that automatically generate the most optimal code sequence for ba-
sic code blocks in a program. However, Denali currently only op-
timizes simple code that can be represented by assignments, and
superopt would not scale to the code size of our checksum func-
tion.

To achieve a time-optimal implementation, we use simple in-
structions such asadd andxor that are challenging to implement
faster or with fewer operations. Moreover, the checksum code is
structured as code blocks such that operations in one code block
are dependent on the result of operations in the previous code block.
This prevents operation reordering optimizations across code blocks.

Instruction sequencing to eliminate empty issue slots. Most
modern CPUs are superscalar, i.e., they issue multiple instructions
in every clock cycle. If our checksum code does not have a suffi-
cient number of issuable instructions every clock cycle, then one or
more instruction issue slots will remain empty. An adversary could
exploit an empty issue slot to execute additional instructions with-
out overhead. To prevent such an attack, we need to arrange the
instruction sequence of the checksum code so that the processor is-
sue logic always has a sufficient number of issuable instructions for
every clock cycle. Note that we cannot depend solely on the pro-
cessor out-of-order issue logic for this since it is not guaranteed that
the out-of-order issue logic will always be able to find a sufficient
number of issuable instructions.

CPU state inputs. The checksum code is self-checksumming, i.e.,
it computes a checksum over its own instruction sequence. The
adversary can modify the checksum code so that instead of check-
summing its own instructions, the adversary’s checksum code com-
putes a checksum over a correct copy of the instructions that is
stored elsewhere in memory. We call this attack amemory copy at-
tack. This attack is also mentioned by Wurster et al. in connection
with their attack on software tamperproofing [28]. The adversary
can perform the memory copy attack in three different ways: 1) as

shown in Figure 3(b), the adversary executes an altered checksum
function from the correct location in memory, but computes the
checksum over a correct copy of the checksum function elsewhere
in memory; 2) as shown in Figure 3(c), the adversary does not move
the correct checksum code, but executes its modified checksum
code from other locations in memory; or 3) the adversary places
both the correct checksum code and its modified checksum code
in memory locations that are different from the memory locations
where the correct checksum code originally resided, as shown in
Figure 3(d).

It is obvious from the above description that when the adversary
performs a memory copy attack, either the adversary’s Program
Counter (PC) value or the data pointer value or both will differ from
the correct execution. We cause the adversary to suffer an execution
time overhead for the memory copy attack by incorporating both
the PC and the data pointer value into the checksum. In a memory
copy attack, the adversary will be forced to forge one or both of
these values in order to generate the correct checksum, leading to
an increase in execution time.

Both the PC and the data pointer hold virtual addresses. The
verification function is assumed to execute from a range of virtual
addresses that is known to the dispatcher. As a result, the dispatcher
knows the excepted value of the PC and the data pointer and can
compute the checksum independently.

����
����
����

����
����
����

V. func
PC

DP

(a) No attack, PC
and DP are within the
correct range.

����
����
����

����
����
��������
����
����
����V. func

PC

DP

Mal. func

(b) Memory copy at-
tack 1. PC correct,
but DP incorrect.

����
����
����
����

����
����
����
����V. func

PC

DP

Mal. func

(c) Memory copy at-
tack 2. PC incorrect,
DP correct.

����
����
����
����
����
����
����
����V. func

PC

DP

Mal. func

(d) Memory copy at-
tack 3. PC and DP in-
correct.

Figure 3: Memory copy attacks. PC refers to the program
counter, DP refers to the data pointer, V.func refers to the ver-
ification function, and Mal. func refers to the malicious verifi-
cation function.

Iterative checksum code. As Figure 4 shows, the checksum code
consists of three parts; the initialization code, the checksum loop
and the epilog code. The most important part is the checksum loop.
Each checksum loop reads one memory location of the verification
function and updates the running value of the checksum with the
memory value read, a pseudo-random value and some CPU state in-

Verification Function

Checksum Initialization Code

Checksum Loop

Epilog Code

Send Function

Hash Function

O
rder

ofexecution

Figure 4: Functional structure of the verification function. The
checksum code consists of an initialization code, the checksum
loop which computes the checksum, and the epilog code that
runs after the checksum loop but before the send function.

formation. If the adversary alters the checksum function but wants
to forge a correct checksum output, it has to manipulate the val-
ues of one or more of the inputs in every iteration of the checksum
code, causing a constant time overhead per iteration.

Strongly-ordered checksum function. A strongly-ordered func-
tion is a function whose output differs with high probability if the
operations are evaluated in a different order. A strongly-ordered
function requires an adversary to perform the same operations on
the same data in the same sequence as the original function to ob-
tain the correct result. For example, ifa1,a2,a3,a4 anda5 are ran-
dom inputs, the functiona1⊕a2+a3⊕a4+a5 is strongly-ordered.
We use a strongly ordered function consisting of alternate add and
xor operations for two reasons. First, this prevents parallelization,
as at any step of the computation the current value is needed to
compute the succeeding values. For example, the correct order of
evaluating the functiona1⊕a2+a3⊕a4 is (((a1⊕a2)+a3)⊕a4).
If the adversary tries to parallelize the computation by computing
the function in the order((a1⊕ a2) + (a3⊕ a4)), the output will
be different with high probability. Second, the adversary cannot
change the order of operations in the checksum code to try to speed
up the checksum computation. For example, if the adversary eval-
uatesa1⊕ a2 + a3⊕ a4 in the order(a1⊕ (a2 + (a3⊕ a4))), the
output will be different with high probability.

In addition to using a strongly ordered checksum function, we
also rotate the checksum. Thus, the bits of the checksum change
their positions from one iteration of the checksum loop to the next,
which makes our checksum function immune to the attack against
the Genuinity function that we point out in our earlier paper [21].

Small code size.The size of the checksum loop needs to be small
for two main reasons. First, the code needs to fit into the processor
cache to achieve a fast and deterministic execution time. Second,
since the adversary usually has a constant overhead per iteration,
the relative overhead increases with a smaller checksum loop.

Low variance of execution time. Code execution time on modern
CPUs is non-deterministic for a number of reasons. We want a low
variance for the execution time of the checksum code so that the
dispatcher can easily find a threshold value for the correct execution
time. We leverage three mechanisms to reduce the execution time
variance of the checksum code. One, the checksum code executes
at the highest privilege CPU privilege level with all maskable inter-
rupts turned off, thus ensuring that no other code can run when the
checksum code executes. Two, the checksum code is small enough

to fit completely inside the CPU’s L1 instruction cache. Also, the
memory region containing the verification function is small enough
to fit inside the CPU’s L1 data cache. Thus, once the CPU caches
are warmed up, no more cache misses occur. The time taken to
warm up the CPU caches is a small fraction of the total execu-
tion time. As a result, the variance in execution time caused by
cache misses during the cache warm-up period is small. Three, we
sequence the instructions of the checksum code such that a suffi-
cient number of issuable instructions are available at each clock
cycle. This eliminates the non-determinism due to out-of-order ex-
ecution. As we show in our results in Section 5.3, the combination
of the above three factors leads to a checksum code with very low
execution time variance.

Keyed-checksum. To prevent the adversary from pre-computing
the checksum before making changes to the verification function,
and to prevent the replaying of old checksum values, the check-
sum needs to depend on a unpredictable challenge sent by the dis-
patcher. We achieve this in two ways. First, the checksum code
uses the challenge to seed a Pseudo-Random Number Generator
(PRNG) that generates inputs for computing the checksum. Sec-
ond, the challenge is also used to initialize the checksum variable
to a deterministic yet unpredictable value.

We use a T-function as the PRNG [18]. A T-function is a function
from n-bit words to n-bit words that has a single cycle length of 2n.
That is, starting from any n-bit value, the T-function is guaranteed
to produce all the other 2n−1 n-bit values before starting to repeat
the values. The T-function we use isx← x+(x2∨5)mod2n, where
∨ is the bitwise-or operator. Since every iteration of the checksum
code uses one random number to avoid repetition of values from
the T-function, we have to ensure that the number of iterations of
the checksum code is less than 2n when we use an n-bit T-function.
We usen = 64 in our implementation to avoid repetition.

It would appear that we could use a Message Authentication
Code (MAC) function instead of the simple checksum function
we use. MAC functions derive their output as a function of their
input and a secret key. We do not use a MAC function for two
reasons. First, the code of current cryptographic MAC functions
is typically large, which is against our goal of a small code size.
Also, MAC functions have much stronger properties than what we
require. MAC functions are constructed to be resilient to MAC-
forgery attacks. In a MAC-forgery attack, the adversary knows a
finite number of (data, MAC(data)) tuples, where each MAC value
is generated using the same secret key. The task of the adversary
is to generate a MAC for a new data item that will be valid un-
der the unknown key. It is clear that we do not require resilience
to the MAC forgery attack, as the nonce sent by the Pioneer dis-
patcher is not a secret but is sent in the clear. We only require that
the adversary be unable to pre-compute the checksum or replay old
checksum values.

Pseudo-random memory traversal. The adversary can keep a
correct copy of any memory locations in the verification function
it modifies. Then, at the time the checksum code tries to read one
of the modified memory locations, the adversary can redirect the
read to the location where the adversary has stored the correct copy.
Thus, the adversary’s final checksum will be correct. We call this
attack thedata substitution attack. To maximize the adversary’s
time overhead for the data substitution attack, the checksum code
reads the memory region containing the verification function in a
pseudo-random pattern. A pseudo-random access pattern prevents
the adversary from predicting which memory read(s) will read the
modified memory location(s). Thus, the adversary is forced to
monitor every memory read by the checksum code. This approach
is similar to our earlier work in SWATT [21].

We use the result of the Coupon Collector’s Problem to guarantee
that the checksum code will read every memory location of the ver-
ification function with high probability, despite the pseudo-random
memory access pattern. If the size of the verification function isn
words, the result of the Coupon Collector’s Problem states: ifX is
the number of memory reads required to read each of then words
at least once, thenPr[X > cnlnn] ≤ n−c+1. Thus, afterO(nlnn)
memory reads, each memory location is accessed at least once with
high probability.

4.2 Execution Environment for Untampered Code Execution

We now explain how the checksum code sets up an untampered
environment for the hash function, the send function, and the exe-
cutable.

Execution at highest privilege level with maskable interrupts
turned off. All CPUs have an instruction to disable maskable in-
terrupts. Executing this instruction changes the state of theinter-
rupt enable/disable bit in the CPU condition codes (flags)
register. Thedisable-maskable-interrupt instruction can
only be executed by code executing at the highest privilege level.
The initialization code, which runs before the checksum loop (see
Figure 4), executes thedisable-maskable-interrupt in-
struction. If the checksum code is executing at the highest priv-
ilege level, the instruction execution proceeds normally and the
interrupt enable/disable flag in the flags register is set
to thedisable state. If the checksum code is executing at lower
privilege levels one of two things can happen: 1) thedisable-
maskable-interrupts instruction fails and the status of the
interrupt enable/disable flag is not set todisable , or
2) thedisable-maskable-interrupt instruction traps into
software that runs at the highest privilege level. Case 2 occurs when
the checksum code is running inside a virtual machine (VM). Since
we assume a legacy computer system where the CPU does not have
support for virtualization, the VM must be created using a software-
based virtual machine monitor (VMM) such as VMware [2]. The
VMM internally maintains a copy of the flags register for each VM.
When the VMM gains control as a result of the checksum code exe-
cuting thedisable-maskable-interrupt instructions, the
VMM changes the state of theinterrupt enable/disable
flag in the copy of the flags register it maintains for the VM and
returns control to the VM. This way, the actual CPU flags register
remains unmodified.

We incorporate the flags register into the checksum in each iter-
ation of the checksum loop. Note that the adversary cannot replace
the flags register with an immediate since the flags register contains
status flags, such as the carry and zero flag, whose state changes
as a result of arithmetic and logical operations. If the adversary
directly tries to run the checksum code at privilege levels lower
than the highest privilege level, the final checksum will be wrong
since theinterrupt enable/disable flag will not be set to
the disable state. On the other hand, if the adversary tries to
cheat by using a software VMM, then each read of the flags regis-
ter will trap into the VMM or execute dynamically generated code,
thereby increasing the adversary’s checksum computation time. In
this way, when the dispatcher receives the correct checksum within
the expected time, it has the guarantee that the checksum code exe-
cuted at the highest CPU privilege level with all maskable interrupts
turned off. Since the checksum code transfers control to the hash
function and the hash function in turn invokes the executable, the
dispatcher also obtains the guarantee that both the hash function
and executable will run at the highest CPU privilege level with all
maskable interrupts turned off.

Stack Pointer

Stack Pointer Range

Word 0 Word 1 Word 2 Word 3 Word 4 Word 5

Low Address High Address

Figure 5: The stack trick. A part of the checksum (6 words long
in the figure) is on the stack. The stack pointer is randomly
moved to one of the locations between the markers by each it-
eration of the checksum code. Note that the stack pointer never
points to either end of the checksum.

Replacing exception handlers and non-maskable interrupt han-
dlers. Unlike maskable interrupts, exceptions and non-maskable
interrupts cannot be temporarily turned off. To ensure that the hash
function and executable will run untampered, we have to guarantee
that the exception handlers and the handlers for non-maskable in-
terrupts are non-malicious. We achieve this guarantee by replacing
the existing exception handlers and the handlers for non-maskable
interrupts with our own handlers in the checksum code. Since both
the hash function and the executable operate at the highest privilege
level, they should not cause any exceptions. Also, non-maskable
interrupts normally indicate catastrophic conditions, such as hard-
ware failures, which are low probability events. Hence, during
normal execution of the hash function and the executable, neither
non-maskable interrupts nor exceptions should occur. Therefore,
we replace the existing exception handlers and handlers for non-
maskable interrupts with code that consists only of aninterrupt
return instruction (e.g.,iret on x86). Thus, our handler imme-
diately returns control to whatever code was running before the in-
terrupt or exception occurred.

An intriguing problem concerns where in the checksum code we
should replace the exception and non-maskable interrupt handlers.
We cannot do this in the checksum loop since the instructions that
replace the exception and non-maskable interrupt handlers do not
affect the value of the checksum. Thus, the adversary can remove
these instructions and still compute the correct checksum within the
expected time. Also, we cannot place the instructions to replace the
exception and non-maskable interrupt handlers in the initialization
code, since the adversary can skip these instructions and jump di-
rectly into the checksum loop.

We therefore place the instructions that replace the handlers for
exceptions and non-maskable interrupts in the epilog code. The
epilog code (see Figure 4) is executed after the checksum loop is
finished. If the checksum is correct and is computed within the
expected time, the dispatcher is guaranteed that the epilog code is
unmodified, since the checksum is computed over the entire ver-
ification function. The adversary can, however, generate a non-
maskable interrupt or exception when the epilog code tries to run,
thereby gaining control. For example, the adversary can set an ex-
ecution break-point in the epilog code. The processor will then
generate a debug exception when it tries to execute the epilog code.
The existing debug exception handler could be controlled by the ad-
versary. This attack can be prevented by making use of the stack to
store a part of the checksum. The key insight here is that all CPUs
automatically save some state on the stack when an interrupt or ex-
ception occurs. If the stack pointer is pointing to the checksum that
is on the stack, any interrupt or exception will cause the processor
to overwrite the checksum. We ensure that the stack pointer always
points to the middle of the checksum on the stack (see Figure 5) so

that part of the checksum will always be overwritten regardless of
whether the stack grows up or down in memory.

Each iteration of the checksum loop randomly picks a word of
the stack-based checksum for updating. It does this by moving
the stack pointer to a random location within the checksum on the
stack, taking care to ensure that the stack pointer is never at either
end of the checksum (see Figure 5). The new value of the stack
pointer is generated using the current value of the checksum and the
current value of the stack pointer, thereby preventing the adversary
from predicting its value in advance.

The epilog code runs before the send function, which sends the
checksum back to the dispatcher. Thereby, a valid piece of check-
sum is still on the stack when the epilog code executes. Thus, the
adversary cannot use a non-maskable interrupt or exception to pre-
vent the epilog code from running without destroying a part of the
checksum. Once the epilog code finishes running, all the exception
handlers and the handlers for non-maskable interrupts will have
been replaced. In this manner, the dispatcher obtains the guarantee
that any code that runs as a result of an exception or a non-maskable
interrupt will be non-malicious.

5 CHECKSUM CODE I MPLEMENTATION ON

THE NETBURST M ICROARCHITECTURE

In this section we describe our implementation of the checksum
code on an Intel Pentium IV Xeon processor with EM64T exten-
sions. First, we briefly describe the Netburst microarchitecture,
which is implemented by all Intel Pentium IV processors, and the
EM64T extensions. Next, we describe how we implement the check-
sum code on the Intel x86 architecture. Section 5.3 shows the re-
sults of our experiments measuring the time overhead of the differ-
ent attacks. Finally, in Section 5.4 we discuss some points related
to the practical deployment of Pioneer and extensions to the current
implementation of Pioneer.

5.1 The Netburst Microarchitecture and EM64T Extensions

In this section, we present a simplified overview of the Intel Net-
burst microarchitecture that is implemented in the Pentium IV fam-
ily of CPUs. We also describe the EM64T extensions that add sup-
port for 64-bit addresses and data to the 32-bit x86 architecture.

Figure 6 shows a simplified view of the front-end and execution
units in the Netburst architecture. The figure and our subsequent
description are based on a description of the Netburst microarchi-
tecture by Boggs et al. [7].

The instruction decoder in Pentium IV CPUs can only decode
one instruction every clock cycle. To prevent the instruction de-
coder from creating a performance bottleneck, the Netburst mi-
croarchitecture uses a trace cache instead of a regular L1 instruc-
tions cache. The trace cache holds decoded x86 instructions in the
form of µops. µops are RISC-style instructions that are generated
by the instruction decoder when it decodes the x86 instructions.
Every x86 instruction breaks down into one or more dependent
µops. The trace cache can hold up to 12000µops and can issue
up to threeµops to the execution core per clock cycle. Thus, the
Netburst microarchitecture is a 3-way issue superscalar microar-
chitecture.

The Netburst microarchitecture employs seven execution units.
The load and store units have dedicated Arithmetic Logic Units
(ALU) called Address Generation Units (AGU) to generate ad-
dresses for memory access. Two double-speed integer ALUs ex-
ecute twoµops every clock cycle. The double speed ALUs handle
simple arithmetic operations like add, subtract and logical opera-
tions.

AGU
FP FP2xALU2xALU ALULU SU

AGU

Front-End BTB

Trace Cache BTB

Instruction Prefetcher

Instruction Decoder

Trace Cache

Allocator/Register Renamer

L1 Data Cache

Figure 6: The Intel Netburst Microarchitecture. The execu-
tion units are LU: Load Unit; SU: Store Unit; AGU: Address
Generation Unit; 2xALU: Double-speed Integer ALUs that ex-
ecute twoµops each per cycle; ALU: Complex Integer ALU;
FP: Floating Point, MMX, and SSE unit.

The L1-data cache is 16KB in size, 8-way set associative and has
a 64 byte line size. The L2 cache is unified (holds both instructions
and data). Its size varies depending on the processor family. The
L2 cache is 8 way set associative and has a 64 byte line size.

The EM64T extensions add support for a 64-bit address space
and 64-bit operands to the 32-bit x86 architecture. The general
purpose registers are all extended to 64 bits and eight new general
purpose registers are added by the EM64T extensions. In addition,
a feature called segmentation2 allows a process to divide up its data
segment into multiple logical address spaces calledsegments. Two
special CPU registers (fs and gs) hold pointers to segment de-
scriptors that provide the base address and the size of a segment as
well as segment access rights. To refer to data in a particular seg-
ment, the process annotates the pointer to the data with the segment
register that contains the pointer to the descriptor of the segment.
The processor adds the base address of the segment to the pointer to
generate the full address of the reference. Thus,fs:0000 would
refer to the first byte of the segment whose descriptor is pointed to
by fs .

5.2 Implementation of Pioneer on x86

We now discuss how we implement the checksum code so that it
has all the properties we describe in Section 4.1. Then we de-
scribe how the checksum code sets up the execution environment
described in Section 4.2 on the x86 architecture.

Every iteration of the checksum code performs these five actions:
1) deriving the next pseudo-random number from the T-function, 2)
reading the memory word for checksum computation, 3) updating
the checksum, 4) rotating the checksum using arotate instruc-
tion, and 5) updating some program state such as the data pointer.
Except for reading the CPU state and our defense against the mem-
ory copy attack, all properties are implemented on the x86 archi-
tecture exactly as we describe in Section 4.1. Below, we describe
the techniques we employ to obtain the CPU state on the x86 ar-
chitecture. We also describe how we design our defense against the
memory copy attacks.

CPU state inputs. The CPU state inputs, namely the Program
Counter (PC) and the data pointer, are included in the checksum
to detect the three memory copy attacks. On the x86 architecture
with EM64T extensions, the PC cannot be used as an operand for

2Unlike the IA32 architecture, the EM64T extensions do not use code or stackseg-
ments. So, thecs andss segment registers are ignored by the processor. Also, theds
andes segment registers are not used by the processor for accessing data segments.

any instruction other than thelea instruction. So, if we want to
include the value of the PC in the checksum, the fastest way to do
it is to use the following two instructions: first, thelea instruction
moves the current value of PC into a general purpose register, and
next, we incorporate the value in the general purpose register into
the checksum. Since the value of the PC is known in advance, the
adversary can directly incorporate the corresponding value into the
checksum as an immediate. Doing so makes the adversary’s check-
sum computation faster since it does not need thelea instruction.
Hence, on the x86 platform we cannot directly include the PC in
the checksum.

Instead of directly including the PC in the checksum, we con-
struct the checksum code so that correctness of the checksum de-
pends on executing a sequence of absolute jumps. By including the
jump target of each jump into the checksum, we indirectly access
the value of the PC.

5

jmp *reg

Block 2

jmp *reg

jmp *reg

jmp *reg

Block 3

Block 1

1

Block 4

2

3

4

Figure 7: Structure of the checksum code. There are 4 code
blocks. Each block is 128 bytes in size. The arrows show one
possible sequence of control transfers between the blocks.

As Figure 7 shows, we construct the checksum code as a se-
quence of four code blocks. Each code block generates the abso-
lute address of the entry point of any of the four code blocks using
the current value of the checksum as a parameter. Both the code
block we are jumping from and the code block we are jumping to
incorporate the jump address in the checksum. The last instruc-
tion of code block jumps to the absolute address that was generated
earlier.

All of the code blocks execute the same set of instructions to up-
date the checksum but have a different ordering of the instructions.
Since the checksum function is strongly ordered, the final value of
the checksum depends on executing the checksum code blocks in
the correct sequence, which is determined by the sequence of jumps
between the blocks.

The checksum code blocks are contiguously placed in memory.
Each block is 128 bytes in size. The blocks are aligned in memory
so that the first instruction of each block is at an address that is a
multiple of 128. This simplifies the jump target address generation
since the jump targets can be generated by appropriately masking
the current value of the checksum.

Memory copy attacks. Memory copy attacks are the most diffi-
cult attacks to defend against on the x86 architecture, mainly for
of three reasons: 1) the adversary can use segmentation to have
the processor automatically add a displacement to the data pointer
without incurring a time overhead; 2) the adversary can utilize
memory addressing with an immediate or register displacement,

without incurring a time overhead because of the presence of ded-
icated AGUs in the load and the store execution units; and 3) the
PC cannot be used like a general purpose register in instructions,
which limits our flexibility in designing defenses for the memory
copy attacks.

We now describe how the adversary can implement the three
memory copy attacks on the x86 architecture and how we construct
the checksum code so that the memory copy attacks increase the
adversary’s checksum computation time.

In the first memory copy attack shown in Figure 3(b), the ad-
versary runs a modified checksum code from the correct memory
location and computes the checksum over a copy of the unmodi-
fied verification function placed elsewhere in memory. This attack
requires the adversary to add a constant displacement to the data
pointer. There are two ways the adversary can do this efficiently:
1) it can annotate all instructions that use the data pointer with one
of the segment registers,fs or gs , and the processor automati-
cally adds the segment base address to the data pointer, or 2) the
adversary can use an addressing mode that adds an immediate or a
register value to the data pointer, and the AGU in the load execution
unit will add the corresponding value to the data pointer. However,
our checksum code uses all sixteen general purpose registers, so the
adversary can only use an immediate to displace the data pointer.

Neither of these techniques adds any time overhead to the ad-
versary’s checksum computation. Also, both techniques retain the
correct value of the data pointer. Thus, this memory copy attack
cannot be detected by including the data pointer in the checksum.
However, both these techniques increase the instruction length. We
leverage this fact in designing our defense against this memory
copy attack. The segment register annotation adds one byte to the
length of any instruction that accesses memory, whereas address-
ing with immediate displacement increases the instruction length
by the size of the immediate. Thus, in this memory copy attack,
the adversary’s memory reference instructions increase in length
by a minimum of one byte. An instruction that reads memory with-
out a segment register annotation or an immediate displacement
is 3 bytes long on the x86 architecture with EM64T extensions.
We place an instruction having a memory reference, such asadd
mem, reg , as the first instruction of each of the four checksum
code blocks. In each checksum code block, we construct the jump
target address so that, the jump lands with equal probability on ei-
ther the first instruction of a checksum code block or at an offset
of 3 bytes from the start of a code block. In an unmodified code
block, the second instruction is at an offset of 3 bytes from the start
of the block. When the adversary modifies the code blocks to do a
memory copy attack, the second instruction of the block cannot be-
gin before the 4th byte of the block. Thus, 50% of the jumps would
land in the middle of the first instruction, causing the processor to
generate anillegal opcode exception.

To accommodate the longer first instruction, the adversary would
move its code blocks farther apart, as Figure 8 shows. The adver-
sary can generate its jump target addresses efficiently by aligning
its checksum code blocks in memory in the following way. The
adversary places its code blocks on 256 byte boundaries and sepa-
rates its first and second instruction by 8 bytes. Then, the adversary
can generate its jump addresses by left-shifting the correct jump
address by 1. We incorporate the jump address into the checksum
both before and after the jump. So, the adversary has to left-shift
the correct jump address by 1 before the jump instruction is exe-
cuted and restore the correct jump address by right-shifting after
the jump is complete. Thus, the adversary’s overhead for the first
memory copy attack is the execution latency of one left-shift in-
struction and one right-shift instruction.

Additional
Instructions

Block 1Block 1

Block 2

Block 2

Block 3

Block 3

Block 4

Block 4

Figure 8: Comparison of the code block lengths in the orig-
inal verification function and an adversary-modified verifica-
tion function. The adversary moves its code blocks in memory
so that the entry points of its code blocks are at addresses that
are a power of two.

In the second memory copy attack shown in Figure 3(c), the ad-
versary keeps the unmodified verification function at the correct
memory location, but computes the checksum using a modified
checksum code that runs at different memory locations. In this
case, the entry points of the adversary’s code blocks will be dif-
ferent, so the adversary would have to generate different jump ad-
dresses. Since we include the jump addresses in the checksum, the
adversary would also have to generate the correct jump addresses.
Hence, the adversary’s checksum code blocks would be larger than
128 bytes. As before, to accommodate the larger blocks, the adver-
sary would move its code blocks apart and align the entry points
at 256 byte boundaries (Figure 8). Then, the adversary can gener-
ate its jump address by left-shifting the correct jump address and
by changing one or more bits in the resulting value using a logical
operation. To restore the correct jump address, the adversary has to
undo the changes either by loading an immediate value or by using
a right-shift by 1 and a logical operation. In any case, the adver-
sary’s time overhead for this memory copy attack is greater than
the time overhead for first memory copy attack.

In the third memory copy attack shown in Figure 3(d), both
the unmodified verification function and the adversary’s checksum
code are not present at the correct memory locations. Thus, this
attack is a combination of the first and the second memory copy
attacks. The adversary’s time overhead for this memory copy at-
tack is the same as the time overhead for the second memory copy
attack.

Variable instruction length. The x86 Instruction Set Architecture
(ISA) supports variable length instructions. Hence, the adversary
can reduce the size of the checksum code blocks by replacing one
or more instructions with shorter variants that implement the same
operation with the same or shorter latency. The adversary can use
the space saved in this manner to implement the memory copy at-
tacks without its code block size exceeding 128 bytes. To prevent
this attack, we carefully select the instructions used in the check-
sum code blocks so that they are the smallest instructions able to
perform a given operation with minimum latency.

Execution environment for untampered code execution.In or-
der to get the guarantee of execution at the highest privilege level
with maskable interrupts turned off, the checksum code incorpo-
rates the CPU flags in the checksum. The flags register on the x86
architecture,rflags , can only be accessed if it is pushed onto the
stack. Since we use to the stack to hold a part of the checksum,
we need to ensure that pushing therflags onto the stack does

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

Low Address High Address

Empty Empty

Checksum Piece 1 Checksum Piece 2
SP2SP1

Figure 9: The layout of the stack on an x86 processor with
EM64T extensions. Both checksum pieces are 8 bytes long and
are aligned on 16-byte boundaries. The empty regions are also
8 bytes long. The stack pointer is assigned at random to one of
the two locations SP1 or SP2.

not overwrite the part of the checksum that is on the stack. Also,
a processor with EM64T extensions always pushes the processor
state starting at a 16-byte boundary on receiving interrupts or ex-
ceptions. Thus, we need to make sure that the checksum pieces on
the stack are aligned on 16-byte boundaries so they will be over-
written when an interrupt or exception occurs.

Figure 9 shows the stack layout we use for x86 processors with
EM64T extensions. Our stack layout has checksum pieces alternat-
ing with empty slots. All four elements are eight bytes in size. The
checksum code moves the stack pointer so that the stack pointer
points either to location SP1 or to location SP2. On the x86 ar-
chitecture, the stack grows downwards from high addresses to low
addresses. To push an item onto the stack, the processor first decre-
ments the stack pointer and then writes the item to the memory
location pointed to by the stack pointer. With EM64T extensions,
pushes and pops normally operate on 8-byte data. Since the stack
pointer is always initialized to either SP1 or to SP2, a push of the
rflags register will always write the flags to one of the empty 8-
byte regions. If an interrupt or exception were to occur, the proces-
sor would push 40 bytes of data onto the stack, thereby overwriting
either checksum piece 1 or both checksum pieces.

We keep checksum pieces on the stack to prevent the adversary
from getting control through an exception or a non-maskable inter-
rupt. However, the x86 architecture has a special non-maskable in-
terrupt called System Management Interrupt (SMI), which switches
the processor into the System Management Mode (SMM). The pur-
pose of SMM is to fix chipset bugs and for hardware control.

The SMI does not save the processor state on the stack. So, it
is not possible to prevent the SMI by keeping checksum pieces on
the stack. Since the SMI is a special-purpose interrupt, we assume
that it never occurs when the verification function runs. During our
experiments, we found this assumption to be true all the time. In
Section 5.4, we discuss how we can extend the current implemen-
tation of Pioneer to handle the SMI.

Description of verification function code. Figure 10 shows the
pseudocode of one code block of the verification function. The
block performs six actions: 1) deriving the next pseudo-random
value from the T-function; 2) generating the jump address, the stack
pointer, and the data pointer using the current value of the check-
sum, 3) pushingrflags onto the stack, 4) reading a memory loca-
tion containing the verification function, 5) updating the checksum
using the memory read value, previous value of the checksum, the
output of the T-function, therflags register, and the jump ad-
dress, and 6) rotating the checksum using the rotate instruction.

The checksum is made up of twelve 64-bit pieces, ten in the
registers and two on the stack. The checksum code uses all sixteen
general purpose registers.

Figure 11 shows the assembler code of one block of the verifi-
cation function. The code shown is not the optimized version but a
verbose version to aid readability.

//Input: y number of iterations of the verification procedure
//Output: ChecksumC, (10 segments in registersC0 to C9,
// and 2 on stackCstk1 , Cstk2 , each being 64 bits)
//Variables:[codestart,codeend] - bounds of memory address under verification
// daddr - address of current memory access
// x - value of T function
// l - counter of iterations
// r f lags - flags register
// jump target[1 : 0] - determines which code block to execute
// temp- temp register used to compute checksum
daddr← codestart
for l = y to 0do

Checksum 1
//T function updatesx where 0≤ x≤ 2n

x← x+(x2∨5) mod 2n

//Readr f lags and incorporate intodaddr
daddr← daddr+ r f lags
//Read from memory addressdaddr, calculate checksum.LetC be the checksum
vector andj be the current index.
jump target← not(jump target)+ loop ctr⊕x
temp← x⊕Cj−1 +daddr⊕Cj

if jump target[1] == 0and jumptarget[0] == 0 then
Cj ←Cj +mem[daddr+8]+ jump target

else
Cj ←Cj + jump target

end if
Cj−1←Cj−1 + temp
Cstk←Cstk⊕ jump target
Cj−2←Cj−2 +Cj

Cj−3←Cj−3 +Cj−1
Cj ← rotate right(Cj)
//Updatedaddr to perform pseudo-random memory traversal
daddr← daddr+x
//Updatersp and jumptarget
rsp[1]←Cj [1]
j ← (j +1) mod 11
jump target[8 : 7]←Cj [8 : 7]
jump target[1 : 0]← temp[0], temp[0]
if jump target[8 : 7] = 0 then

goto Checksum 1
else if jump target[8 : 7] = 1 then

goto Checksum 2
else if jump target[8 : 7] = 2 then

goto Checksum 3
else if jump target[8 : 7] = 3 then

goto Checksum 4
end if
Checksum 2
...
Checksum 3
...
Checksum 4
...

end for

Figure 10: Verification Function Pseudocode

5.3 Experiments and Results

Any attack that the adversary uses has to be combined with a mem-
ory copy attack because the adversary’s checksum code will be dif-
ferent from the correct checksum code. Hence, the memory copy
attack is the attack with the lowest overhead. Of the three memory
copy attacks, the first has the lowest time overhead for the adver-
sary. Hence, we implemented two versions of the checksum code
using x86 assembly: a legitimate version and a malicious version
that implements the first memory copy attack (the correct code plus
two extra shift instructions).

Experimental setup. The dispatcher is a PC with a 2.2 GHz Intel
Pentium IV processor and a 3Com 3c905C network card, running
Linux kernel version 2.6.11-8. The untrusted platform is a PC with
a 2.8 GHz Intel Pentium IV Xeon processor with EM64T exten-
sions and an Intel 82545GM Gigabit Ethernet Controller, running
Linux kernel version 2.6.7. The dispatcher code and the verification
function are implemented inside the respective network card inter-
rupt handlers. Implementing code inside the network card interrupt
handler enables both the dispatcher and the untrusted platform to

Assembly Instruction Explanation
//Read memory
add (rbx), r15 memory read
sub 1, ecx decrement loop counter
add rdi, rax x← (x∗x) OR5+x
//modifies jumptarget register rdx and rdi
xor r14, rdi rdi← rdi⊕Cj−1
add rcx, rdx rdx← rdx+ loopctr
add rbx, rdi rdi← rdi +daddr
xor rax, rdx input x (from T function)
xor r15, rdi rdi← rdi⊕c j

//modifies checksum withrdx and rdi
add rdx, r15 modify checksum Cj
add rdi, r14 modify checksum Cj−1
xor rdx, -8(rsp) modify checksum on stack
xor r15, r13 Cj−2←Cj−2⊕Cj

add r14, r12 Cj−3←Cj−3 +Cj−1
rol r15 r15← rotate[r15]
//Pseudorandom memory access
xor rdi, rbx daddr← daddr⊕ randombits
and mask1, ebx modify daddr
or mask2, rbx modify daddr
//Modify stack pointer and target jump address
xor rdx, rsp Modify rsp
and mask3, esp create rsp
or mask4, rsp create rsp
and 0x180, edx jump target← r15
and 0x1, rdi rdi← rdiAND0x1
add rdi, rdx rdx← rdx+ rdi
add rdi, rdi shift rdi
add rdi, rdx rdx← rdx+ rdi
or mask, rdx create jumptarget address
xor rdx, r15 add jump target address into checksum
//T function updates x, at rax
mov rax, rdi save value of T function
imul rax, rax x = x*x
or 0x5, rax x← x∗x OR5
//Read flags
pushfq push rflags
add (rsp), rbx daddr← daddr+ r f lags
jmp *rdx jump to 1 of the 4 blocks

Figure 11: Checksum Assembly Code

receive the Pioneer packets as early as possible. The dispatcher
and the untrusted platform are on the same LAN segment.

Empty instruction issue slots. In Section 4.1, we mentioned
that the checksum code instruction sequence has to be carefully
arranged to eliminate empty instruction issue slots. The Netburst
Microarchitecture issuesµops, which are derived from decoding
x86 instructions. Hence, to properly sequence the instructions, we
need to know whatµops are generated by the instructions we use in
the checksum code. This information is not publically available. In
the absence of this information, we try to sequence the instructions
through trial-and-error. To detect the presence of empty instruction
issue slots we placeno-op instructions at different places in the
code. If there are no empty instruction issue slots, placingno-op
instructions should always increase the execution time of the check-
sum code. We found this assertion to be only partially true in our
experiments. There are places in our code whereno-op instruc-
tions can be placed without increasing the execution time, indicat-
ing the presence of empty instruction issue slots.

Determining number of verification function iterations. The
adversary can try to minimize the Network Round-Trip Time (RTT)
between the untrusted platform and dispatcher. Also, the adversary
can pre-load its checksum code and the verification function into
the CPU’s L1 instruction and data caches respectively to ensure that
it does not suffer any cache misses during execution. We prevent
the adversary from using the time gained by these two methods to
forge the checksum.

The theoretically best adversary has zero RTT and no cache miss-
es, which is a constant gain over the execution time of the correct
checksum code. We call this constant time gain as theadversary

time advantage. However, the time overhead of the adversary’s
checksum code increases linearly with the number of iterations of
the checksum loop. Thus, the dispatcher can ask the untrusted plat-
form to perform a sufficient number of iterations so that the ad-
versary’s time overhead is at least greater than the adversary time
advantage.

The expression for the number of iterations of the checksum loop
to be performed by the untrusted platform can be derived as fol-
lows. Letc be the clock speed of the CPU,a be the time advantage
of the theoretically best adversary,o be the adversary’s overhead
per iteration of the checksum loop represented in CPU cycles, and
n is the number of iterations. Thenn >

c∗a
o to prevent false nega-

tives3 in the case of the theoretically best adversary.

Experimental results. To calculate the time advantage of the
theoretically best adversary, we need to know the upper bound
on the RTT and the time saved by pre-warming the caches. We
determine the RTT upper bound by observing theping latency
for different hosts on our LAN segment. This gives us an RTT
upper bound of 0.25ms since all ping latencies are smaller than
this value. Also, we calculate the amount of time that cache pre-
warming saves the adversary by running the checksum code with
and without pre-warming the caches and observing the running
times using the CPU’srdtsc instruction. The upper bound on
the cache pre-warming time is 0.0016ms. Therefore, for our exper-
iments we fix the theoretically best adversary’s time advantage to
be 0.2516ms. The attack that has the least time overhead is the first
memory copy attack, which has an overhead of 0.6 CPU cycles per
iteration of the checksum loop. The untrusted platform has a 2.8
GHz CPU. Using these values, we determine the required number
of checksum loop iterations to be 1,250,000. To prevent false pos-
itives due to RTT variations, we double the number of iterations to
2,500,000.

The dispatcher knows,r, the time taken by the correct checksum
code to carry out 2,500,000 iterations. It also knows that the upper
bound on the RTT,rtt . Therefore, the dispatcher considers any
checksum result that is received after timer + rtt to be late. This
threshold is theadversary detection threshold.

We place the dispatcher at two different physical locations on
our LAN segment. We run our experiments for 2 hours at each lo-
cation. Every 2 minutes, the dispatcher sends a challenge to the un-
trusted platform. The untrusted platform returns a checksum com-
puted using the correct checksum code. On receiving the response,
the dispatcher sends another challenge. The untrusted platform re-
turns a checksum computed using the adversary’s checksum code,
in response to this challenge. Both the dispatcher and the untrusted
platform measure the time taken to compute the two checksums
using the CPU’srdtsc instruction. The time measured on the un-
trusted platform for the adversary’s checksum computation is the
checksum computation time of the theoretically best adversary.

Figures 12 and 13 show the results of our experiments at the
two physical locations on the LAN segment. Based on the results,
we observe the following points: 1) even the running time of the
theoretically best adversary is greater than the Adversary Detection
Threshold, yielding a false negative rate of 0%; 2) the checksum
computation time shows a very low variance, that we have a fairly
deterministic runtime; 3) we observe some false positives (5 out of
60) at location 2, which we can avoid by better estimating the RTT.

We suggest two methods for RTT estimation. First, the dis-
patcher measures the RTT to the untrusted platform just before it
sends the challenge and assumes that the RTT will not significantly

3A false negative occurs when Pioneer claims that the untrusted platform is uncom-
promised when the untrusted platform is actually compromised.

0 50 100
Time of Measurement [minutes]

48.4

48.6

48.8

49

49.2

49.4

49.6

E
xe

cu
tio

n
T

im
e

[m
s]

Expected Runtime
Expected Runtime and Network RTT (Adversary Detection Threshold)
Legitimate Code’s Runtime
Legitimate Code’s Runtime and Network RTT
Theoretically Best Adversary’s Runtime
Adversary’s Runtime and Network RTT

Figure 12: Results from Location 1.

0 50 100
Time of Measurement [minutes]

48.4

48.6

48.8

49

49.2

49.4

49.6

E
xe

cu
tio

n
T

im
e

[m
s]

Expected Runtime
Expected Runtime and Network RTT (Adversary Detection Threshold)
Legitimate Code’s Runtime
Legitimate Code’s Runtime and Network RTT
Theoretically Best Adversary’s Runtime
Adversary’s Runtime and Network RTT

Figure 13: Result from Location 2.

increase in the few tens of milliseconds between the time it mea-
sures the RTT and the time it receives the checksum packet from
the untrusted platform. Second, the dispatcher can take RTT mea-
surements at coarser time granularity, say every few seconds, and
use these measurements to update its current value of the RTT.

5.4 Discussion

We now discuss virtual-memory-based attacks, issues concerning
the practical deployment of Pioneer, and potential extensions to the
current implementation of Pioneer to achieve better properties.

Implementing the verification function as SMM module. The
System Management Mode (SMM) is a special operating mode
present on all x86 CPUs. Code running in the SMM mode runs
at the highest CPU privilege level. The execution environment pro-
vided by SMM has the following properties that are useful for im-
plementing Pioneer: 1) all interrupts, including the Non-Maskable
Interrupt (NMI) and the System Management Interrupt (SMI), and
all exceptions are disabled by the processor, 2) paging and virtual
memory are disabled in SMM, which precludes virtual-memory-
based attacks, and 3) real-mode style segmentation is used, making
it easier to defend against the segmentation-based memory copy
attack.

Virtual-memory-based attacks. There are two ways in which the
adversary might use virtual memory to attack the verification func-

tion: 1) the adversary could create memory protection exceptions
by manipulating the page table entries and obtain control through
the exception handler, or 2) the adversary could perform a memory
copy attack by loading the instruction and data Translation Looka-
side Buffer (TLB) entries that correspond to the same virtual ad-
dress with different physical addresses. Since we use the stack
to hold checksum pieces during checksum computation and later
replace the exception handlers, the adversary cannot use memory
protection exceptions to gain control.

The adversary can, however, use the CPU TLBs to perform a
memory copy attack. Wurster et al. discuss how the second at-
tack can be implemented on the UltraSparc processor [28]. Their
attack can be adapted to the Intel x86 architecture in the context
of Pioneer as follows: 1) the adversary loads the page table en-
try corresponding to the virtual address of the verification function
with the address of the physical page where the adversary keeps
an unmodified copy of the verification function, 2) the adversary
does data accesses to virtual addresses of the verification function,
thereby loading the its mapping into the CPU’s D-TLB, and 3) the
adversary replaces the page table entry corresponding to the virtual
address of the verification function with the address of the phys-
ical page where the adversary keeps the modified checksum code
is kept. When the CPU starts to execute the adversary’s checksum
code, it will load its I-TLB entry with the mapping the adversary
set up in step 3. Thus, the CPU’s I-TLB and D-TLB will have dif-
ferent physical addresses corresponding to the same virtual address
and the adversary will be able to perform the memory copy attack.

The current implementation of Pioneer does not defend against
this memory copy attack. However, a promising idea to defend
against the attack is as follows. We create virtual address aliases
to the physical pages contaning the verification function so that the
number of aliases is greater than the number of entries in the CPU’s
TLB. Each iteration of the checksum code loads the PC and the data
pointer with two of the virtual address aliases, selected in a pseudo-
random manner. If the checksum loop performs a sufficient number
of iterations so that with high probability all virtual address aliases
are guaranteed to be used then the CPU will eventually evict the
adversary’s entry from the TLB.

The adversary can prevent its entry from being evicted from the
TLB by not using all the virtual address aliases. However, in this
case, the adversary will have to fake the value of the PC and the data
pointer for the unused virtual address aliases. Since each iteration
of the checksum code selects the virtual address aliases with which
to load the PC and the data pointer in a pseudo-random manner, the
adversary will have to check which aliases are used to load the PC
and the data pointer in each iteration of the checksum code. This
will increase the adversary’s checksum computation time.

The TLB-based memory copy attack can also be prevented by
implementing the verification function as an SMM module. Since
the CPU uses physical addresses in SMM and all virtual memory
support is disabled, the memory copy attack that uses the TLBs is
not possible anymore.

Why use Pioneer instead of trusted network boot? In trusted
network boot, the BIOS on a host fetches the boot image from a
trusted server and executes the boot image. In order to provide the
guarantee of verifiable code execution, trusted network boot has to
assume that: 1) the host has indeed rebooted; 2) the correct boot
image has indeed reached the host; and 3) the BIOS will correctly
load and transfer control to the boot image. To guarantee that the
BIOS cannot be modified by the adversary, the BIOS will have to
stored on an immutable storage medium like Read-Only Memory
(ROM). This makes it impossible to update the BIOS without phys-
ically replacing the ROM, should any vulnerability be discovered
in the BIOS code.

Pioneer does not require any code to reside in immutable stor-
age media, thereby making it easy to update. Also, Pioneer pro-
vides the property of verifiable code execution without having to
reboot the untrusted platform, without having to transfer code over
the network and without relying on any unverified software on the
untrusted platform to transfer control to the executable.

MMX and SSE instructions. x86 processors provide support for
Single Instruction Multiple Data (SIMD) instructions in the form
of MMX and SSE technologies [13]. These instructions can simul-
taneously perform the same operation on multiple data items. This
is faster than operating on the data items one at a time. However,
the adversary cannot use the MMX or SSE instructions to speed
up its checksum code, since we design the checksum code to be
non-parallelizable.

Pioneer and TCG. A promising approach for reducing exposure
to network RTT and for achieving a trusted channel to the untrusted
platform is to leverage a Trusted Platform Module (TPM). The
TPM could issue the challenge and time the execution of the check-
sum code and return the signed result and computation time to the
dispatcher. However, this would require that the TPM be an active
device, whereas the current generation of TPMs are passive.

Directly computing checksum over the executable.Why do we
need a hash function? Why can the checksum code not simply
compute the checksum over the executable? While this simpler
approach may work in most cases, an adversary could exploit re-
dundancy in the memory image of the executable to perform data-
dependent optimizations. A simple example is a executable image
that contains a large area initialized to zeros, which allows the ad-
versary to suppress memory reads to that region and also to sup-
press updating the checksum with the memory value read (in case
of add or xor operations).

skinit and senter. AMD’s Pacifica technology has an in-
struction calledskinit , which can verifiably transfer control to
an executable after measuring it [4]. Intel’s LaGrande Technology
(LT) has a similar instruction,senter [12]. Both senter and
skinit also set up an execution environment in which the exe-
cutable that is invoked is guaranteed to execute untampered. These
instructions are used to start-up a Virtual Machine Monitor (VMM)
or a Secure Kernel (SK). Both instructions rely on the TCG load-
time attestation property to guarantee that the SK or the VMM is
uncompromised at start-up. However, due to the vulnerability of
the SHA-1 hash function, the TCG load-time attestation property
is compromised as we describe in Section 1. Hence, there is no
guarantee that the SK or the VMM that is started is not malicious.

Implementing Pioneer on other architectures. We use the x86
architecture as our implementation platform example for the fol-
lowing reasons: 1) since x86 is the most widely deployed archi-
tecture today, our implementation of Pioneer on x86 can imme-
diately be used on many legacy systems; and 2) due to require-
ments of backward compatibility, the x86 is a complex architec-
ture, with a non-orthogonal ISA. Therefore, implementing Pioneer
on the x86 architecture is more challenging than implementing it
on RISC architectures with more orthogonal instruction sets, such
as the MIPS, and the Alpha.

Verifying the timing overhead. Pioneer relies on the execution
time of the checksum code. Therefore, the dispatcher has to know
ahead of time what the correct checksum computation time should
be for the untrusted platform. The checksum computation time de-
pends on the CPU of the untrusted platform. There are two ways
by which the dispatcher can find out the correct checksum com-
putation time: 1) if the dispatcher has access to a trusted platform
having the same CPU as the untrusted platform, or a CPU simulator

for the untrusted platform, it can run experiments to get the correct
execution time; or 2) we can publish the correct execution time for
different CPUs on a trusted web-site.

6 APPLICATIONS

In this section, we first discuss the types of applications that can
leverage Pioneer to achieve security, given the assumptions we make.
Then, we describe the kernel rootkit detector, the sample applica-
tion we have built using Pioneer.

6.1 Potential Security Applications

Pioneer can be applied to build security applications that run over
networks controlled by a single administrative entity. On such
networks, the network administrator could configure the network
switches so that an untrusted host can only communicate with the
dispatcher during the execution of Pioneer. This provides the prop-
erty of message-origin-authentication while eliminating proxy at-
tacks. Examples of networks that can be configured in this man-
ner are corporate networks and cluster computing environments.
On these networks the network administrator often needs to per-
form security-critical administrative tasks on untrusted hosts, such
as installing security patches or detecting malware like viruses and
rootkits. For such applications, the administrator has to obtain the
guarantee that the tasks are executed correctly, even in the pres-
ence of malicious code on the untrusted host. This guarantee can
be obtained through Pioneer.

As an example of how Pioneer could be used, we briefly discuss
secure code updates. To verifiably install a code update, we can
invoke the program that installs the code update using Pioneer. Pi-
oneer can also be used to measure software on an untrusted host
after a update to check if the code update has been successfully
installed.

6.2 Kernel Rootkit Detection

In this section, we describe how we build a kernel rootkit detector
using Pioneer. Our kernel rootkit detector allows a trusted verifier
to detect kernel rootkits that may be installed on an external un-
trusted host without relying on signatures of specific rootkits or on
low-level file system scans. Sailer et al. propose to use the load-
time attestation guarantees provided by a TPM to detect rootkits
when the kernel boots [20]. However, their technique cannot detect
rootkits that do not make changes to the disk image of the kernel
but only infect the in-memory image. Such rootkits do not survive
reboots. Our rootkit detector is capable of detecting both kinds of
rootkits. The only rootkit detection technique we are aware of that
achieves similar properties to ours is Copilot [19]. However, un-
like our rootkit detector, Copilot requires additional hardware in
the form of an add-in PCI card to achieve its guarantees. Hence, it
cannot be used on systems that do not have this PCI card installed.
Also, our rootkit detector runs on the CPU of the untrusted host,
making it immune to the dummy kernel attack that we describe in
Section 7 in the context of Copilot.

Rootkits primer. Rootkits are software installed by an intruder on
a host that allow the intruder to gain privileged access to that host,
while remaining undetected [19, 29]. Rootkits can be classified into
two categories: those that modify the OS kernel, and those that do
not. Of the two, the second category of rootkits can be easily de-
tected. These rootkits typically modify system binaries (e.g., ls, ps,
and netstat) to hide the intruder’s files, processes, network connec-
tions, etc. These rootkits can be detected by a kernel that checks the
integrity of the system binaries against known good copies, e.g., by
computing checksums. There are also tools like Tripwire that can

be used to check the integrity of binaries [1]. These tools are in-
voked from read-only or write-protected media so that the tools do
not get compromised.

As kernel rootkits subvert the kernel, we can no longer trust
the kernel to detect such rootkits. Therefore, Copilot uses special
trusted hardware (a PCI add-on card) to detect kernel rootkits. All
rootkit detectors other than Copilot, including AskStrider [26], Car-
bonite [14] and St. Michael [9], rely on the integrity of one or more
parts of the kernel. A sophisticated attacker can circumvent detec-
tion by compromising the integrity of the rootkit detector. Recently
Wang et al. proposed a method to detect stealth software that try to
hide files [27]. Their approach does not rely on the integrity of the
kernel; however, it only applies when the stealth software makes
modifications to the file system.

Implementation. We implement our rootkit detector on the x8664
version of the Linux kernel that is part of the Fedora Core 3 Linux
distribution. The x8664 version of the Linux kernel reserves the
range of virtual address space above0xffff800000000000 .
The kernel text segment starts at address0xffffffff80100000 .
The kernel text segment contains immutable binary code which
remains static throughout its lifetime. Loadable Kernel Modules
(LKM) occupy virtual addresses from0xffffffff88000000
to 0xfffffffffff00000 .

We build our kernel rootkit detector using a Kernel Measure-
ment Agent (KMA). The KMA hashes the kernel image and sends
the hash values to the verifier. The verifier uses Pioneer to obtain
the guarantee of verifiable code execution of the KMA. Hence, the
verifier knows that the hash values it receives from the untrusted
host were computed correctly.

The KMA runs on the CPU at the kernel privilege level, i.e.,
CPL0; hence, it has access to all the kernel resources (e.g., page
tables, interrupt descriptor tables, jump tables, etc.), and the pro-
cessor state, and can execute privileged instructions. The KMA ob-
tains the virtual address ranges of the kernel over which to compute
the hashes by reading theSystem.mapfile. The following symbols
are of interest to the KMA: 1)text and etext , which indicate
the start and the end of the kernel code segment; 2)sys call ta-
ble which is the kernel system call table; and 3)module list
which is a pointer to the linked list of all loadable kernel modules
(LKM) currently linked into the kernel. When the Kernel Measure-
ment Agent (KMA) is invoked, it performs the following steps:

1. The KMA hashes the kernel code segment betweentextand
etext.

2. The KMA reads kernel version information to check which
LKMs have been loaded and hashes all the LKM code.

3. The KMA checks that the function pointers in the system call
table only refer to the kernel code segment or to the LKM
code. The KMA also verifies that the return address on the
stack points back to the kernel/LKM code segment. The re-
turn address is the point in the kernel to which control returns
after the KMA exits.

4. The KMA returns the following to the verifier: 1) the hash of
the kernel code segment; 2) the kernel version information
and a list indicating which kernel modules have been loaded;
3) the hash of all the LKM code; 4) a success/failure indicator
stating whether the function pointer check has succeeded.

5. The KMA flushes processor caches, restores the register val-
ues, and finally returns to the kernel. The register values and
the return address were saved on the stack when the kernel
called invoked the Pioneer verification function.

We now explain how the verifier verifies the hash values returned
by the untrusted platform. First, because the kernel text is im-
mutable, it suffices for the verifier to compare the hash value of
the kernel code segment to the known good hash value for the cor-
responding kernel version. However, the different hosts may have
different LKMs installed, and so the hash value of the LKM code
can vary. Therefore, the verifier needs to recompute the hash of
the LKM text on the fly according to the list of installed modules
reported by the KMA. The hash value reported by the KMA is then
compared with the one computed by the verifier.

Experimental results. We implemented our rootkit detector on
the Fedora Core 2 Linux distribution, using SHA-1 as the hash
function. The rootkit detector ran every 5 seconds and success-
fully detected adore-ng-0.53, the only publically-known rootkit for
the 2.6 version of the Linux kernel.

Standalone (s) Rootkit Detect. (s) % Overhead
PostMark 52 52.99 1.9
Bunzip2 21.396 21.713 1.5
copy large file 373 385 3.2

Table 1: Overhead of the Pioneer-based rootkit detector

We monitor the performance overhead of running our rootkit de-
tector in the background. We use three representative tasks for mea-
surements: PostMark, bunzip2, and copying a large file. The first
task, PostMark [5], is a file system benchmark that carries out trans-
actions on small files. As a result, PostMark is a combination of I/O
intensive and computationally intensive tasks. We used bunzip2 to
to uncompress the Firefox source code, which is a computationally
intensive task. Finally, we modeled an I/O intensive task by copy-
ing the entire/usr/src/linux directory, which totaled to 1.33
GB, from one harddrive to another. As the table above shows, all
three tasks perform reasonably well in the presence of our rootkit
detector.

Discussion. As with Copilot, one limitation of our approach is
that we do not verify the integrity of data segments or CPU register
values. Therefore, the following types of attacks are still possi-
ble: 1) attacks that do not modify code segments but rely merely
on the injection of malicious data; 2) if the kernel code contains
jump/branch instructions whose target address is not read in from
the verified jump tables, the jump/branch instructions may jump
to some unverified address that contains malicious code. For in-
stance, if the jump address is read from an unverified data segment,
we cannot guarantee that the jump will only reach addresses that
have been verified. Also, if jump/branch target addresses are stored
temporarily in the general purpose registers, it is possible to jump
to an unverified code segment, after the KMA returns to the kernel
since the KMA restores the CPU register values. In conclusion,
Pioneer limits a kernel rootkit to be placed solely in mutable data
segments; it requires any pointer to the rootkit to reside in a mu-
table data segment as well. These properties are similar to what
Copilot achieves.

Our rootkit detection scheme does not provide backward secu-
rity. A malicious kernel can uninstall itself when it receives a Pi-
oneer challenge, and our Pioneer-based rootkit detector cannot de-
tect bad past events. Backward security can be achieved if we com-
bine our approach with schemes that backtrack intrusions through
analyzing system event logs [17].

7 RELATED WORK

In this section, we survey related work that addresses the verifi-
able code execution problem. We also describe the different meth-

ods of code attestation proposed in the literature and discuss how
the software-based code attestation provided by Pioneer is different
from other code attestation techniques.

7.1 Verifiable Code Execution

Two techniques, Cerium [8] and BIND [23], have been proposed.
These use hardware extensions to the execution platform to pro-
vide a remote host with the guarantee of verifiable code execution.
Cerium relies on a physically tamper-resistant CPU with an em-
bedded public-private key pair and aµ-kernel that runs from the
CPU cache. BIND requires that the execution platform has a TPM
chip and CPU architectural enhancements similar to those found in
Intel’s LaGrande Technology (LT) [12] or AMD’s Secure Execu-
tion Mode (SEM) [3] and Pacifica technology [4]. Unlike Pioneer,
neither Cerium nor BIND can be used on legacy computing plat-
forms. As far as we are aware, Pioneer is the only technique that
attempts to provide the verifiable code execution property solely
through software techniques.

7.2 Code Attestation

Code attestation can be broadly classified into hardware-based and
software-based approaches. While the proposed hardware-based
attestation techniques work on general purpose computing systems,
to the best of our knowledge, there exists no software-based attes-
tation technique for general purpose computing platforms.

Hardware-based code attestation. Sailer et al. describe a load-
time attestation technique that relies on the TPM chip standardized
by the Trusted Computing Group [20]. Their technique allows a
remote verifier to verify what software was loaded into the mem-
ory of a platform. However, a malicious peripheral could over-
write code that was just loaded into memory with a DMA-write,
thereby breaking the load-time attestation guarantee. Also, as we
discussed in Section 1, the load-time attestation property provided
by the TCG standard is no longer secure since the collision re-
sistance property of SHA-1 has been compromised. Terra uses a
Trusted Virtual Machine Monitor (TVMM) to partition a tamper-
resistant hardware platform in multiple virtual machines (VM) that
are isolated from each other [11]. CPU-based virtualization and
protection are used to isolate the TVMM from the VMs and the
VMs from each other. Although the authors only discuss load-time
attestation using a TPM, Terra is capable of performing run-time
attestation on the software stack of any of the VMs by asking the
TVMM to take integrity measurements at any time. All the proper-
ties provided by Terra are based on the assumption that the TVMM
is uncompromised when it is started and that it cannot be compro-
mised subsequently. Terra uses the load-time attestation property
provided by TCG to guarantee that the TVMM is uncompromised
at start-up. Since this property of TCG is compromised, none of the
properties of Terra hold. Even if TCG were capable of providing
the load-time attestation property, the TVMM could be compro-
mised at run-time if there are vulnerabilities in its code. In Copilot,
Petroni et al. use an add-in card connected to the PCI bus to per-
form periodic integrity measurements of the in-memory Linux ker-
nel image [19]. These measurements are sent to the trusted verifier
through a dedicated side channel. The verifier uses the measure-
ments to detect unauthorized modifications to the kernel memory
image. The Copilot PCI card cannot access CPU-based state such
as the pointer to the page table and pointers to interrupt and excep-
tion handlers. Without access to such CPU state, it is impossible
for the PCI card to determine exactly what resides in the memory
region that the card measures. The adversary can exploit this lack
of knowledge to hide malicious code from the PCI card. For in-
stance, the PCI card assumes that the Linux kernel code begins at

virtual address 0xc0000000, since it does not have access to the
CPU register that holds the pointer to the page tables. While this
assumption is generally true on 32-bit systems based on the Intel
x86 processor, the adversary can place a correct kernel image start-
ing at address 0xc0000000 while in fact running a malicious kernel
from another memory location. The authors of Copilot were aware
of this attack [6]. It is not possible to prevent this attack without
access to the CPU state. The kernel rootkit detector we build using
Pioneer is able to provide properties equivalent to Copilot without
the need for additional hardware. Further, because our rootkit de-
tector has access to the CPU state, it can determine exactly which
memory locations contain the kernel code and static data. This en-
sures that our rootkit detector measures the running kernel and not
a correct copy masquerading as a running kernel. Also, if the host
running Copilot has an IOMMU, the adversary can re-map the ad-
dresses to perform a data substitution attack. When the PCI card
tries to read a location in the kernel, the IOMMU automatically
redirects the read to a location where the adversary has stored the
correct copy.

Software-based attestation. Genuinity is a technique proposed
by Kennell and Jamieson that explores the problem of detecting
the difference between a simulator-based computer system and an
actual computer system [16]. Genuinity relies on the premise that
simulator-based program execution is bound to be slower because a
simulator has to simulate the CPU architectural state in software, in
addition to simulating the program execution. A special checksum
function computes a checksum over memory, while incorporating
different elements of the architectural state into the checksum. By
the above premise, the checksum function should run slower in
a simulator than on an actual CPU. While this statement is prob-
ably true when the simulator runs on an architecturally different
CPU than the one it is simulating, an adversary having an architec-
turally similar CPU can compute the Genuinity checksum within
the alloted time while maintaining all the necessary architectural
state in software. As an example, in their implementation on the
x86, Kennell and Jamieson propose to use special registers, called
Model Specific Registers (MSR), that hold various pieces of the
architectural state like the cache and TLB miss count. The MSRs
can only be read and written using the specialrdmsr andwrmsr
instructions. We found that these instructions have a long latency
(≈ 300 cycles). An adversary that has an x86 CPU could simu-
late the MSRs in software and still compute the Genuinity check-
sum within the alloted time, even if the CPU has a lower clock
speed than what the adversary claims. Also, Shankar et al. show
weaknesses in the Genuinity approach [22]. SWATT is a technique
proposed by Seshadri et al. that performs attestation on embedded
devices with simple CPU architectures using a software verifica-
tion function [21]. Similar to Pioneer, the verification function is
constructed so that any attempt to tamper with it will increase its
running time. However, SWATT cannot be used in systems with
complex CPUs. Also, since SWATT checks the entire memory, its
running time becomes prohibitive on systems with large memories.

8 CONCLUSIONS AND FUTURE WORK

We present Pioneer, which is a first step towards addressing the
problem of verifiable code execution on untrusted legacy comput-
ing platforms. The current version of Pioneer leaves open research
problems. We need to: 1) deriving a formal proof of the optimality
of the checksum code implementation; 2) proving that an adversary
cannot use mathematical methods to generate a shorter checksum
function that generates the same checksum output when fed with
the same input; 3) deriving a checksum function that is largely CPU

architecture independent, so that it can be easily ported to different
CPU architectures; and 4) increasing the time overhead for differ-
ent attacks, so that it is harder for an adversary to forge the correct
checksum within the expected time. There are also low-level at-
tacks that need to be addressed: 1) the adversary could overclock
the processor, making it run faster; 2) malicious peripherals, a ma-
licious CPU in a multi-processor system or a DMA-based write
could overwrite the executable code image in memory after it is
checked but before it is invoked; and 3) dynamic processor clock-
ing techniques could lead to false positives. We plan to address all
these issues in our future work.

This paper shows an implementation of Pioneer on an Intel Pen-
tium IV Xeon processor based on the Netburst Microarchitecture.
The architectural complexity of Netburst Microarchitecture and the
complexity of the x8664 instruction set architecture make it chal-
lenging to design a checksum code that executes slower when the
adversary tampers with it in any manner. We design a checksum
code that exhausts the issue bandwidth of the Netburst microarchi-
tecture, so that any additional instructions the adversary inserts will
require extra cycles to execute.

Pioneer can be used as a new basic building block to build secu-
rity applications. We have demonstrated one such application, the
kernel rootkit detector, and we propose other potential applications.
We hope these examples motivate other researchers to embrace Pi-
oneer, extend it, and apply it towards building secure systems.

9 ACKNOWLEDGMENTS

We gratefully acknowledge support and feedback of, and fruitful
discussions with William Arbaugh, Mike Burrows, George Cox,
David Durham, David Grawrock, Jon Howell, John Richardson,
Dave Riss, Carlos Rozas, Stefan Savage, Dawn Song, Jesse Walker,
Yi-Min Wang, and our shepherd Emin Gün Sirer. We would also
like to thank the anonymous reviewers for their helpful comments
and suggestions.

REFERENCES

[1] Tripwire. http://sourceforge.net/projects/
tripwire/ .

[2] VMware. http://www.vmware.com/ .
[3] AMD platform for trustworthy computing. InWinHEC, September

2003.
[4] Secure virtual machine architecture reference manual. AMD Corp.,

May 2005.
[5] Network Appliance. Postmark: A new file system benchmark. Avail-

able at http://www.netapp.com/techlibrary/3022.html, 2004.
[6] W. Arbaugh. Personal communication, May 2005.
[7] D. Boggs, A. Baktha, J. Hawkins, D. Marr, J. Miller, P. Roussel,

R. Singhal, B. Toll, and K.S. Venkatraman. The microarchitecture of
the Intel Pentium 4 processor on 90nm technology.Intel Technology
Journal, 8(01), February 2004.

[8] B. Chen and R. Morris. Certifying program execution withsecure pro-
cesors. InProceedings of HotOS IX, 2003.

[9] A. Chuvakin. Ups and downs of unix/linux host-based security solu-
tions.;login: The Magazine of USENIX and SAGE, 28(2), April 2003.

[10] Free Software Foundation. superopt - finds the shortestinstruc-
tion sequence for a given function.http://www.gnu.org/
directory/devel/compilers/superopt.html .

[11] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh.
Terra: A virtual machine-based platform for trusted computing. In
In Proceedings of ACM Symposium on Operating Systems Principles
(SOSP), 2003.

[12] Intel Corp.LaGrande Technology Architectural Overview, September
2003.

[13] Intel Corporation.IA32 Intel Architecture Software Developer’s Man-
ual Vol.1.

[14] K. J. Jones. Loadable Kernel Modules.;login: The Magazine of
USENIX and SAGE, 26(7), November 2001.

[15] R. Joshi, G. Nelson, and K. Randall. Denali: a goal-directed super-
optimizer. InProceedings of ACM Conference on Programming Lan-
guage Design and Implementation (PLDI), pages 304–314, 2002.

[16] R. Kennell and L. Jamieson. Establishing the genuinity of remote
computer systems. InProceedings of USENIX Security Symposium,
August 2003.

[17] S. King and P. Chen. Backtracking intrusions. InProceedings of the
ACM Symposium on Operating Systems Principles (SOSP), pages
223–236, 2003.

[18] A. Klimov and A. Shamir. A new class of invertible mappings.In
CHES ’02: Revised Papers from the 4th International Workshop on
Cryptographic Hardware and Embedded Systems, pages 470–483,
2003.

[19] N. Petroni, T. Fraser, J. Molina, and W. Arbaugh. Copilot - a
coprocessor-based kernel runtime integrity monitor. InProceedings
of USENIX Security Symposium, pages 179–194, 2004.

[20] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and im-
plementation of a TCG-based integrity measurement architecture. In
Proceedings of USENIX Security Symposium, pages 223–238, 2004.

[21] A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla. SWATT:
Software-based attestation for embedded devices. InProceedings of
IEEE Symposium on Security and Privacy, May 2004.

[22] U. Shankar, M. Chew, and J. D. Tygar. Side effects are notsufficient
to authenticate software. InProceedings of USENIX Security Sympo-
sium, pages 89–101, August 2004.

[23] E. Shi, A. Perrig, and L. van Doorn. Bind: A fine-grained attestation
service for secure distributed systems. InProc. of the IEEE Sympo-
sium on Security and Privacy, pages 154–168, 2005.

[24] Trusted Computing Group (TCG). https://www.
trustedcomputinggroup.org/ , 2003.

[25] Xiaoyun Wang, Yiqun Yin, and Hongbo Yu. Finding collisions in the
full sha-1. InProceedings of Crypto, August 2005.

[26] Y. Wang, R. Roussev, C. Verbowski, A. Johnson, and D. Ladd.
AskStrider: What has changed on my machine lately? Technical Re-
port MSR-TR-2004-03, Microsoft Research, 2004.

[27] Y. Wang, B. Vo, R. Roussev, C. Verbowski, and A. Johnson.Strider
GhostBuster: Why it’s a bad idea for stealth software to hide files.
Technical Report MSR-TR-2004-71, Microsoft Research, 2004.

[28] G. Wurster, P. van Oorschot, and A. Somayaji. A generic attack on
checksumming-based software tamper resistance. InProceedings of
IEEE Symposium on Security and Privacy, May 2005.

[29] D. Zovi. Kernel rootkits. http://www.cs.unm.edu/
˜ghandi/lkr.pdf .

