
1

PiP-X: Online feedback motion planning/replanning
in dynamic environments using invariant funnels

Mohamed Khalid M Jaffar and Michael Otte

Abstract—Computing kinodynamically feasible motion plans
and repairing them on-the-fly as the environment changes is
a challenging, yet relevant problem in robot-navigation. We
propose a novel online single-query sampling-based motion re-
planning algorithm − PiP-X, using finite-time invariant sets −
“funnels”. We combine concepts from sampling-based methods,
nonlinear systems analysis and control theory to create a single
framework that enables feedback motion re-planning for any
general nonlinear dynamical system in dynamic workspaces.

A volumetric funnel-graph is constructed using sampling-based
methods, and an optimal funnel-path from robot configuration
to a desired goal region is then determined by computing the
shortest-path subtree in it. Analysing and formally quantifying
the stability of trajectories using Lyapunov level-set theory
ensures kinodynamic feasibility and guaranteed set-invariance
of the solution-paths. The use of incremental search techniques
and a pre-computed library of motion-primitives ensure that our
method can be used for quick online rewiring of controllable
motion plans in densely cluttered and dynamic environments.

We represent traversability and sequencibility of trajectories
together in the form of an augmented directed-graph, helping
us leverage discrete graph-based replanning algorithms to
efficiently recompute feasible and controllable motion plans
that are volumetric in nature. We validate our approach
on a simulated 6DOF quadrotor platform in a variety of
scenarios within a maze and random forest environment. From
repeated experiments, we analyse the performance in terms of
algorithm-success and length of traversed-trajectory.

Index Terms—Feedback motion planning, online replanning,
sampling-based algorithms, incremental graph-search, nonlinear
systems, invariant set theory, motion primitives

I. INTRODUCTION

THE ability to replan is essential whenever a robot must
explore an unknown or changing environment while

using a limited sensor radius. In scenarios where the operating
workspace has fast-moving obstacles or is densely cluttered
with obstacles, a motion-plan must be updated quickly and on-
the-fly. Hence, there is a need for fast replanning algorithms.
As the obstacle-space changes, the valid state-space also
changes, and it is computationally expensive to rebuild the
motion plans in such non-convex spaces. Hence, numerical
methods such as sampling-based planning (and re-planning)
techniques are often used in dynamic and high-dimensional
spaces. However, we still require theoretical control techniques
to ensure kinodynamic feasibility and trackability of generated
motion plans. This dual requirement of motion planning and

This work is supported by the Naval Air Systems Command (NAVAIR)
under the grant N00421-21-1-0001.

The authors are affiliated with the Department of Aerospace Engineering,
University of Maryland, College Park, MD 20742, USA. Email: {khalid26,
otte}@umd.edu

Fig. 1: Online funnel-based re-planning algorithm, PiP-X− (a)
Motion plan, a sequence of finite-time invariant sets − funnels,
each “dropping” into the subsequent funnel, finally into the
goal region. (b) Rewiring of the funnel-path when changes
in the environment are sensed (c) Underlying search-graph
with funnel-edges (d) Trajectory of the robot lies completely
inside the traversed funnel-path (e) Analysing sequencibility
of funnels (f) Encoding the information of traversability (solid
motion-edges) and compossibility (dashed continuity-edges) in
an augmented graph to enable quick and efficient graph-based
re-planning. The solution path is B2−A2−A1−G1

robot control is considered in tandem by recent literature in
feedback motion planning.

While brute-force replanning—planning from scratch when-

ar
X

iv
:2

20
2.

00
77

2v
1

 [
cs

.R
O

]
 1

 F
eb

 2
02

2

2

ever the environment changes—may work for simple systems,
the computational complexity of doing so is often impractical,
especially for robots that must react quickly to new informa-
tion about the changes in the environment. It is much more
efficient to reuse the valid portions of previous plans, repairing
only the invalid parts to respect the new changes. Incremental
search methods which utilise information up to the current
iteration to plan/replan in the future can be adapted to achieve
quick replanning. This paper presents a novel sampling-based
online motion re-planning algorithm using verified trajectories
a.k.a. funnels; our work utilises a novel graph representation
for a network of funnels that allows the use of incremental
graph search for replanning on-the-fly.

Our work extends sampling-based replanners to robust kin-
odynamic settings and dynamic environments. Using system
analysis and invariant set theory, our approach computes
dynamically feasible and verified trajectories with formal
stability guarantees. The use of sampling techniques enables
our algorithm to be computationally tractable for higher di-
mensional systems and configuration spaces. Additionally, the
method is capable of using trajectory libraries to speedup
online computation. Hence, our kinodynamically-feasible, on-
line re-planning method finds relevance in practical scenarios
such as safely navigating through dynamic environments. The
novelties of our algorithm are summarized as follows,

• Feedback motion re-planning with funnels, using
sampling-based techniques and incremental graph-search

• A novel approach to compute motion plans with formal
invariance guarantees for any nonlinear non-holonomic
robot-system, that can be feasibly tracked by the robot

• Representing robot traversability and compossibility of
funnels as an augmented bipartite graph, enabling the
use of discrete graph-search methods to quickly compute
kinodynamically-feasible safe motion-plans on-the-fly

• Ability to use a pre-computed library of motion primitives
with guaranteed regions-of-invariance for quick online re-
planning

We believe sampling-based planning using funnels is elegant
due to its set-invariance, and use of a limited number of
volumetric verified-trajectories to probabilistically cover the
configuration space. It can also serve as a bridge between
discrete numerical methods (path-planning algorithms) and
theoretical analysis (system analysis and control design). We
can reconcile the two sub-blocks in a robot-autonomy stack—
motion planner and controller—using funnels, thus addressing
feedback motion re-planning. In essence, we get a planning
algorithm that respects the closed-loop dynamics of the robot,
computes the minimum-cost path to the goal region, and also
efficiently replans around dynamic obstacles.

The authors believe this is the first work to propose tech-
niques for funnel-based motion re-planning using incremental
graph-search. It sets the foundations for feedback motion re-
planning on-the-fly by providing a new form of augmented
volumetric search-graph that is compatible with sampling-
based techniques and invariant set analysis. It can additionally
provide computation speed-ups using a funnel library. The
authors stress that we are not suggesting an improved way to

compute funnels, but rather a new technique of using existing
efficient methods of funnel computation to motion plan/replan
for any general nonlinear robot-system in dynamic spaces.

A. Statement of Contributions

The technical contributions of our work are three-fold,

1) PiP-X1 − Online single-query sampling-based feedback
motion re-planning algorithm using funnels.

2) A novel technique to represent funnel-compossibility
using a directed graph embedded within the planning
graph, resulting in an augmented bipartite search-graph.

3) Implicitly addressing the two-point boundary value prob-
lem (TP-BVP) during graph-rewiring by using the sys-
tem’s stability analysis and trajectory sequencibility.

B. Outline

The remainder of this paper is structured as follows: Sec-
tion II outlines the related work, and Section III introduces the
notation while providing the necessary theoretical background.
Section IV formally states our problem definition. Our ap-
proach is described in Section V and validated in Section VI.
Finally, we state our conclusions in Section VII.

II. RELATED WORK

PiP-X builds on existing literature in the fields of feedback
motion planning, sampling-based techniques, and online re-
planning in dynamic environments. It differs from previous
work in that it is the first online feedback motion re-planning
algorithm using funnels.

A. Sampling-based kinodynamic motion planning

Geometric sampling-based motion planners such as prob-
abilistic roadmaps (PRM) [1] and rapidly exploring random
trees (RRT) [2] are relevant for planning in high-dimensional
dynamical systems. Karaman and Frazzoli [3] propose RRT∗,
and provide theoretical proofs of asymptotic optimality. RRT#

algorithm presented in [4] improves the convergence rate,
making it suitable for online implementation.

In order to address motion planning for differentially con-
strained robots, numerous researchers have extended such
geometric planners to kinodynamic systems [5] [6]. Such
algorithms “steer” the vehicle by randomly sampling control
inputs and forward simulating the trajectory based on the dy-
namics [7] [8]. Some researchers formulate an optimal control
problem with the trajectory given by the geometric planner,
solved using shooting methods [9] or closed-form analytical
solutions [10]. Another popular approach is to smooth the
path given by geometric planners through splines or trajectory
optimisation [11] and track it using feedback controllers such
as PID or receding-horizon controller [12].

1PiP-X stands for Planning/replanning in Pipes in dynamic or initially
unknown environments

3

B. Motion replanning in dynamic environments

Earlier work on re-planning − D∗ [13], LPA∗ [14], D∗Lite
[15] are based on incremental, heuristic-guided shortest-path
repairs on a discrete grid embedded in the robot’s workspace.
Such discretization assumes a constant resolution, requires ad-
ditional pre-processing, or post-processing to achieve kinody-
namic feasibility and/or controllability, and uses data structures
that tend to scale exponentially with the dimensions of the
system. Nevertheless, they provide a strong algorithmic foun-
dation for developing quick, efficient re-planning algorithms
that are useful in cases such as geometric path planning, where
robot’s kinematics, dynamics, or control can be ignored.

Previous work on sampling based replanning focused on
the feasibility problem − ERRT [16], DRRT [17] and multi-
partite RRT [18], completely pruning the edges in collision
and attempting to rejoin the disconnected branches to the
rooted tree. RRTX [19] was the first asymptotically optimal
sampling-based re-planning algorithm. It rewires the shortest-
path subtree from goal to exclude tree nodes and edges that are
in collision, similar to D∗Lite. The underlying search graph—
built iteratively through sampling and rewiring-cascade step—
ensures quick replanning and is well-suited for re-planning
on-the-fly. Another technique is to resample configurations
based on heuristics [20] and leverage the rewiring step from
RRT∗to locally repair the solution branch around newly-sensed
obstacles [21] [22].

Completeness and optimality guarantees have been achieved
for geometric path re-planning, but incorporating robot dy-
namics without violating these guarantees remains an active
area of research. Specifically, most of the optimal sampling-
based and re-planning algorithms require solving the two-
point boundary-value problem (TPBVP) which is generally
difficult for non-holonomic robots—limiting their practical
applicability. Some techniques have been proposed to solve
without using two-point BVP [23], achieving near-optimality.
However, most of the works consider simple or linearised
dynamics without considering disturbances and unmodelled
effects. Solving the intrinsic TPBVP for an arbitrary nonlinear
system remains challenging and computationally intractable
for online implementation.

C. Funnel-based motion planning

Historically, robot-planning stacks have a hierarchical struc-
ture: the high-level path planner computes an open-loop tra-
jectory and a low-level controller stabilises and tracks the
trajectory. This decoupled approach is limited in practice
because controller tracking errors and actuator saturations or
uncertainties might render the planned path infeasible to track.
Tracking errors between the planned and actual trajectories
can lead to critical failures such as collisions with obstacles.
These shortcomings are addressed through feedback motion
planning, in which the motion planner explicitly considers
the stabilising feedback controller to optimise planning for
dynamical continuous systems. Mason et al. [24] introduced a
metaphor, “funnel”, for locally stabilised and verified trajecto-
ries. An illustration of sequentially composed funnels reaching

Fig. 2: A sample funnel − finite-time backward-reachable
invariant set to a compact region of desired final states, Xf

a goal region, similar to Fig. 1-a, presented in [25] sparked the
motivation to use such funnels for feedback motion planning.

Tedrake et al. [26] popularised the notion of LQR-trees−
an algorithm that covers the state-space using a tree of time-
varying trajectories, locally stabilised by an LQR controller
and verified by Lyapunov level-set theory. [27] presents a
detailed approach on how to compute these regions of finite-
time invariance using Sum-of-Squares (SoS) programming and
bilinear alternations. However, these methods are computation-
ally intensive and are not suitable for scenarios in which the
obstacles are not known a priori. Majumdar et al. [28] compute
the funnels offline and use them to plan online for flying
a glider through a dense setting. Similar work by the same
research group leverages these concepts to develop control
algorithms for UAV-perching [29], double pendulum [30], and
a cart-pole [31]. Funnel-based motion planning for a robotic
arm using adaptive feedback control is presented in [32].

D. Other related work

In parallel to such Lyapunov analysis, the controls commu-
nity has proposed reachability set-based trajectory design [33]
[34]. FaSTrack [35] proposes an adversarial game-theoretical
approach to generate worst-case tracking error bounds around
trajectories using Hamilton-Jacobi reachability analysis. [36]
uses contraction theory and convex optimisation to compute
invariant-tubes around trajectories and plan using them. Other
researchers also provide ways to compute stabilised and ver-
ified trajectories to be used with any motion-planner - using
direct transcription [37], and funnel generator functions [38].

Our research extends previous work in funnel-based motion
planning to on-the-fly re-planning. We propose a novel ap-
proach to represent funnels and compossibility using graphs,
helping us leverage graph-based replanning algorithms to
quickly rewire the search tree. Through this, we are able
to recast the challenging problem of feedback motion re-
planning for non-trivial systems into a geometric one, making
it tractable for online planning. Specifically, our work focuses
on generating kinodynamically feasible motion plans/replans
for higher-order nonlinear systems using backward reachable
sets, implicitly solving the two-point boundary value problem.

4

III. PRELIMINARIES

Our approach combines concepts from invariant set anal-
ysis for dynamical systems, design of a library of verified
motion primitives, and graph-based replanning techniques.
This section briefly provides the requisite background while
introducing the notation that would be used in the rest of the
paper.

A. Invariant Set Theory

The notion of region of attraction of asymptotically stable
fixed points is extended to certifying time-varying trajectories.
Such regions of finite-time invariance around a trajectory
are referred to as “funnels” [27]. Considering a closed-loop
nonlinear system,

ẋ(t) = f(t,x(t)) (1)

Where state, x ∈ Rn and f is Lipschitz continuous in x and
piecewise continuous in t. This guarantees global existence
and uniqueness of a solution [39]. Considering a finite time
interval, [t0, tf], a funnel is formally defined as,

Definition 1. Funnel - A set, F ⊆ [t0, tf]×Rn, such that for
each (τ,xτ) ∈ F , τ ∈ [t0, tf], the solution to Eq. (1), x(t),
with initial condition x(τ) = xτ , lies entirely within F till
final time, i.e. (t,x(t)) ∈ F ∀ t ∈ [τ, tf]

Intuitively, if the closed-loop system starts within the funnel,
then the system states evolving due to Eq. (1) remain within
the funnel at all time instances until the final time. We
leverage tools from Lyapunov theory to compute bounded,
inner-approximations of the funnel. The compact level-sets of
a Lyapunov function, V (t,x), satisfy the conditions of positive
invariance [40],

B(t) = {x | 0 ≤ V (t,x) ≤ ρ(t)} (2)

As noted in [27], under certain mild assumptions, it is suf-
ficient to analyse the boundary of the level sets, ∂B(t) and
the invariance conditions can be reformulated in terms of ρ(t)
such as,

V (t,x) = ρ(t) =⇒ V̇ (t,x) ≤ ρ̇(t)

V̇ (t,x) =
∂V (t,x)

∂t
+
∂V (t,x)

∂x
f(t,x(t))

(3)

In other words, with respect to time, the Lyapunov function at
the boundary, ∂B(t) should decrease faster than the level set,
ρ(t) for invariance. Then the set defined as follows, satisfying
Eq. (3) is a funnel [29],

F = {(t,B(t)) | t ∈ [t0, tf]} (4)

In our case, we are interested in computing backward-
reachable sets about a finite-time trajectory, to a compact
region of state-space. Given a bounded space of desired final-
states, Xf ⊆ Rn, we consider funnels that end within the
region, i.e. (tf ,x(tf)) ∈ F =⇒ x(tf) ∈ Xf , or alternatively,
B(tf) ⊆ Xf . A sample funnel with its parts labelled can be
found in Fig. 2.

We wish to maximise the volume of the funnel that flows
into the sub-goal region, Xf using tools from Lyapunov

Fig. 3: Compossibility of funnels from the library illustrating
shifts, Ψc(.) along cyclic coordinates (invariant dynamics).
(F1, F3) is motion-plan compossible, whereas (F1, F2) is not
− i.e. outlet of F1 is completely contained within the inlet of
F3 after an appropriate shift operation, Ψc3

analysis and convex optimisation. The funnel-volume is as
defined in [27]. Section V-D talks about how to compute
such maximum volume funnels for systems with piecewise
polynomial dynamics, using Sum-of-Squares (SoS) relaxation
to solve for a class of quadratic Lyapunov functions.

B. Verified Trajectory Libraries

The idea of saving a pre-computed library of motion primi-
tives for online planning has seen considerable research in the
past. An optimisation-based approach to design the library,
abstracting the information and sequence of trajectories is
provided in [41]. Maneuver Automaton [42] discusses the rel-
evant properties of trajectory libraries required for sequencing,
providing a theoretical foundation.

The condition for sequencing trajectories presented by [25]
can be extended to funnels by analysing the compact invariant
sets satisfying Eq. (3), B(t) at the final and initial time. An
ordered pair of funnels, (Fi, Fj) is sequentially compossible
if Bi(tfi) ⊆ Bj(t0j). However, this is often a strict condition,
and is not necessary for composing motion plans. In order to
analyse the sequencibility of trajectories for motion planning,
we decompose the state vector into cyclic and non-cyclic
states, x =

[
xTc xTnc

]T
. Cyclic states are defined as the

coordinates to which the open-loop dynamics of a Lagrangian

5

system, ẋ = f ′(t,x,u) are invariant, or alternatively, the
dynamics depend only on the non-cyclic states,

ẋ(t) = f ′(t,xnc(t),u(t)) (5)

For example, in a 2D disc robot, position is the cyclic
coordinates, whereas velocity would be the non-cyclic counter-
part. It is sufficient to verify whether the regions-of-invariance
projected onto a subspace formed by the non-cyclic state
coordinates are sequentially compossible [43]. One can shift
the funnel along the cyclic coordinates so as to contain the
outlet of the previous funnel, as illustrated in Fig. 3.

Definition 2. A funnel-pair, (Fi, Fj) is said to be motion-plan
compossible if and only if

PSnc(Bi(tfi)) ⊆ PSnc(Bj(t0j)) (6)

where PSnc(.) is the projection operator from the state-space
onto the subspace formed by non-cyclic coordinates. In addi-
tion to posing a less strict condition, the notion of motion-plan
compossibility plays a significant role in designing the funnel
library − one can use a finite number of motion primitives to
cover an infinite vector space of cyclic coordinates by shifting
the trajectories appropriately.

For example, during online planning in a UAV, it suffices to
check whether the linear and angular velocities at the start of a
trajectory match with the current velocities. The position and
attitude (cyclic coordinates) of the funnel can be shifted to the
current pose of the UAV. The various notions of compossibility
is discussed in detail in [28], providing methods to check the
condition in Eq. (6) using semi-definite programming.

C. Discrete graph replanning

Traditionally, path planners make extensive use of graphs to
represent the configuration space C, and deploy various search
techniques to search for a feasible or an optimal path through
the graph. So, graphs serve a dual purpose of modelling the
topology and traversability of C-space, and searching for a
solution path through it.

Graphs, in general, are a mathematical tool to model re-
lations between a group of objects. A graph is defined by a
set of vertices and edges, formally denoted as G = (V,E),
where V is the set of nodes and set of edges, E ⊆ {(v, w) |
v, w ∈ V, v 6= w}. In typical graph-based and sampling-based
motion planning algorithms, vertices and edges represent con-
figurations and trajectories, respectively. In contrast, in this
paper, we use graphs to represent a network of funnels in a
way that respects their volumetric nature and compossibility
constraints, Eq. (6).

Most search algorithms build a connected acyclic subgraph
(tree) within the graph, such that each vertex has one, and
only one, parent. A path from given start to the goal is readily
found by backtracking parent pointers starting from the goal
or start depending on the search-direction. Discrete-planners
like Dijsktra or A* find an optimal path with respect to a user-
defined cost function. The edge costs satisfy the property of a
distance metric,

Definition 3. Distance metric in a set, V , is a function
dM : V × V → R+, to the set of non-negative real numbers.
For v1, v2, v3 ∈ V , the distance metric satisfies the following
properties,

1) Non-negativity: dM (v1, v2) > 0 ∀ v1 6= v2
2) Identity of indiscernibles: dM (v1, v2) = 0 iff v1 = v2
3) Triangle inequality: dM (v1, v2) + dM (v2, v3) ≥

dM (v1, v3)

Given an edge, e = (v, w) ∈ E, a suitable distance
metric c(v, w) represents the cost to move from vertex v to
vertex w. D∗ and LPA∗ are discrete graph-based replanning
algorithms that repair the shortest path-to-goal as edge-costs
change. Such incremental search techniques reuse all valid
current information to improve the solution path in the next
iteration, resulting in a faster replanning speed than algorithms
that replan from scratch.

D∗Lite algorithm continually and efficiently repairs the
minimum-cost path from robot to goal, despite changing edge-
weights while the robot traverses the path. Our algorithm
uses a similar idea to maintain a shortest-path reverse-tree of
funnels rooted at the goal region. For each node, the algorithm
maintains an estimate of cost-to-goal value, g(v), defined as
the sum of cost of all edges along the path from node v to
the goal, through the graph. In our work, the cost of a funnel-
edge is given by the length of the nominal trajectory within
the funnel. Additionally, the algorithm computes an lmc value
(one-step lookahead minimum cost) for all nodes, defined as,

lmc(v) = min
v′∈N+

{c(v, v′) + g(v′)} (7)

Where N+(v) is the set of out-neighbors of vertex, v. For
e = (v, w) ∈ E, w and e are said to be the out-neighbor and
out-edge of v, respectively. Similarly, v and e are referred to
as the in-neighbor and in-edge of w, respectively. Based on the
two values, g and lmc, we determine whether changes have
occurred in the shortest path to the goal: lmc is better informed
because it gets updated because of changes in out-neighbors’
cost-to-goal. The key idea of D∗Lite can be explained as,

1) g(v) = lmc(v) =⇒ v is consistent → no changes to
shortest path from v to goal

2) g(v) < lmc(v) =⇒ v is under-consistent → cost
has increased, and we have to repair the entire (reverse)
subtree rooted at v

3) g(v) > lmc(v) =⇒ v is over-consistent → a shorter
path exists, update the parent and cost-to-goal of v and
propagate this cost-change information to its in-neighbors

In addition to the incremental search, the algorithm uses
heuristics to focus the reverse-search to the robot-node.

Definition 4. Heuristic value, h : V → R+ is a non-negative
estimate of the cost from start to a node satisfying

1) h(v) ≥ 0 ∀ v 6= vstart, h(vstart) = 0
2) Triangle inequality: h(v) ≤ h(v′) + c(v, v′) ∀ v, v′ ∈ V
3) Admissibility: h(v) ≤ h∗(v) ∀ v ∈ V , where

h∗(v) is the optimal cost-from-start value

We do not repair all the nodes after every edge-cost change,
instead only repair promising nodes that have the “potential”

6

to lie in the robot’s shortest path to goal, determined using g,
lmc and h values as in Eq. (8). A priority queue is utilised
to maintain an order in which nodes need to be repaired. The
inconsistent nodes, i.e. g(v) 6= lmc(v), are pushed into the
minimum priority queue based on the following key,

key(v) = [min{g(v), lmc(v)}+ hstart(v),

min{g(v), lmc(v)}]
(8)

In our work, graph-vertices represent regions in state-
space− inlet/outlet regions, and edges represent funnels “flow-
ing” from inlets to outlets. We represent both, traversability
and compossibility, using a directed graph and implement
incremental search methods to calculate the shortest path
from robot to the goal, and recalculate it as the environment
changes. This ensures there exists a safe, controllable trajec-
tory starting from the initial state in an inlet-node to the final
state in an outlet-node.

IV. PROBLEM FORMULATION

For a Lagrangian robot system with state, x = (q,v) ∈
S ⊆ R2d, where q ∈ C ⊆ Rd is position, v ∈ Rd represents
the velocities and d ∈ N is the dimension of the configuration
space, C, the dynamics are given by,

q̇ = v v̇ = f(q,v,u) (9)

where u ∈ U ⊆ Rm is the control-input to the robot system,
and f representing the system dynamics is locally Lipschitz
continuous.

Assumption 1. For a compact set of desired configurations,
Xdes ⊆ C, there exists a state-feedback control policy, u :
[t0, tf] → U , which when input to the system (9), starting
at x(t0) = x0, ensures q(tf) ∈ Xdes, for some finite time
tf ≥ 0.

We formally quantify the tracking or stabilising performance
of this assumed controller by computing inner-approximations
of backward-reachable invariant sets around the nominal tra-
jectory, as described in Section V-D.

Consider a robot that operates in workspace, W ⊆ C ⊆ Rd,
with finite number of obstacles having locally Lipschitz con-
tinuous boundaries, occupying a subspace, O ⊂ W . Corre-
spondingly, let Cobs be the open subset of configurations in
which the robot is in-collision. Cfree = C \ Cobs is the closed
subset of C-space, in which the robot can “safely” operate
without colliding with obstacles.

Definition 5. Funnel-edge - Given a compact set, Xw ⊆ C
centered around w ∈ C, an initial configuration, v ∈ C and
finite time interval, [t0, tf] funnel-edge φ(v, w) ⊆ C is the
projection of maximum-volume funnel, F satisfying (2)-(4),
such that v ∈ PSC (B(t0)) and PSC (B(tf)) ⊆ Xw. A funnel-
edge is said to be valid, if and only if PCW(φ(v, w)) ∩ O =
∅. The cost of the funnel-edge is given by the length of the
nominal trajectory, x0(t) projected down to C-space, q0(t)

cφ(v, w) =

∫ tf

t0

ds(t) (10)

where ds = ‖dq0‖, q0 satisfies (9), and ‖·‖ represents the
Euclidean norm. PAB (.) is the projection operator from a space
A to a lower dimensional subspace, B.

It is worth mentioning that the defined cost function (10)
satisfies the properties in (3), and hence is a distance metric.
Since a valid funnel-edge does not intersect with the obstacle-
set, the trajectory contained within it due to set-invariance, will
not be in collision with obstacles. Thus, q(t) ∈ φvalid(.) ⇔
q(t) ∈ Cfree for t0 ≤ t ≤ tf .

Definition 6. Funnel path - For a configuration, q1 ∈ Cfree
and a compact set, X2 ⊆ Cfree, funnel-path, π(q1,X2) is a
finite sequence of valid funnel-edges with underlying motion-
plan compossibility, i.e. π(q1,X2) = {φ1, φ2, . . . φn}, such
that q1 ∈ PSC (Bφ1

(t01)) and PSC (Bφn
(tfn)) ⊆ X2. The cost of

the funnel path is defined,

cπ(q1,X2) =

n∑
i=1

cφi
(11)

Problem 1. Online motion planning - Given Cfree, obstacle
space, O(t), and a goal region, Xgoal ⊆ Cfree for a robot start-
ing at a configuration, qrobot(0) = qstart ∈ Cfree, calculate the
optimal funnel path, π∗(qrobot(t),Xgoal), move the robot by
applying a feedback control policy, u : (x,x0, t) → U and
keep updating π∗ until qrobot(t) ∈ Xgoal

π∗(qrobot(t),Xgoal) = arg min
π(qrobot(t),Xgoal)

cπ(qrobot(t),Xgoal)

A dynamic environment has its obstacle set changing
randomly with time and/or with robot position, ∆O(t) =
s(t, qrobot(t)). An environment can be modelled as static if
h is known a priori or can be deterministically computed. A
trivial case of static environment is ∆O(t) ≡ ∅. We consider
replanning in dynamic environments, where ∆O(t) is neither
known a priori nor possible to predict.

Problem 2. Motion replanning - Assuming that a robot
has the ability to sense obstacle changes, ∆O(t), continually
recompute π∗(qrobot(t),Xgoal) until qrobot(t) ∈ Xgoal.

We propose techniques and algorithms to plan/replan
minimum-cost funnel-paths on-the-fly in real-time. The funnel-
path is a sequence of maneuvers with formal guarantees
of invariance, associated with state-feedback tracking control
policies. The motion plan/replan with invariant sets and control
policies ensures that the robot trajectory lies within the funnel
path, avoiding dynamic obstacles and ultimately reaching the
goal region.

V. APPROACH
This section details the various components of our method:

the pre-processing stage of computing backward-reachable
invariant sets and designing the funnel library, and the online
phase of the motion re-planning algorithm, PiP-X.

A. Outline

This subsection contains a brief high-level outline of our en-
tire approach, which involves: invariant set analysis, designing

7

Fig. 4: Overview of PiP-X algorithm: consists of an offline stage of dynamical system analysis, and an online phase of
sampling-based graph construction and incremental re-planning in dynamic environments

a funnel library, and the online feedback motion re-planning
using an augmented directed graph. Each part is discussed in
greater detail in its own subsection. As illustrated in Fig. 4,
our method has an offline stage of nonlinear system analysis
using Lyapunov theory, and an online phase of sampling-based
motion re-planning using incremental graph-search. Given the
mission profile, we design the funnel library as described
in Section V-E. Design considerations include description of
cyclic/non-cyclic coordinates of the state-space for funnel com-
possibility, C-space topology to ensure probabilistic coverage,
and desired resolution of motion-plan.

We compute backward-reachable invariant sets, detailed in
Section V-D, using Lyapunov theory. The system’s equations
of motion along with the state-feedback control law are
approximated to polynomial dynamics about the nominal tra-
jectory using Taylor-series expansion of order greater than 1.
We find that such a bounded polynomial approximation offers
a conservative estimate, i.e. it always under-estimates the
inner-approximations of backward-reachable sets—a condition
sufficient for our re-planning algorithm. Given an initial state,
a compact set of desired final-states and a finite-time horizon,
we calculate the certified region of invariance characterised by
Lyapunov level-sets centered around the nominal-trajectory.
Due to the computational complexity of nonlinear system
analysis, we pre-construct a library of verified trajectories with
various combinations of initial and final states, to be used
during the online-phase of feedback motion re-planning.

A graph representing a network (or roadmap) of funnel-
connectivity is incrementally built using sampling methods
(RRG), and motion plans/replans are computed through it.
The graph embedded in the C-space is constructed based on
the aforementioned system analysis in the higher dimensional
state-space. The graph-edges represent funnels, and vertices
represent inlet or outlet regions in state-space, both projected
down to the C-space. We analyse the motion-plan compossi-
bility (Definition 2) of funnel-pairs and additionally include
that information in the form of an augmented search graph
(see Fig. 5 and Section V-B). With this graph we compute
a shortest-path subtree of funnels, rooted at the goal region
using an approach similar to one introduced in D∗Lite [15].

Using graph-based replanning methods, motion plans are

quickly recomputed in the event of changes in obstacle-space,
∆O, either due to robot sensing new obstacles or the obstacles
being dynamic themselves. The funnel-path to goal region
and the corresponding sequence of control-inputs are input
to the robot, with state-observer and obstacle-sensor closing
the feedback-loop. Section V-C describes our feedback motion
planning/replanning algorithm in-depth.

From Fig. 6, it is worth noticing that the funnels computed
based on Lyapunov theory offer a sufficient but not a necessary
condition for invariance. Trajectories starting inside the funnel
will remain in the funnel for the entire finite time-horizon.
However, trajectories starting outside the funnel may or may
not terminate within the defined goal region. Nevertheless,
this analysis provides formal guarantees about robustness to
set of initial conditions and system perturbations, pertinent in
sampling-based motion planning/replanning of kinodynamic
systems.

B. Notes on augmented search-graph

We represent the network of funnels using a directed
graph augmented with the additional information of funnel-
compossibility (see Fig. 5). Such an augmented graph rep-
resentation enables the use of incremental graph-replanning
techniques to quickly rewire funnel-paths (Definition 6) to
the goal region. Our method essentially constructs “links”
between regions of state-space with funnels that have an
implicit notion of time. Traversability of the robot system and
sequencibility of trajectories is represented through motion-
edges and continuity edges, respectively in the augmented
graph G. The edge-set of this graph consists of motion-edges
and continuity-edges, E = Em ∪ Ec. The graph-vertex is a
tuple consisting of the configuration and the funnel-edge, v −
q f . The composite nodes exhibit certain relations amongst

the node-set V , summarised as,
• q f1 & q f2 − Sharing the same first element

(configuration) implies there will be a directed zero-cost
continuity edge, ec between the two composite nodes, if
and only if (f1, f2) is motion-plan compossible.

• q1 f & q2 f − Represents the case of two
vertices sharing a funnel-edge, f . Hence, by default

8

Fig. 5: (a) Search funnels existing in the R+ × Rn (b) Augmented search graph representing planning in C-space with
compossibility information. Solid edges are finite-cost motion-edges representing traversability, dashed-edges are zero-cost
continuity-edges encoding compossibility information − whether trajectories “flow” into the subsequent funnel (c) Conventional
search graph used by typical tree/graph-based motion-planners

a motion-edge, em exists, having a cost as defined in
Eq. (10)

• q1 f1 & q2 f2 − These nodes do not have a
common entry. In such cases, there will be no edge
between the 2 composite-nodes.

It is worth mentioning that (dashed) continuity-edges are
zero-cost and have no bearing on the cost of the solution
path to goal or the optimality guaranteed by the graph-search
algorithm. As illustrated in Fig. 5-c, when nodes with the same
configuration (first element of the tuple) are grouped together
into one super-node result in a search-graph with just (solid)
motion-edges, usually used by typical path-planners.

As observed in Fig. 5-b, there are two types of graph
vertices − inlet-nodes and outlet-nodes, V = {VI , VO}. Inlet-
nodes like a 1 have one, and only one, solid out-edge −
might have one or more dashed in-edges. Outlet nodes have
one, and only one, solid in-edge, and one or more dashed out-
edges, e.g. a 4 . For any node, the list of in-edges will have
either dashed edges or one solid edge. The same is true for
out-edges.

With these properties and observations, the authors would
like to point out that the augmented graph is indeed bipartite
− disjoint sets of inlet-nodes and outlet-nodes. Motion-edges
go from VI to VO, and continuity-edges from VO to VI . Hence,
any path from a configuration to the goal will have alternating
(solid) motion-edges and (dashed) continuity-edges.

C. Online motion planning-replanning algorithm − PiP-X

A reverse-search graph is more effective in scenarios that
require online replanning, such as a robot navigating through
an unknown environment perceiving obstacles within a limited
sensor radius. It is efficient because it suffices to alter the
motion plans only locally near the robot location, saving us the
cost of rewiring the bulk of the search-tree. We incrementally
build the funnel-graph and compute the optimal funnel-path

through the graph using the routine − plan() (Algorithm 1).
The pre-planning process on a higher level is as follows,

1) Sample a configuration qrand (line 1) and extend an ε-
distance (line 2) from the nearest node in the existing
search graph to determine new configuration qnew

2) Determine the set of nearest neighbors (line 4) in the
shrinking r-ball [3], r = min{r0(log|V |/|V |)1/d, ε},
where |V | is cardinality of the vertex set, d is the
dimensionality of C and r0 is a user-specified parameter

3) From the funnel library L, choose the trajectory that
would steer (Algorithm 3) the robot from n to a δ-ball
near qnew as well as the return trajectory from qnew to a
δ-ball near n, for all n in the set of nearest neighbors

4) Once we get the funnel-edges, φ, check for “overlap”
with obstacles, and compossibility among the funnels.
Represent the projections of inlets, Xi and outlets, Xo
as nodes, φ as a motion-edge, and zero-cost continuity-
edges signifying compossibility − hence is the search-
graph iteratively constructed (Algorithm 4)

5) An incremental search (Algorithm 6) on the constructed
sampling-based graph keeps updating the shortest-path
subtree rooted at the goal

Algorithm 1 (F,G)← plan()

1: qrand ← sampleFree()
2: qnew ← extend(G, qrand, ε) . geodesic-distance
3: r ← rBall()
4: N ← findNearestNeighbors(qnew, r,G)
5: (F,G)← constructSearchGraph(qnew,N)
6: computeShortestPathTree()
7: return (F,G)

After each update (line 6), all the consistent nodes in the
graph know their best parent according to Eq. (12), enabling
the planner to backtrack the solution-path using parent point-

9

Algorithm 2 PiP-X

Input: qstart, Xgoal, Cfree, O, L . Start, Goal region, Free-
space, obstacle-space, Funnel library

Output: G,F . search-Graph and search-Funnel
1: Parameters: ε, r0, TP , IM . extend distance, r-ball,

pre-planning time, idleness limit
2: Initialisation: t← 0, startFound← 0,
3: G.add(Xgoal), F ← ∅
4: while t < TP ∨ ¬startFound do
5: (F,G)← plan()
6: if inFunnel(qstart,F) then
7: startFound← 1
8: end if
9: end while . end of Pre-planning phase

10: j ← 0, qrobot ← qstart, qprev ← qstart
11: while j < IM ∧ qrobot /∈ Xgoal do . Online phase
12: at sensingFrequency do . Sensing obstacle-changes
13: ∆O ← senseObstacles()
14: modifyEdgeCosts(∆O)

15: end
16: (F,G)← plan() . Repairing the motion-plan
17: at robotMotionFrequency do . Robot movement
18: qrobot ← robotMove(qrobot, qgoal)
19: if g(qrobot) 6=∞ then . a funnel-path exists
20: km ← km + computeHeuristic(qprev, qrobot)
21: qprev ← qrobot; j ← 0 . reset idleness count
22: else
23: qrobot ← qprev . stay at current location
24: j ← j + 1 . update idleness count
25: end if
26: end
27: if qrobot ∈ Xgoal then
28: return SUCCESS . Algorithm success
29: end if
30: end while
31: return NULL . Algorithm failure

ers. The search is focused towards the robot location using an
admissible heuristic, h(v) as defined in (4), thereby enabling
quick rewiring of the optimal path whenever the heuristic
provides useful information.

The pre-planning phase in Algorithm 2 (lines 4−9) contin-
ues until the start configuration lies within one of the funnel-
inlets and the search-graph is dense enough to have covered a
sufficient volume of the C-space. A solution funnel path exists
if the robot configuration lies within one of the inlet-nodes
and has a finite cost-to-goal value. Consequently, we have a
sequence of closed-loop control policies to transition from a
region of state-space to another, ultimately terminating at the
goal region. The entire trajectory is guaranteed to lie within the
solution funnel branch by the virtue of set-invariance, provided
the actual model sufficiently resembles the nominal model.

The various routines of our online re-planner, PiP-X (Al-
gorithm 2) providing low-level implementation details, are
explained as follows: We first specify the algorithm parameters
and inputs, and initialise the required data structures − graph,
kdTree, priority queue (lines 1−3). The planning parameters

are minimum path-resolution, ε, shrinking r-ball parameters,
r0 and d, pre-planning time, TP and idleness limit, IM . The
inputs to the algorithm are start configuration, qstart, goal
region, Xgoal, the pre-computed funnel library, L, and the
initial environment − characterised through Cfree and list
of obstacles known a priori, O. The obstacle-space will be
updated when any changes, ∆O(t) are discovered on-the-fly.

1) Sampling configurations: sampleFree() − The config-
urations qrand are independent and identically (i.i.d.) drawn
from the free-space, Cfree at random. When the robot starts
moving and senses obstacles, the sampling is directed towards
the sensed region where changes are certain to have occurred.
This helps to rewire the parent-edges near the robot, ensuring
the robot has a choice of safe alternate plans around the new-
found obstacles. However, configurations are continued to be
drawn uniformly random from Cfree at regular frequency even
after the robot starts moving, for probabilistic coverage and
completeness.

2) Graph extension: The C-space is explored using the
extend(G, qrand, ε) routine. It determines the nearest configu-
ration in the existing search graph, based on geodesic distance,
and aims to extend to qrand by at most an ε-distance to obtain
the new configuration, qnew. If this configuration is already in
the search-funnel, F, we discard it and continue with the next
sampling, because we are guaranteed to find a set of maneuvers
which would drive the robot-system from this configuration to
the goal region.

findNearestNeighbors(qnew, r, G) determines the neigh-
bors within a r-ball around the new configuration, qnew. It
is implemented through a k-D tree built using configurations.
The radius of the ball decreases at a “shrinking rate” derived
using percolation theory [44].

Algorithm 3 F ← steer(q1, q2)

1: F ′ ← findFunnel(q1, q2,L)
2: F ← shiftFunnel(q2,F ′) . shifts & truncates the funnel
3: if q1 /∈ F .ellipsoid(start)∨¬collisionFree(F ,O) then
4: return ∅
5: end if
6: return F

3) Steering (Algorithm 3): From the motion-primitives
library, findFunnel() determines the appropriate funnel that
closely drives the system from configuration, q1 to q2. We use
shiftFunnel() subroutine to shift the funnel along the cyclic
coordinates and time, using appropriate shift-operators Ψc(.)
and Ψt(.), respectively. The fact that the funnel is a backward-
reachable set, enables us to truncate the funnel at any time,
tf ∈ [0, T).

The funnel is projected down to the workspace for checking
any overlaps with the obstacle-set, O. If the funnel is in-
collision or the target-configuration does not lie in the inlet of
the funnel projected down to C (line 3), the subroutine steer()
returns a null set. Otherwise, we return the funnel, F along
with its cost, computed as the length of the nominal trajectory
within the funnel according to Eq. (10).

4) Constructing the search funnel-graph (Algorithm 4):
We attempt to construct funnels (lines 2−3) between the new

10

Algorithm 4 (F,G)← constructSearchGraph(qnew,N)

1: for all n ∈ N do
2: F−n ← steer(qnew, n) . funnels out of qnew
3: F+

n ← steer(n, qnew) . funnels into qnew
4: if F−n 6= ∅ then
5: {Xi,Xo} ← getNode(F−n) . inlet-outlet node
6: for all Fo ∈ outFunnels(n) ∪ {F+

n } do
7: if compossible(F−n ,Fo) then
8: Ni ← inletNode(Fo)
9: Ec ← Ec ∪ (Xo,Ni) . continuity-edge

10: end if
11: end for
12: V ← V ∪ {Xi,Xo}; Em ← Em ∪ (Xi,Xo)
13: updateVertex(Xo)
14: end if
15: if F+

n 6= ∅ then
16: {Xi,Xo} ← getNode(F+

n) . inlet-outlet node
17: for all Fi ∈ inFunnels(n) ∪ {F−n } do
18: if compossible(Fi,F+

n) then
19: No ← outletNode(Fi)
20: Ec ← Ec ∪ (No,Xi) . continuity-edge
21: end if
22: end for
23: V ← V ∪ {Xi,Xo}; Em ← Em ∪ (Xi,Xo)
24: end if
25: F ← F ∪ {F−n ,F+

n } . adding to funnel-edges set
26: end for
27: for all Fi ∈ inFunnels(qnew) do
28: for all Fo ∈ outFunnels(qnew) do
29: if compossible(Fi,Fo) then
30: Xo ← outletNode(Fi)
31: Xi ← inletNode(Fo)
32: Ec ← Ec ∪ (Xo,Xi) . continuity-edge
33: end if
34: end for
35: end for
36: return F, G = (V,Em, Ec)

configuration, qnew and all of the nodes in the neighbor-set,
n ∈ N . The valid funnels flowing into a δo-ball around qnew
are referred to as its inFunnels, F−q ≡ F+

n and funnels
flowing out of a δi-ball around qnew as its outFunnels, F+

q ≡
F−n , ∀ n ∈ N .

getNode(F) in lines 5 and 16 determines the nodes, Xi
and Xo, corresponding to the inlet and outlet of the funnel
projected down to C-space. These nodes are added to the set
of graph-vertices, V and the directed edge, (Xi, Xo), is added
to the set of motion-edges, Em (lines 12 and 23) The new
constructed funnels are added to the search-funnel, F (line 25).

All the pairs of inFunnels and outFunnels at qnew are
checked for sequencibility (lines 6−11 and lines 17−22) using
compossible() (Algorithm 5). If compossible, a zero-cost
directed edge from outlet-node to inlet-node is added to the
set of continuity-edges, Ec (lines 9 and 20). Additionally, the
existing inFunnels and outFunnels at neighbor-nodes, n are
checked for compossibility with the new constructed funnels

to/from n (lines 27−35). If compossible, zero-cost continuity-
edges between outlet-nodes and inlet-nodes at n are added to
Ec (line 32).

Invoking updateVertex() (Algorithm 7) in line 13 ensures
propagation of cost-changes and possible rewiring of the
shortest-path subtree due to the new sample. The cost-to-goal
value of all the new nodes, g(v) is initialised to be infinite
by default. By the virtue of the nodes being inconsistent
(specifically overconsistent), they are pushed into the priority
queue, Q with key computed as in Eq. (8), and will be repaired
if they have the “potential” to lie in the solution path to goal.

Algorithm 5 compossible(F1,F2)

1: Ei ← F2(start).ellipsoid . inlet of F2

2: Eo ← F1(end).ellipsoid . outlet of F1

3: if Ei ⊇ Eo then . inlet completely contains outlet
4: return TRUE

5: end if
6: return FALSE

5) Funnel-related subroutines: The re-planning algorithm
makes use of minor subroutines specific to funnels. inFun-

nel(q, F) returns a boolean value, based on whether the
configuration q lies in any of the inlets of the funnel-edges in
F. This is useful while checking whether a path exists from
start to goal region (Algorithm 2 [line 6]) and during sampling
too. The check is performed based on Eq. (14), with ellipsoidal
inlet regions of funnels projected down to C.

compossible() (Algorithm 5) checks whether the funnel-
pair is motion-plan compossible as defined in (2). The
ellipsoid-in-ellipsoid check in line 3 is by approximating the
outlet-ellipsoid into a convex hull by sampling points on the
boundary of the ellipsoid, ∂Eo. The extreme-points are chosen
based on singular-value decomposition of the ellipsoid matrix,
Mo, and checked whether it lies in the interior of Ei using (14).

Algorithm 6 computeShortestPathTree()

1: kstart ← computeKey(qstart)
2: while Q.topKey() < kstart ∨ lmc(qstart) 6= g(qstart) do
3: v ← Q.pop(); kold ← key(v)
4: knew ← computeKey(v)
5: if knew > kold then . check & update key
6: Q.push(v, knew)
7: else if g(v) > lmc(v) then . over-consistent
8: g(v)← lmc(v)
9: for all u ∈ Pred(v) do updateVertex(u)

10: else . under-consistent
11: g(v)←∞
12: updateVertex(v)
13: for all u ∈ Pred(v) do updateVertex(u)
14: end if
15: end while

6) Building the shortest-path subtree (Algorithm 6): Given
the search graph, a tree rooted at the goal with minimum
cost-to-goal is calculated using techniques outlined in Sec-
tion III-C. Invoking computeShortestPathTree() ensures
that the robot/start node becomes consistent and also all the

11

nodes with lesser key value than the start node (line 2). So,
in effect the shortest path from each “promising” node in
the search graph to goal, based on cost-to-goal and heuristic
values, is quickly determined.

Inconsistent nodes are popped out of the priority queue, Q
and repaired (lines 3−14), i.e. made consistent until the robot
or start node becomes consistent or the queue becomes empty
(usually encountered during the pre-planning phase). The key-
comparisons in lines 2 and 5 are based on lexicographic
comparison − the second entry becomes relevant only during
tie-breaker among first entries [15].

Algorithm 7 updateVertex(v)

1: lmc(v)← computeLMC(v)
2: parent(v)← findParent(v)
3: if v ∈ Q then
4: Q.remove(v)
5: end if
6: if g(v) 6= lmc(v) then . inconsistent
7: key(v)← computeKey(v)
8: Q.push(v, key(v))
9: end if

updateVertex(v) (Algorithm 7) computes lmc of vertex
v (line 1) based on Eq. (7). The node, v is removed from
the priority queue (lines 3−5) and added to the priority
queue with the updated key value only if it is inconsistent
(lines 6−9). The priority value given by computeKey() is
computed using Eq. (8). computeHeuristic(v) calculates the
admissible heuristic value − Euclidean distance from v to
qstart. findParent(v) (line 2) determines the best parent of
the node, v by analysing its outNeighbors, N+(v).

parent(v)← arg min
v′∈N+

{c(v, v′) + g(v′)} (12)

The priority queue is implemented using a binary heap.
The queue operations are briefly described as follows−
Q.push(v, key) inserts the element, v into the queue at the
appropriate place based on key-value. Q.pop() removes the
top element of the queue and returns it. Q.remove(v) removes
the entry, v and rebalances the heap. Lastly, Q.topKey()
returns the key-value of the top-most element in the queue.

7) Robot motion: The various modules in Algorithm 2−
sensing (lines 12−15), planning (line 16) and robot motion
(lines 17−26) have different operating frequencies. This is
implemented by running the methods on separate threads with
different frequencies. robotMove(q1, q2) in line 18 determines
and applies the corresponding control policy to move from q1
to q2. The changes to the obstacle set, ∆O are estimated using
sensors on the robot, and the cost of affected edges are updated
using modifyEdgeCosts(∆O) (Algorithm 8). The “head” of
the modified edges, i.e. v in e = (v, w) are checked for
inconsistencies, and added to the priority queue if inconsistent
using updateVertex() (lines 4 and 7).

8) Collision checking: We exploit the geometric properties
of the funnel and environment to come up with computation-
ally efficient subroutine − collisionFree(F , O) for checking

Algorithm 8 modifyEdgeCosts(∆O)

1: for all e = (v, w) ∈ Em do . “motion-edges” set
2: if ¬collisionFree(e,∆O) then
3: c(v, w)←∞
4: updateVertex(v)
5: else . if edges become free
6: c(v, w)← cprev
7: updateVertex(v)
8: end if
9: end for

overlaps with obstacle set, O. A funnel F is said to be in-
collision if PSW(F) ∩ O 6= ∅, where PSW(.) is the projection
of funnel down to the workspace.

Assuming obstacles with locally Lipschitz continuous
boundaries, we perform collision-checks between obstacles
and the projected level-sets of a funnel. A bounding-volume
check constitutes as the first-pass in collision detection. If it
fails, the individual ellipsoids of the funnel are checked for
collision, in the order given by a Van der Corput sequence
[45]. We implement a similar method of forming a convex
hull around the obstacle and checking whether the extreme
points lie within the ellipsoid using Eq. (14). For a general
class of obstacles, one can resort to off-the-shelf software such
as RoboDK [46], MPK [47] for collision-detection.

Space Features − elements, routines, operations
R+ × Rn funnels, steering, compossibility-check
C-space configurations, sampling, re-planning

Workspace robot, obstacles, collision-checking

D. Computing regions of finite-time invariance

Determining a closed-form solution to Eq. (3) from a
general class of Lyapunov functions is not guaranteed, and is
computationally intractable. Under certain assumptions such
as polynomial closed-loop dynamics, and quadratic Lyapunov
candidate functions, the problem of computing the funnels can
be reformulated into a Sum-of-Squares (SoS) program [26].
Consider a quadratic Lyapunov candidate function centred
around the nominal trajectory, x0(t) defined using a positive
definite matrix, P (t)

V (t,x) = (x− x0(t))TP (t)(x− x0(t)) (13)

For the class of piecewise polynomials P (t), we solve
the SoS program using polynomial S-procedure [48]. The
convex optimisation problem of maximising the funnel volume
while satisfying constraints Eq. (3) is solved using bilinear
alternation − improving ρ(t) and finding Lagrange multipliers
to satisfy negativity of (V̇ (t,x)− ρ̇(t)) in the semi-algebraic
sets [27]. This maximises the inner-approximation of the
verified regions of invariance around the nominal trajectory
[30].

As noted in [27], we observe that time-sampled relaxations
in the semi-definite program improve computational efficiency
while closely resembling the actual level-sets. Therefore, we
leverage this result to carry out optimisations only at discrete
time instances between the knot points along the finite time

12

Fig. 6: A funnel computed based on Lyapunov level-set theory offers a sufficient but not a necessary condition for invariance.
(a) Trajectories starting inside the funnel stay within the funnel; one can not conclusively comment about trajectories starting
outside the funnel - it may (b) or may not (c) terminate within the desired goal set (green region)

interval. For M ∈ Sn+, set of n×n symmetric, positive definite
matrices and c ∈ Rn, Eq. (14) represents an ellipsoid centred
around c.

(x− c)TM(x− c) = 1 (14)

The invariant sets, B(t) in Eq. (2) corresponding to the
quadratic Lyapunov function defined in Eq. (13) are the closed
set, i.e. interior and boundary of ellipsoids centered around the
nominal trajectory, x0(t).

E(t) = P (t)/ρ(t) (15)

The closed-loop dynamics is derived using the feedback
control policy, u(t,x) and the system equations. Given a
nominal trajectory in finite time interval, the dynamics are
approximated to polynomial equations about it using Taylor-
series expansion. The region of desired final-states, referred
to as sub-goal, Xf is assumed to be an ellipsoid, defined by
Ef centred at the final state. Computing the maximal inner-
approximation of the backward-reachable invariant set to the
sub-goal region is formulated as an SOS program, and the
resulting semi-definite program (SDP) is numerically solved.

Sample funnels computed for quadrotor dynamics with
nominal control (presented in Section VI-A) have been illus-
trated in Fig. 6. Note that the funnels have been projected
from {t}×Rn down to lower dimensional subspace, {t}×R2

for visualisation. Funnels calculated using above-mentioned
methods have formal guarantees of invariance, ensuring that
robot-trajectory stays within the backward-reachable set, if it
starts within the funnel (see Fig. 6-a).

E. Designing the funnel library

We deal with Lagrangian systems with time-invariant dy-
namics a.k.a autonomous systems. Considering the state-
feedback controller, the closed-loop dynamics reduces down to
ẋ(t) = f(x(t)). Hence, for ease of usage we shift the initial
time to origin, t0 = 0, and the time interval becomes [0, Tf],
where Tf ∈ R+ is a finite non-negative real number.

The funnel library, L, consists of a finite number of verified
trajectories, encapsulating the information of the certified
regions of invariance in finite-time interval. Each funnel,

Fi ∈ L, is parametrized by the nominal trajectory, x0i(t),
the ellipsoidal level-sets, Ei(t) and the final time, Tf . The
trajectories and the ellipsoids are projected from the state-
space onto C-space using an appropriate projection operator,
PSC (.) : Rn → C. The resultant projection of invariant sets take
the form of ellipsoids when projected onto the d-dimensional
Euclidean subspace of robot-configurations [49],

S(t) = (BTE(t)−1B)−1 (16)

where B is a n × d matrix, consisting of the basis vectors

Fig. 7: Funnel library, L. The initial configurations at t = 0
lie at an ε-distance from 0 (ε = 5m). Desired final-states is a
compact set centered around origin with radius 0.3m. Using
Lb (bottom) will result in a finer resolution of motion-plan
than La (top)

13

of the coordinates of the C-space in state space. Additionally,
the funnels in the library are projected down to the robot-
workspace in the pre-processing phase to speedup collision-
checking with obstacles during runtime.

The funnel library acts like a bridge between the offline
and online phases − invariant set analysis and motion plan-
ning. Therefore, certain algorithm parameters such as extend-
distance, resolution of the planner, range of obstacle sizes, etc.
is considered while constructing the library. Meanwhile, the
funnel library provides the vital information of compossibility
required during the online phase of motion planning.

Fig. 7 illustrates examples of funnel libraries, with nominal
trajectories starting at an ε-distance from origin, at various
translational positions and terminating in a sub-goal region
centered around origin at final time, Tf . These invariant sets
can be shifted along the cyclic coordinates, and time to ensure
the final pose of the system state aligns with the sampled
configurations. Fig. 7-a depicts a sparser library which would
result in lesser resolution of the motion plan.

It is worth mentioning that the initial conditions of the finite
number of projected trajectories in the library, along with the
appropriate shift operator, Ψc(.) along the cyclic coordinates
should be able to span the entire C-space. This ensures
probabilistic coverage [26] of the sampling-based motion re-
planning algorithm and hence, probabilistic completeness.

VI. EXPERIMENTAL VALIDATION

We validate our algorithm on a quadrotor UAV in simula-
tions, flying through an indoor space with dynamic obstacles.
This section briefly describes the dynamics of a quadrotor
with a nominal controller, and discusses our experiments
with implementation details. We demonstrate the relevance
of invariant sets and empirically guarantee completeness and
correctness of our motion re-planning algorithm.

A. System Dynamics & Mission Profile

The equations of motion of a quadrotor UAV are derived
using Newton-Euler formulation [50]. Considering position,
ξ = [x, y, z]T and the attitude, η = [φ, θ, ψ]T of the
quadcopter defined in an inertial frame, the equations can be
written as,

ξ̇ = v

mv̇ = −ge3 +Re3T

η̇ = Wηω

Jω̇ = −ω × Jω − Jr(ω × e3)Ω +M

(17)

Where, m is the mass, J the inertia matrix, v the linear
velocity and ω is body angular rates. e3 is

[
0 0 1

]T
, Jr is

inertia of the rotor, Ω = Ω1 − Ω2 + Ω3 − Ω4 is the net rotor
speed. Ωi denotes the rotational speed of the individual rotors.
R ∈ SO(3) is the rotation matrix from the body frame to

the inertial frame. Wη is the transformation matrix for angular
velocities in the body frame to inertial frame. For the specific

Fig. 8: Schematic of a quadrotor with 6DOF (position and
attitude) in inertial, I and body-fixed, B frames of reference

configuration of rotors as in Fig. 8, Thrust, T and Moment,
M are defined as,

T = k

4∑
i=1

Ω2
i

M =

Mφ

Mθ

Mψ

 =

 kl(Ω2
4 − Ω2

2)
kl(Ω2

3 − Ω2
1)

d(Ω2
2 + Ω2

4 − Ω2
1 − Ω2

3)

 (18)

where k is the thrust coefficient, d the counter-moment drag
coefficient and l is the arm length.

The state of the system, x = [ξ v η ω]T with 4 rotor speeds
as inputs, u = [Ω1 Ω2 Ω3 Ω4]T . Typically, the controller
architecture has a cascaded structure, with a fast inner loop
stabilising the attitude and a outer loop tracking the position
or velocities [51]. We implement a nested P-PID loop for
attitude-tracking. Based on the desired angles, the proportional
controller computes the desired angular body rates which are
then tracked using a PID controller. This has been found to
be effective in maneuvers which don’t require large deviations
from nominal hover conditions [52]. The outer loop tracks the
desired position setpoints and is achieved using an LQR con-
troller [53]. Equivalently, the inputs to the quadrotor position
controller are the desired setpoints − [xd, yd, zd, ψd = 0]T .

The configuration space, C = R3, whereas the state-space
of the quadrotor translational subsystem is S = R3 × R3,
comprising of the position and velocities. The mission profile
is to fly at a set altitude, zd = h with a zero heading-angle,
ψd = 0. Owing to the reduced operation-space, the workspace
and the sampling is in R2, and it suffices to check for possible
collisions in the 2D plane between ellipses and obstacles. The
start configuration and goal region are defined in the xy-plane.
The library is appropriately constructed, see Fig. 7.

B. Experimental setup

The equivalent closed-loop position dynamics of the quadro-
tor is derived from repeated trials with various position set-
points, ξd given as inputs to the system.

ξ̇ = v v̇ = f(ξ,v,u) u = ξd (19)

The system identification of the translational subsystem,
x = [ξ v], is carried out using SysId toolbox in MATLAB.
The identified equations are then approximated to polynomial
dynamics using a third-order Taylor-series expansion about the

14

Fig. 9: Time instances of motion plan executed by PiP-X on a quadrotor flying with altitude-hold. The start configuration is in
the lower-right corner, with the goal location at lower-left corner. The quadrotor senses obstacle-walls (solid rectangles) within
sensor-radius (dashed circle), and recomputes motion plans (green funnel-path) accordingly. The traversed funnels and funnel
search-tree are denoted by dark and light gray, respectively. lT denotes the traversed-path length, and t denotes time elapsed.
Note that the robot-trajectory (cyan) with the funnels and obstacles are projected down to (x, y) subspace

nominal trajectory. An estimate of the required final time of
finite-interval, [0, T] is obtained based on the time taken by
the system to reach within the defined goal region of 0.3m
around a desired setpoint. Subsequently, the invariant sets
centered around the nominal trajectory are constructed using
the methods described in Section V-D. The Sum-of-Squares
optimisation is converted to an SDP by Systems Polynomial
Optimisation Toolbox (SPOT) in MATLAB and solved using
SeDuMi [54].

Our reverse-search algorithm requires backward-reachable
set − starting from different initial conditions, the desired
setpoint is given as the origin, ξd = 0. The initial (x, y)
conditions lie on an ε-circle centered at origin, with z(0) = h
and ψ(0) = 0, as shown in Fig. 7. All the funnels computed
are stored in a dictionary with a key-identifier based on the
starting location. Each funnel in the library is characterised
by its key, the nominal trajectory, ellipsoidal invariant sets and
nominal control inputs - rotor speeds, Ωi at discrete time-steps
within the finite-time horizon.

In order to verify the motion plan, we develop a higher

fidelity model in Simulink. The dynamics are based on
Eq. (17) - (18). In addition to that, we incorporate actuator
saturations, rotor dynamics and process noise. We believe that
these additions will enable the simulation model to closely
resemble the physical system. Using the funnel library as
in Fig. 7-b, our algorithms are tested in two different 2D
environments, random forest and maze, with various types of
obstacle-changes, described in the next section.

C. Results

A sample run of PiP-X in a user-specified maze environment
is shown in Fig. 9. The robot perceives obstacle-walls of the
maze within a finite sensing radius and updates its motion
plans accordingly. We notice that a considerable amount of
the C-space is explored with fewer samples. Hence, using
volumetric verified trajectories potentially speeds up the rate
of probabilistic coverage. The position setpoints in the funnel-
path to goal, output by the algorithm are given to the simula-
tion system in real-time, and the system’s actual trajectory is
analysed. It is observed that the trajectory of the system lies

15

Fig. 10: Normalised Lyapunov function value of the system’s state simulated using the higher-fidelity quadrotor model, with
solution funnel-path given by the algorithm across 10 different trials (denoted by different line-colors)

within the solution funnel-path throughout the course of the
mission profile, verifying set-invariance.

In another scenario within the same maze environment
with different start/goal location, we analyse the normalised
Lyapunov function value of the system, Eq. (13) - Eq. (15).
From Fig. 10, we notice that the trajectory stays within the
level-set boundary of V = 1 till the quadrotor-system reaches
the goal region, empirically proving invariance. The peaks in
the Lyapunov-function value mostly occur in the outlet/inlet
region between 2 funnels.

Our algorithm, based on quick graph-based replanning, is
able to repair motion plans on-the-fly, ensuring a sequence of
safe trajectories that are dynamically feasible. The theoretical
guarantee of set-invariance enables our algorithm to rewire
motion plans, implicitly addressing the two-point BVP en-
countered during search-tree rewiring in most sampling-based
motion planners. Computing a shortest-path tree rooted at the
goal results in an optimal path with respect to the iteratively-
constructed underlying search-graph.

We extensively test our algorithm in two different kinds of
environments − initially unknown, and dynamically changing
− random forest and maze, across various scenarios and con-
ditions; considering algorithm success and length of traversed
trajectory as performance metrics. Algorithm failure is defined
to be the robot’s inability to compute a feasible motion plan
within a user-defined timeout or its collision with an obstacle.

1) Initially unknown Random Forest with robot-sensing:
We consider a 2D workspace of dimensions 50m× 50m with
circular obstacles of random sizes within the range of [2 4]m,
and at random locations. The sensing radius of the quadrotor
is 12m. Each scenario is characterised by the number of tree-
obstacles, Nt present in the environment. In each scenario, we
vary the start and goal configurations, and obstacle locations.
The start and goal locations are spaced out 40m diametrically
apart, for uniformity while comparing performance. The goal
region is defined to be a δ-ball of radius 0.3m centered at the
goal configuration.

The number of tree-obstacles are varied from 0−150 in
increments of 1. 30 different trials are run in each sce-
nario, reporting mean/standard deviation of success rate, and
mean/range of traversed-trajectory length (see Fig. 11). The
nominal path length, i.e if there are no obstacles and the robot
is holonomic, is 40m.

Fig. 11: Performance metrics in random forest environment
with finite-sensing (a) mean and standard deviation of success
rate (b) mean and range of traversed-trajectory length, across
30 trials

We observe that the algorithm has 100% success rate until
Nt = 32 (14.4% of workspace being obstacle space). The suc-
cess rate drops from 1 to 0 as Nt increases. The algorithm fails
after 134 trees in the forest, which approximately translates to
61.04% of workspace covered with obstacles. As expected,
path length increases with number of obstacles, until we start
encountering algorithm failure; wherein a few successful trials
skews the average trajectory-length.

2) Random Forest with dynamic obstacles: Similar to
the previous workspace, this environment is such that tree-
obstacles are deleted and added at random, emulating a
dynamic setup. The changes occur anywhere in the workspace
and the robot is capable of sensing all those changes. A
scenario is described by number of trees, Nt and change-
percentage, C. For e.g., a change, C = 60% in a workspace
with Nt = 45 implies 27 pre-existing trees are removed and
27 new obstacles are added − changing location and size.
C = 0% trivially refers to a static environment.

Taking input from previous experimental analysis, we con-
sider the range of Nt to be [5, 135] in increments of 10.
The change-percentage is varied from 0 to 100 in steps of
10. We run 25 trials (different start/goal configurations) and
report mean of success rate and traversed-trajectory length in

16

Fig. 12: Forest environment with dynamic obstacles − mean
of success-rate and traversed-trajectory length from 25 trials

the form of a contour plot− Fig. 12.
We observe that the algorithm failure and mean trajectory-

length increases with either increasing number of tree-
obstacles, Nt ≥ 45, or higher level of changes, C ≥ 50. It
completely fails when the environment is densely cluttered
with obstacles or highly dynamic (upper right triangle of the
contour in Fig. 12-a). Note that trajectory-length in static
environments (C = 0%) with Nt ≥ 95 is not visualised in
Fig. 12-b as they are isolated instances of algorithm successes.

3) Initially-unknown Maze with finite robot-sensing: A
maze-like environment with rectangular walls is designed in
a two-dimensional 50m× 50m workspace, similar to the one
in Fig. 9. The robot senses the obstacle-walls within a limited
radius of 12m.

25 trials are run for 10 different scenarios of start/goal
configurations, and mean/standard deviation of success rate
is presented in Fig. 13-a. Since the start and goal locations
are such that a solution path exists, our algorithm is always
capable of computing an initial motion plan and accordingly
replan as new obstacle-walls are perceived. This results in a
100% success rate across 10 different scenarios.

4) Maze with dynamic changes: Similar to the previous
environment, we additionally incorporate dynamic obstacles
in the form of “windows” that can open (obstacle-deletion) or
close (obstacle-addition) at random, and the robot is capable
of sensing such obstacle-changes.

Fig. 13: Mean and standard deviation of algorithm success rate
from 25 trials in a maze-environment with (a) finite robot-
sensing, and (b) dynamic obstacles

The maze has 20 walls and 10 windows − 33.8% of wall-
length (assuming uniform obstacle-width). Change-percentage,
C refers to how many of the windows open and close at
sensing-frequency − it is varied from 0% (static) to 100%
(dynamic) in increments of 10. From Fig. 13, we observe
a drop in success at C = 90% and C = 100% (highly
dynamic). Note that we consider only success rate because the
path length depends on the contour of the maze and start/goal
configurations − there is no nominal path length for reference.

As a general observation from all experiments and scenar-
ios, most failures are due to “idleness” time-outs, IM implying
the algorithm’s inability to identify and report that a solution
doesn’t exist, as is with the case of all sampling-based motion
planning techniques. Another common reason for failure is
the algorithm’s inability to fit a volumetric region of space
in narrow gaps, especially in dense-cluttered environments. In
scenarios with highly-dynamic obstacles, an obstacle is more
probable to appear on the traversing funnel-edge, inevitably
leading to a collision with the obstacle.

VII. CONCLUSIONS

A novel sampling-based online feedback motion re-planning
algorithm using funnels, PiP-X is presented. The search graph
with funnel-edges is iteratively constructed using sampling-
techniques, and concurrent calculation of the shortest-path
subtree of funnels rooted at the goal ensures optimal funnel-
path from robot configuration to the goal region. The use of
incremental graph-replanning techniques and a pre-computed
library of motion primitives ensure that our method can repair
paths on-the-fly in dynamic environments.

The information of robot-traversability and funnel-
sequencibility is represented together in the form of an
augmented directed-graph, helping us leverage numerical
graph-search methods to compute safe, controllable motion-
plans. Analysing and formally quantifying stability of
trajectories using Lyapunov level-set theory ensures

17

kinodynamic feasibility of the solution-paths. Additionally,
verifying the compossibility of a funnel-pair proves to be
a “relaxed” alternative to the two-point boundary value
problem, encountered in most single-query sampling-based
motion planners that require rewiring.

Our technique is validated on a simulated quadrotor plat-
form in a variety of environments and scenarios. Performance
of the algorithm in terms of success and trajectory-length
is examined. Our approach combines concepts from systems
analysis, sampling-based methods, and incremental graph-
search to address feedback motion re-planning for any general
nonlinear robot-system in dynamic workspaces.

ACKNOWLEDGMENTS

The authors are grateful to the Robot Locomotion Group
at MIT for providing an open-source software distribution for
computing funnels. We like to thank Sharan Nayak for the
valuable discussions on this work. We also thank the members
of Motion and Teaming Lab, UMD − Loy McGuire, Alex
Mendelsohn, Alkesh K. Srivastava and Dalan C. Loudermilk
for their feedback during the preparation of this manuscript.

REFERENCES

[1] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566–580, 1996.

[2] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach
to single-query path planning,” in Proceedings 2000 ICRA. Millennium
Conference. IEEE International Conference on Robotics and Automa-
tion. Symposia Proceedings (Cat. No. 00CH37065), vol. 2. IEEE, 2000,
pp. 995–1001.

[3] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The international journal of robotics research, vol. 30,
no. 7, pp. 846–894, 2011.

[4] O. Arslan and P. Tsiotras, “Use of relaxation methods in sampling-based
algorithms for optimal motion planning,” in 2013 IEEE International
Conference on Robotics and Automation. IEEE, 2013, pp. 2421–2428.

[5] D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock, “Randomized kin-
odynamic motion planning with moving obstacles,” The International
Journal of Robotics Research, vol. 21, no. 3, pp. 233–255, 2002.

[6] S. Karaman and E. Frazzoli, “Optimal kinodynamic motion planning
using incremental sampling-based methods,” in 49th IEEE conference
on decision and control (CDC). IEEE, 2010, pp. 7681–7687.

[7] S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic planning,”
The international journal of robotics research, vol. 20, no. 5, pp. 378–
400, 2001.

[8] M. Kleinbort, K. Solovey, Z. Littlefield, K. E. Bekris, and D. Halperin,
“Probabilistic completeness of rrt for geometric and kinodynamic plan-
ning with forward propagation,” IEEE Robotics and Automation Letters,
vol. 4, no. 2, pp. x–xvi, 2018.

[9] J. hwan Jeon, S. Karaman, and E. Frazzoli, “Anytime computation
of time-optimal off-road vehicle maneuvers using the RRT,” in 2011
50th IEEE Conference on Decision and Control and European Control
Conference. IEEE, 2011, pp. 3276–3282.

[10] D. J. Webb and J. Van Den Berg, “Kinodynamic RRT*: Asymptotically
optimal motion planning for robots with linear dynamics,” in 2013 IEEE
International Conference on Robotics and Automation. IEEE, 2013,
pp. 5054–5061.

[11] A. Ravankar, A. A. Ravankar, Y. Kobayashi, Y. Hoshino, and C.-C.
Peng, “Path smoothing techniques in robot navigation: State-of-the-art,
current and future challenges,” Sensors, vol. 18, no. 9, p. 3170, 2018.

[12] M. Basescu and J. Moore, “Direct NMPC for post-stall motion planning
with fixed-wing UAVs,” in 2020 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2020, pp. 9592–9598.

[13] A. Stentz et al., “The focussed d∗ algorithm for real-time replanning,”
in IJCAI, vol. 95, 1995, pp. 1652–1659.

[14] S. Koenig, M. Likhachev, and D. Furcy, “Lifelong planning A∗,”
Artificial Intelligence, vol. 155, no. 1-2, pp. 93–146, 2004.

[15] S. Koenig and M. Likhachev, “D∗lite,” Aaai/iaai, vol. 15, 2002.
[16] J. Bruce and M. M. Veloso, “Real-time randomized path planning for

robot navigation,” in Robot soccer world cup. Springer, 2002, pp.
288–295.

[17] D. Ferguson, N. Kalra, and A. Stentz, “Replanning with RRTs,” in
Proceedings 2006 IEEE International Conference on Robotics and
Automation, 2006. ICRA 2006. IEEE, 2006, pp. 1243–1248.

[18] M. Zucker, J. Kuffner, and M. Branicky, “Multipartite rrts for rapid
replanning in dynamic environments,” in Proceedings 2007 IEEE Inter-
national Conference on Robotics and Automation. IEEE, 2007, pp.
1603–1609.

[19] M. Otte and E. Frazzoli, “RRTX: Asymptotically optimal single-query
sampling-based motion planning with quick replanning,” The Interna-
tional Journal of Robotics Research, vol. 35, no. 7, pp. 797–822, 2016.

[20] J. D. Gammell, T. D. Barfoot, and S. S. Srinivasa, “Batch informed
trees (BIT*): Informed asymptotically optimal anytime search,” The
International Journal of Robotics Research, vol. 39, no. 5, pp. 543–
567, 2020.

[21] D. Connell and H. M. La, “Dynamic path planning and replanning for
mobile robots using RRT,” in 2017 IEEE International Conference on
Systems, Man, and Cybernetics (SMC). IEEE, 2017, pp. 1429–1434.

[22] O. Adiyatov and H. A. Varol, “A novel RRT*-based algorithm for
motion planning in dynamic environments,” in 2017 IEEE International
Conference on Mechatronics and Automation (ICMA). IEEE, 2017, pp.
1416–1421.

[23] Y. Li, Z. Littlefield, and K. E. Bekris, “Asymptotically optimal sampling-
based kinodynamic planning,” The International Journal of Robotics
Research, vol. 35, no. 5, pp. 528–564, 2016.

[24] M. Mason, “The mechanics of manipulation,” in Proceedings. 1985
IEEE International Conference on Robotics and Automation, vol. 2.
IEEE, 1985, pp. 544–548.

[25] R. R. Burridge, A. A. Rizzi, and D. E. Koditschek, “Sequential com-
position of dynamically dexterous robot behaviors,” The International
Journal of Robotics Research, vol. 18, no. 6, pp. 534–555, 1999.

[26] R. Tedrake, I. R. Manchester, M. Tobenkin, and J. W. Roberts, “LQR-
trees: Feedback motion planning via sums-of-squares verification,” The
International Journal of Robotics Research, vol. 29, no. 8, pp. 1038–
1052, 2010.

[27] M. M. Tobenkin, I. R. Manchester, and R. Tedrake, “Invariant funnels
around trajectories using sum-of-squares programming,” IFAC Proceed-
ings Volumes, vol. 44, no. 1, pp. 9218–9223, 2011.

[28] A. Majumdar and R. Tedrake, “Funnel libraries for real-time robust feed-
back motion planning,” The International Journal of Robotics Research,
vol. 36, no. 8, pp. 947–982, 2017.

[29] J. Moore, R. Cory, and R. Tedrake, “Robust post-stall perching with a
simple fixed-wing glider using LQR-trees,” Bioinspiration & biomimet-
ics, vol. 9, no. 2, p. 025013, 2014.

[30] A. Majumdar, A. A. Ahmadi, and R. Tedrake, “Control design along
trajectories with sums of squares programming,” in 2013 IEEE Inter-
national Conference on Robotics and Automation. IEEE, 2013, pp.
4054–4061.

[31] P. Reist, P. Preiswerk, and R. Tedrake, “Feedback-motion-planning
with simulation-based lqr-trees,” The International Journal of Robotics
Research, vol. 35, no. 11, pp. 1393–1416, 2016.

[32] C. K. Verginis, D. V. Dimarogonas, and L. E. Kavraki, “KDF: Kino-
dynamic motion planning via geometric sampling-based algorithms and
funnel control,” arXiv preprint arXiv:2104.11917, 2021.

[33] A. Bajcsy, S. Bansal, E. Bronstein, V. Tolani, and C. J. Tomlin, “An
efficient reachability-based framework for provably safe autonomous
navigation in unknown environments,” in 2019 IEEE 58th Conference
on Decision and Control (CDC). IEEE, 2019, pp. 1758–1765.

[34] S. Kousik, S. Vaskov, F. Bu, M. Johnson-Roberson, and R. Vasudevan,
“Bridging the gap between safety and real-time performance in receding-
horizon trajectory design for mobile robots,” The International Journal
of Robotics Research, vol. 39, no. 12, pp. 1419–1469, 2020.

[35] S. L. Herbert, M. Chen, S. Han, S. Bansal, J. F. Fisac, and C. J.
Tomlin, “FaSTrack: A modular framework for fast and guaranteed safe
motion planning,” in 2017 IEEE 56th Annual Conference on Decision
and Control (CDC). IEEE, 2017, pp. 1517–1522.

[36] S. Singh, B. Landry, A. Majumdar, J.-J. Slotine, and M. Pavone, “Robust
feedback motion planning via contraction theory,” The International
Journal of Robotics Research, 2019.

[37] Z. Manchester and S. Kuindersma, “Robust direct trajectory optimization
using approximate invariant funnels,” Autonomous Robots, vol. 43, no. 2,
pp. 375–387, 2019.

18

[38] H. Ravanbakhsh, F. Laine, and S. A. Seshia, “Real-time funnel gener-
ation for restricted motion planning,” arXiv preprint arXiv:1911.01532,
2019.

[39] J.-J. E. Slotine, W. Li, et al., Applied nonlinear control. Prentice hall
Englewood Cliffs, NJ, 1991, vol. 199, no. 1.

[40] H. K. Khalil and J. W. Grizzle, Nonlinear systems. Prentice hall Upper
Saddle River, NJ, 2002, vol. 3.

[41] D. Dey, T. Liu, B. Sofman, and J. Bagnell, “Efficient optimization of
control libraries,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 26, no. 1, 2012.

[42] E. Frazzoli, M. A. Dahleh, and E. Feron, “Maneuver-based motion
planning for nonlinear systems with symmetries,” IEEE transactions on
robotics, vol. 21, no. 6, pp. 1077–1091, 2005.

[43] A. Majumdar and R. Tedrake, “Robust online motion planning with
regions of finite time invariance,” in Algorithmic foundations of robotics
X. Springer, 2013, pp. 543–558.

[44] M. Penrose et al., Random geometric graphs. Oxford university press,
2003, vol. 5.

[45] S. M. LaValle, Planning algorithms. Cambridge university press, 2006.
[46] RoboDK, “Simulation and OLP for robots.” [Online]. Available:

https://robodk.com/
[47] I. Gipson, K. Gupta, and M. Greenspan, “Mpk: An open extensible

motion planning kernel,” Journal of Robotic Systems, vol. 18, no. 8, pp.
433–443, 2001.

[48] P. A. Parrilo, “Semidefinite programming relaxations for semialgebraic
problems,” Mathematical programming, vol. 96, no. 2, pp. 293–320,
2003.

[49] W. C. Karl, G. C. Verghese, and A. S. Willsky, “Reconstructing
ellipsoids from projections,” CVGIP: Graphical Models and Image
Processing, vol. 56, no. 2, pp. 124–139, 1994.

[50] P. C. Garcia, R. Lozano, and A. E. Dzul, Modelling and control of
mini-flying machines. Springer Science & Business Media, 2006.

[51] M. K. M. Jaffar, M. Velmurugan, and R. Mohan, “A novel guidance
algorithm and comparison of nonlinear control strategies applied to
an indoor quadrotor,” in 2019 Fifth Indian Control Conference (ICC).
IEEE, 2019, pp. 466–471.

[52] T. Luukkonen, “Modelling and control of quadcopter,” Independent
research project in applied mathematics, Espoo, vol. 22, p. 22, 2011.

[53] S. Bouabdallah, A. Noth, and R. Siegwart, “PID vs LQ control tech-
niques applied to an indoor micro quadrotor,” in 2004 IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems (IROS)(IEEE
Cat. No. 04CH37566), vol. 3. IEEE, 2004, pp. 2451–2456.

[54] J. F. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for optimization
over symmetric cones,” Optimization methods and software, vol. 11, no.
1-4, pp. 625–653, 1999.

Mohamed Khalid M. Jaffar received his Dual De-
gree, Bachelor of Technology (B.Tech.) and Master
of Technology (M.Tech.) in Aerospace Engineering
from the Indian Institute of Technology Madras,
Chennai, India in 2018. He is currently pursuing
a Ph.D. degree in Aerospace Engineering, under
the supervision of Dr. Michael Otte. He is cur-
rently a Research Assistant with the department
of Aerospace Engineering, University of Maryland,
College Park, MD, USA. His research focuses on
the use of control and systems theory for motion

planning of aerial robots.

Michael Otte (M’07) received the B.S. degrees in
aeronautical engineering and computer science from
Clarkson University, Potsdam, New York, USA, in
2005, and the M.S. and Ph.D. degrees in computer
science from the University of Colorado Boulder,
Boulder, CO, USA, in 2007 and 2011, respectively.
From 2011 to 2014, he was a Postdoctoral Associate
at the Massachusetts Institute of Technology. From
2014 to 2015, he was a Visiting Scholar at the U.S.
Air Force Research Lab. From 2016 to 2018, he
was a National Research Council RAP Postdoctoral

Associate at the U.S. Naval Research Lab. He has been with the Department
of Aerospace Engineering, at the University of Maryland, College Park, MD,
USA, since 2018. He is the author of over 30 articles, and his research interests
include autonomous robotics, motion planning, and multi-agent systems.

https://robodk.com/

	I INTRODUCTION
	I-A Statement of Contributions
	I-B Outline

	II RELATED WORK
	II-A Sampling-based kinodynamic motion planning
	II-B Motion replanning in dynamic environments
	II-C Funnel-based motion planning
	II-D Other related work

	III PRELIMINARIES
	III-A Invariant Set Theory
	III-B Verified Trajectory Libraries
	III-C Discrete graph replanning

	IV PROBLEM FORMULATION
	V APPROACH
	V-A Outline
	V-B Notes on augmented search-graph
	V-C Online motion planning-replanning algorithm - PiP-X
	V-C1 Sampling configurations
	V-C2 Graph extension
	V-C3 Steering (Algorithm 3)
	V-C4 Constructing the search funnel-graph (Algorithm 4)
	V-C5 Funnel-related subroutines
	V-C6 Building the shortest-path subtree (Algorithm 6)
	V-C7 Robot motion
	V-C8 Collision checking

	V-D Computing regions of finite-time invariance
	V-E Designing the funnel library

	VI EXPERIMENTAL VALIDATION
	VI-A System Dynamics & Mission Profile
	VI-B Experimental setup
	VI-C Results
	VI-C1 Initially unknown Random Forest with robot-sensing
	VI-C2 Random Forest with dynamic obstacles
	VI-C3 Initially-unknown Maze with finite robot-sensing
	VI-C4 Maze with dynamic changes

	VII CONCLUSIONS
	References
	Biographies
	Mohamed Khalid M. Jaffar
	Michael Otte

