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PIPELINE COLUMN SEPARATION FLOW REGIMES 
By Anton Bergant and Angus R. Simpson, Member, ASCE 

 

ABSTRACT: A generalized set of pipeline column separation equations is presented describing all 

conventional types of low-pressure regions. These include water hammer zones, distributed vaporous 

cavitation, vapor cavities, and shocks (that eliminate distributed vaporous cavitation zones). 

Numerical methods for solving these equations are then considered, leading to a review of three 

numerical models of column separation. These include the discrete vapor cavity model, the discrete 

gas cavity model, and the generalized interface vaporous cavitation model. The generalized interface 

vaporous cavitation model enables direct tracking of actual column separation phenomena (e.g., 

discrete cavities, vaporous cavitation zones), and consequently, better insight into the transient event. 

Numerical results from the three column separation models are compared with results of 

measurements for a number of flow regimes initiated by a rapid closure of a downstream valve in a 

sloping pipeline laboratory apparatus. Finally, conclusions are drawn about the accuracy of the 

modeling approaches. A new classification of column separation (active or passive) is proposed based 

on whether the maximum pressure in a pipeline following column separation results in a short-

duration pressure pulse that exceeds the magnitude of the Joukowsky pressure rise for rapid valve 

closure. 

 

INTRODUCTION 

Water hammer in a pipeline results in column separation when the pressure drops to the vapor 

pressure of the liquid. A negligible amount of free and released gas in the liquid is assumed during 

column separation in most industrial systems (Hansson et al. 1982; Wylie 1984). Two distinct types of 

column separation may occur. The first type is a localized vapour cavity with a large void fraction. A 

localized (discrete) vapour cavity may form at a boundary (e.g., closed valve or dead end) or at a high 

point along the pipeline. In addition, an intermediate cavity may form as a result of the interaction of 

two low-pressure waves along the pipe. The second type of column separation is distributed vaporous 

cavitation that may extend over long sections of the pipe. The void fraction for the mixture of the 

liquid and liquid-vapor bubbles in distributed vaporous cavitation is small (close to zero). This type of 

cavitation occurs when a rarefaction wave progressively drops the pressure in an extended region of 

the pipe to the liquid vapour pressure. Both the collapse of a discrete vapor cavity and the movement 

of the shock wave front into a distributed vaporous cavitation region condenses the vapor phase back 

to the liquid phase. Piping systems may therefore experience combined water hammer and column 

separation effects during transient events (Streeter 1983; Bergant and Simpson 1992; Wylie and 

Streeter 1993). 

 

The location and intensity of column separation is influenced by several system parameters including 

the type of transient regime (rapid closure of the valve, pump failure, turbine load rejection), layout of 

the piping system (pipeline dimensions, profile, and position of the valves), and hydraulic 

characteristics (flow velocity, pressure head, pipe wall friction, cavitational properties of the liquid, 

and pipe walls). The combination of several influential parameters creates difficulties in modeling and 

laboratory testing of the phenomena. Due to both a lack of understanding and the occurrence of 

industrial accidents resulting from column separation phenomena (Bonin 1960; Parmakian 1985; 

Almeida 1992), designers often go to great lengths to avoid column separation in pipelines, although 

there are some systems in which column separation has been accepted (Provoost 1976). Engineers, 

however, should be able to estimate column separation effects, at least for the case of the general 

failure of the surge protection devices (safety analysis). 

 

Practical implications of column separation led to intensive laboratory and field research starting at 

the end of 19th century (Joukowsky 1900). Column separation experiments have been performed 

worldwide in at least 34 experimental apparatuses (pipe diameter 0.01–0.1 m, length 10–100 m) and 7 

industrial installations (up to a pipe diameter of 2.0 m, length 1,000– 10,000 m) (Bergant 1992). The 

experiments were mainly performed to verify numerical models. Several researchers found that for a 

simple reservoir-pipeline-valve system, the pressure rise after the cavity collapse at the valve may or 



may not exceed the Joukowsky pressure rise and that cavities may form at the boundary or along the 

pipe (Martin 1983; Simpson 1986; Carmona et al. 1988; Brunone and Greco 1990; Simpson and 

Wylie 1991; Anderson et al. 1992; Bergant 1992). Martin (1983) defined the intensity of column 

separation as either limited, moderate, or severe cavitation with respect to the ‘‘number of cavitation 

bubbles’’ that may form in the pipeline. A similar definition has been introduced by Fan and 

Tijsseling (1992) for column separation induced by structural axial waves in a closed pipe. It is rather 

difficult to develop design criteria on the basis of cavitation intensity with the limited data available 

(Anderson et al. 1992; Bergant 1992). 

 

The main objective of this paper is to develop an approach to identify column separation modes for a 

broad range of parameters, including initial flow velocity, static head, and pipe slope. The physical 

state of the liquid (either water hammer or column separation) and the maximum pipeline pressure 

(design criteria) are the two governing parameters identifying the modes of behavior (Bergant 1992). 

A combined experimental-theoretical analysis of column separation flow regimes is performed for the 

rapid closure of a downstream end valve in the experimental apparatus (Bergant and Simpson 1995). 

In addition, a generalized set of pipeline column separation equations describing the particular state of 

the liquid is presented with analytical and numerical methods for solving these equations. A column 

separation algorithm for various types of pipe configurations and various cases of flow interactions is 

developed with the aid of existing numerical tools. The discrete vapor cavity model (DVCM), the 

discrete gas cavity model (DGCM), and the generalized interface vaporous cavitation model (GIVCM) 

are compared with measured results. 

 

PIPELINE COLUMN SEPARATION EQUATIONS 

Column separation in pipelines may be described by a set of 1D equations representing a particular 

physical state of the fluid. These equations include water hammer equations for the liquid phase, two-

phase flow equations for a distributed vaporous cavitation region, shock equations for condensation of 

liquid-vapor mixture back to the liquid, and equations for a discrete vapor cavity separating a liquid 

and/or a vaporous cavitation region. 

 

Water Hammer Equations 

Water hammer equations for transient liquid flow are valid only when the pressure is above the liquid 

vapor pressure and include the continuity equation and equation of motion (Wylie and Streeter 1993) 
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in which H = piezometric head (hydraulic grade line); t = time; V = flow velocity; x = distance; θ = 

pipe slope; a = water hammer wave speed; g = gravitational acceleration; f = Darcy-Weisbach friction 

factor; and D = pipe diameter. 

 

Two-Phase Flow Equations for Distributed Vaporous Cavitation Region 

A distributed vaporous cavitation region (zone) is described by the two-phase flow equations for a 

homogeneous mixture of liquid and liquid-vapor bubbles (liquid-vapor mixture). Pressure waves do 

not propagate through an established distributed vaporous cavitation zone because it is at an assumed 

constant vapor pressure. Two-phase flow equations are the continuity equation and equation of 

motion (Bergant and Simpson 1992; Wylie and Streeter 1993) 
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in which αυ = void fraction of vapor; and Vm = liquid-vapor mixture velocity. 

 

Shock Equations for Condensation of Liquid-Vapor Mixture Back to Liquid 

A distributed vaporous cavitation region expands by propagating into a water hammer region. 

Eventually, the distributed vaporous cavitation region stops expanding and the boundary separating 

the water hammer and vaporous cavitation regions commences to move back into the cavitation 

region. The progression of the liquid into the liquid-vapor mixture or the collapse of a discrete vapor 

cavity separating the mixture zone(s) (end or intermediate cavity) condenses the liquid-vapor mixture 

back to liquid. The liquid is then compressed to a pressure that is greater than the liquid-vapor 

pressure. The movement of the interface (shock wave front) separating the one-phase fluid (liquid) 

and the two-phase fluid (liquid-vapor mixture) is described by the shock equations. The shock 

equations developed for the control volume shown in Fig. 1 are the continuity equation and equation 

of motion (Bergant and Simpson 1992) 
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in which as = shock wave speed; Hs = piezometric head on the water hammer side of the shock wave 

front; and Hsυ = piezometric head on the distributed vaporous cavitation side of the shock wave front. 

The shock wave equations are coupled with water hammer and liquid-vapor mixture equations. 

 

 
Fig 1: Control Volume for Shock Equations 

 

Equations for a Discrete Vapor Cavity 

The growth and subsequent decay of a localized (discrete) vapor cavity is defined by the following 

continuity equation (Streeter 1969): 
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in which ∀υc = discrete vapor cavity volume; tin = time of inception of the discrete vapor cavity; A = 

pipe area; V = outflow velocity at the downstream side of the vapor cavity; and Vu = inflow velocity at 

the upstream side of the vapour cavity. The continuity equation is coupled to the water hammer and/or 

two-phase liquid-vapor mixture flow equations to account for flow velocities. 

 

ANALYTICAL AND NUMERICAL TOOLS 

The governing equations are solved separately for water hammer regions [(1) and (2)], distributed 

vaporous cavitation zones [(3) and (4)], the movement of the shock wave fronts [(5) and (6)], and 

discrete vapor cavities [(7)]. A simple form of the method of characteristics water hammer 



compatibility equations C1 and C2 is used in most column separation models (Wylie and Streeter 

1993; Simpson and Bergant 1994) 
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in which ∆x = reach length; ∆t = time step; BM, BP, CM, and CP = known constants in water hammer 

compatibility equations; Quj = discharge at the upstream side of the computational section j; and Qj = 

discharge at the downstream side of the section. Incorporating discrete vapor cavities into the water 

hammer solution methods leads to the DVCM (Streeter 1969; Wylie and Streeter 1993; Simpson and 

Bergant 1994). Coupling the complete set of column separation methods gives the interface vaporous 

cavitation (consolidation) model—GIVCM (Streeter 1983; Bergant and Simpson 1992). 

 

Analytical and Numerical Integration for Two-Phase Flow Liquid-Vapor Mixture Equations 

Eqs. (3) and (4) can be solved analytically (Streeter 1983). An approach to the solution of the two 

equations for an upward sloping pipe by Simpson (1986), and then extended to a downward sloping 

and horizontal pipe by Bergant (1992), is presented. Introducing the total derivative, the velocity of 

liquid- vapor mixture Vm is first calculated from (4) by analytical integration, then the void fraction αυ 

is estimated by numerical integration of (3). 

 

The solution of (4) for Vm depends on the pipe slope (upward, downward, or horizontal) and the 

inception velocity of the liquid-vapor mixture Vmi at time of cavitation inception ti at a distance x 

along the pipeline, at which the pressure drops to the liquid-vapor pressure. The inception velocity Vmi 

is calculated from (8) or (9) within the method of characteristics numerical grid with the pressure set 

to the vapor pressure. The results of integration for Vm are as follows (Bergant 1992). 

 

Sloping Pipe with θVmi > 0 

There are two situations for this case: (1) θ is positive and Vmi is positive; or (2) θ is negative and Vmi 

is negative. 

 

Before flow reversal: 
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in which Vmt = (2gD|sinθ|/ f )
1/2

 = terminal velocity of the liquid-vapor mixture in the sloping pipe and 

sign(θ) = (+1 for θ > 0 or -1 for θ < 0). 

 

After flow reversal: 
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in which the time of flow reversal tr is 
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Sloping Pipe with uVmi < 0 

 

There are two situations for this case: (1) θ is positive and Vmi is negative; or (2) θ is negative and Vmi 

is positive 
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Horizontal Pipe 
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in which sign(Vmi) = (+1 for Vmi > 0 or -1 for Vmi < 0). Numerical integration of (3) at time t for the 

void fraction αυ over a time step ∆t, assuming a weighting factor ψ in time direction (Wylie 1984), 

gives 
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in which j = number of the upstream node; and j + 1 = number of the downstream node for the 

computational reach k of length ∆x (∆x = a∆t). 

 

Newton-Raphson Method for Coupled Shock Equations 

Eqs. (5) and (6) form a system of algebraic equations describing the movement of the shock wave 

front into the liquidvapor mixture. The shock equations are coupled with (8) or (9), depending on the 

direction of travel of the interface, the kinematic equation for the length of the front movement, and 

the equation of motion for the liquid plug condensed over a part of the reach. Let L be the distance to 

the shock interface measured from the nearest computational section (through the liquid plug). The 

kinematic equation for the position of the shock interface as it moves from Lt-∆t to Lt during the time 

step ∆t is 
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The equation of motion written for the liquid plug of length Lt is 
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in which sign(as) = (+1 for as > 0 or -1 for as < 0); and Hj = piezometric head at the upstream side of 

the liquid plug at computational section j. Note that Quj = Qj at the upstream end of the liquid plug. 

 

The unknowns in the above system are Hj, Hs at the water hammer side of the interface, and Qj, as, 

and Lt. Vm is calculated directly from one of (10)–(14) and αυ from (15). This system of nonlinear 

equations is solved by the Newton-Raphson method (Carnahan et al. 1969). The development of 

shock equations for the collapse of an intermediate cavity located between two distributed vaporous 

cavitation regions and for the end boundary conditions (e.g., reservoir, valve) is described in the 

literature [e.g., Simpson (1986), Bergant (1992), and Bergant and Simpson (1992)]. 

 

Numerical Integration of Discrete Vapor Cavity Continuity Equation 

The volume of a discrete cavity given by (7) is solved by numerical integration using a weighting 

factor c in the time direction within the staggered grid of the method of characteristics (Wylie 1984; 

Simpson and Bergant 1994) 
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The discharges on either side of the cavity are given by (8) and (9) (with the pressure set to the vapor 

pressure) as the two adjacent sections are in the water hammer region. One of (10)–(14) is used when 

a reach adjacent to the discrete vapour cavity becomes a vaporous cavitation region. The cavity 

collapse (that occurs when the cumulative cavity volume becomes less than zero) generates water 

hammer and/or shock waves. 



DVCM 

The DVCM for simulating pipeline column separation is used in most engineering transient 

simulation software packages (Safwat et al. 1986). The model allows vapor cavities to form at any 

computational section in the method of characteristics when the pressure at the section is calculated to 

drop to or below the liquid vapor pressure (Streeter 1969; Wylie and Streeter 1993). A liquid phase 

with a constant wave speed a between the computational sections is assumed. It is recommended that 

the staggered grid should be used in preference to the normal rectangular grid (Simpson and Bergant 

1994). 

 

The DVCM may generate unrealistic pressure spikes associated with multicavity collapse. The model 

approximately represents the real physical situation when a distributed vaporous cavitation zone is 

established and then condensed back to the liquid phase (often with a highly variable shock wave 

speed). The DVCM gives reasonably accurate results when the number of reaches is restricted (the 

ratio of maximum cavity size to reach volume should be below 10%) and sensitivity analysis to input 

parameters is performed (Simpson and Bergant 1994). 

 

A number of variations of the standard DVCM have been introduced (Safwat and van der Polder 1973; 

Kot and Youngdahl 1978; Provoost and Wylie 1981; Miwa et al. 1990) to improve the performance of 

the DVCM. The DGCM developed by Provoost and Wylie (1981) performs consistently over a broad 

range of parameters when a small gas void fraction at the computational section (αg ≤ 10
-7

) is selected 

(Barbero and Ciaponi 1992; Bergant 1992; Simpson and Bergant 1994). The growth and collapse of 

the gas cavity is calculated from (8), (9), and (18) and the ideal gas equation (Wylie and Streeter 

1993). 

 

GIVCM 

An interface vaporous cavitation (consolidation) model couples the complete set of analytical and 

numerical methods for solving pipeline column separation equations into a single algorithm (Streeter 

1983; Simpson 1986; Bergant 1992; Bergant and Simpson 1992). The GIVCM for a number of 

pipeline configurations (sloping and horizontal pipe) and various interactions between water hammer 

regions, distributed vaporous cavitation zones, intermediate cavities (along the pipeline), and cavities 

at boundaries (valve, high point) has been developed (Bergant 1992; Bergant and Simpson 1992). 

 

The standard DVCM algorithm allows cavities to form at computational sections in the staggered grid 

of the method of characteristics (Wylie and Streeter 1993; Simpson and Bergant 1994) and has been 

used as a basis for the development of the GIVCM. The incorporation of the distributed vaporous 

cavitation zones, shock waves, and various types of discrete cavities are important features in 

modifying the standard DVCM. 

 

The GIVCM algorithm maintains the same basic structure as the DVCM. Transient analysis is first 

performed at interior and then at boundary computational sections. A loop for the shock treatment at 

appropriate computational sections is added to the basic DVCM loop in which a module for combined 

discrete vapor cavity and distributed vaporous cavitation computation is incorporated. The algorithm 

is supported by flags to control the correct physical behavior of various phase interactions and to 

identify possible new interactions. Each physical flow condition at a computational section j (either 

liquid, discrete vapor cavity, vaporous mixture, or shock wave front) is compared with flow 

conditions within the upstream and downstream computational pipe reaches and at computational 

sections j – 1 and j + 1. 

 

The GIVCM performs consistently over a broad range of parameters (Bergant 1992). More accurate 

treatment of distributed vaporous cavitation zones, shock waves, and various types of discrete cavities 

contribute to improved performance of the pipe column separation model. The drawback of the model 

in comparison with the discrete cavity models is the complex structure of the algorithm and longer 

computational time for the run (CPU). Complexity of flow conditions (combinations of various 

regions) and pipeline configurations govern the CPU usage. Details of CPU run times for each of the 

models are given in the results section of this paper. 



EXPERIMENTAL APPARATUS 

A flexible experimental apparatus for investigating water hammer and column separation events in 

pipelines has been designed and constructed (Bergant 1992; Bergant and Simpson 1995). The 

apparatus shown in Fig. 2 is composed of a copper straight 37.23 m (Ux = ±0.01 m) long sloping 

pipeline of 22.1 mm (Ux = ±0.1 mm) internal diameter and 1.6 mm (Ux = ±0.05 mm) wall thickness 

connecting two pressurized tanks (where Ux = uncertainty in a measurement expressed as a rootsum- 

square combination of bias and precision errors) [see Coleman and Steele (1989)]. The pipe slope has 

a constant value of θ = 3.2° or 1 (vertical) to 18.3 (horizontal). The design pressure of the pipeline is 

5,000 kPa. Demineralized water was used as the fluid. 

 

 
Fig 2: Experimental Apparatus Layout 

 

A pressure control system for maintaining a specified pressure in each of the tanks enables the 

simulation of transients in either an upward or a downward sloping pipeline. The pressure in both 

tanks may be regulated from 20 to 620 kPa to simulate low-head or medium-head hydraulic systems. 

However, the net water volume in both tanks and the capacity of the air compressor limit the 

maximum steady-state velocity to 1.5 m/s and maximum operating pressure (pressure head) in each 

tank to 400 kPa (40 m). 

 

Water hammer events including column separation in the experimental apparatus are initiated by rapid 

closure of a ball valve. The valve can be located at either end of the pipeline adjacent to either tank or 

at the midpoint of the pipeline; thus, simulation of various types of pipe configurations can be 

performed. The valve is closed by a torsional spring actuator or it is closed manually by hand. The 

actuator provides a constant and repeatable valve closure time. The spring is pretensioned to vary the 

closure time from 5 to 10 ms. The effective valve closure (actual flow decrease) time is about 40% of 

the total valve closure time, i.e., from 2 to 4 ms. 

 

Pressure transducers are located at five equidistant points along the pipeline, as close as possible to 

the endpoints. The piezoelectric pressure transducers (Kistler 610 B) are positioned at the endpoints 

and at the midpoint, whereas the straingauge transducers (Druck PDCR 810) are installed at all five 

points. In addition, the water temperature in Tank 1 is continuously monitored and the valve position 

during closure is measured precisely using optical sensors. Data acquisition and processing were 

performed with a Concurrent 6655 real-time UNIX data acquisition computer. A flow visualization 

block of a polycarbonate (Lexan) of 150 mm length and 22.1 mm internal diameter is also 

incorporated into the pipeline system. A high-speed video was used to photograph the evolution and 

collapse of vapor cavities at the valve (Bergant and Simpson 1996). 



After an initial steady state is established, a transient event is initiated by a rapid valve closure. The 

measured steady-state quantities include the pressure in each tank (Ux = ±0.3%), barometric pressure 

(Ux = ±0.1 kPa), and ambient temperature (Ux = ±0.5°C). The time-dependent quantities are 

pressures at five equidistant points along the pipeline (Ux = ±0.7% for the piezoelectric pressure 

transducers, Ux = ±0.3% for the straingauge pressure transducers), valve closure time (Ux = ±0.0001 

s), and water temperature (Ux = ±0.5°C). The initial steadystate velocity in a pipeline is measured 

indirectly by the volumetric method (Ux = ±1%) and the water hammer method (Ux = ±0.7%). The 

flow velocity determined by the volumetric method is proportional to the change in water level over a 

period of time in either of the upstream or downstream tanks. The water hammer method pipe flow 

velocity is computed from the Joukowsky pressure head rise or pressure head drop (for water hammer 

case only) resulting from a fast closure of the valve. The wave-propagation velocity (Ux = ±0.1%) is 

obtained from the measured time for a water hammer wave to travel between the closed valve and the 

quarter point nearest the valve. 

 

NUMERICAL AND EXPERIMENTAL FINDINGS 

Numerical and experimental analysis of the influence of a number of quantities on column separation 

events in the experimental apparatus (Fig. 2) is presented including initial flow velocity, static head, 

and pipe slope. Numerical results from the DVCM, DGCM, and GIVCM are compared with results of 

measurements. Computational and experimental runs were performed for a rapid closure of the valve 

positioned at the downstream end of the sloping pipe (upward, downward; Fig. 2). The valve closure 

time for all runs was identical, tc = 0.009 s (the effective time of closure is 0.004 s), which is 

significantly shorter than the water hammer wave reflection time of 2L/a = 2 × 37.23/1,319 = 0.056 s 

(a = 1,319 m/s is the measured wave speed). The sampling frequency for each dynamic measured 

quantity in the apparatus was fs = 5,000 Hz. The results of similar initial conditions showed a high 

degree of repeatability of the magnitude and timing of main pressure pulses, whereas some high-

frequency spikes did not exhibit similar repeatability (Bergant and Simpson 1995; Simpson and 

Bergant 1996). Pressures measured at the equidistant points along the pipe are compared with 

computational results as piezometric heads (or heads) with a datum level at the top of the pipe at Tank 

2 (elevation 0.0 m in Fig. 2). 

 

The rapid valve closure begins at time t = 0.0 s. The numerical parameters selected in each of the 

three column separation models and for each computational run are the number of reaches N = 16, a 

weighting factor of ψ = 1.0; and in addition, a gas void fraction αg = 10
-7

 was used in DGCM (Wylie 

1984). The number of reaches was restricted to ensure reasonably accurate DVCM predictions 

(Anderson and Arfaie 1992; Simpson and Bergant 1994). A steady-state friction model was used in all 

computational runs (Bergant and Simpson 1994). 

 

The temporal behavior of measured and computed piezometric heads at selected sections along the 

experimental pipe is presented for five distinct runs to present the influence of the initial velocity, 

static pressure head in each tank, and pipe slope on a column separation event. The strengths and 

weaknesses of the DVCM, DGCM, and GIVCM are assessed. In addition, a global comparison is 

made for a total of 60 runs for two different static tank heads (measured at the valve) for both an 

upward and downward sloping pipe to verify the robustness of the models for a broad range of 

parameters. 

 

Comparison of Numerical and Experimental Runs for Different Initial Flow Velocities 

The results for two distinct different flow velocity cases in an upward sloping pipe (Fig. 2) V0 = (0.30; 

1.40) m/s for a constant upstream end reservoir head (Tank 2) HT,2 = 22.0 m are presented. The low-

velocity case represents a column separation event with a maximum pressure larger than the 

Joukowsky valve closure pressure; the high-velocity column separation case generates a maximum 

pressure lower than the valve closure pressure. 

 

Numerical model and measured piezometric heads at the valve Hυ,1, at two quarter points Hq,1 and Hq,2, 

and at the midpoint Hmp (Fig. 2) are presented for the low-velocity case V0 = 0.30 m/s. The head 

adjacent to the upstream end reservoir (Hv,2 for the upward sloping pipe in Fig. 2) is the reservoir head. 



A comparison of experimental results and results for DVCM, DGCM, and GIVCM is shown in Figs. 

3–5, respectively. 

 

 
Fig 3: Comparison of Heads along Upward Sloping Pipe for DVCM and Measured Results; V0 = 0.30 m/s 

 

 
Fig 4: Comparison of Heads along Upward Sloping Pipe for DGCM and Measured Results; V0 = 0.30 m/s 

 

 
Fig 5: Comparison of Heads along Upward Sloping Pipe for GIVCM and Measured Results; V0 =0.30 m/s 



The valve closure for V0 = 0.30 m/s generates water hammer (Hυ,1 = 62.5 m) and subsequent column 

separation at the valve in a time of 0.0662 s. Pressure at the three locations along the pipe is above the 

vapor pressure [flat hydraulic grade line (HGL)]. The cavity at the valve collapsed in a time of 0.1298 

s. The head generated by the cavity collapse is less than the water hammer head. The maximum 

measured head Hmax;υ,1 = 95.6 m occurs in a time of 0.1842 s as a narrow short-duration pressure pulse 

(Simpson 1986), resulting from the superposition of the collapsed cavity head and the reservoir wave 

head doubled by the wave reflection from the closed valve. The magnitude of the short-duration 

pressure pulse predicted by DVCM, DGCM, and GIVCM Hmax;υ,1 = (102.4; 101.9; and 102.5) m is 

higher when compared with the experimental result. There is good agreement between the results for 

the maximum peak at two quarter points and at the midpoint. The duration of the first cavity at the 

valve !∀max;υ,1 = [measurement: 0.0636 s (2.253L/a); DVCM, DGCM, GIVCM: 0.0635 (2.253L/a)] s is 

controlled by the amount of the water hammer head decrease to the vapor pressure head when the 

wave is reflected off the closed valve at 2L/a (76% of the Joukowsky head ∆H = aV0/g = 1319 × 

0.30/9.81 = 40.3 m) and flow conditions in the pipeline (head in the upstream end tank, pipe friction, 

and pipe slope). The timing match between the DVCM, DGCM, and GIVCM and the experimental 

results is good until 0.22 s, when the pressure at the three sections along the pipeline drops to the 

vapor pressure for the first and the last time during a transient event. The measured piezometric head 

traces along the pipe (Hq,1, Hmp, and Hq,2) indicate the formation of an intermediate cavity between the 

reservoir (Tank 2) and the upstream end one-quarter point (Hq,2) followed by propagation of a 

distributed vaporous cavitation region from the cavity toward the valve passing Hq,2 in a time of 0.216 

s, Hmp of 0.223 s, and Hq,1 of 0.230 s. Pressure traces at the two quarter points and the midpoint show 

a similar behavior. Pressure measurements at three different locations along the pipe enables accurate 

tracing of intermediate cavities and propagation of a vaporous cavitation zone formed along the 

pipeline. All three numerical models predict the formation of an intermediate cavity 4.65 m away 

from the upstream end reservoir at 0.212 s, resulting in propagation of a negative wave toward the 

reservoir passing Hq,2 at 0.215 s, Hmp at 0.222 s, and Hq,1 at 0.229 s. The differences between the 

numerical results and the results of measurements increase after this time. All three models predict the 

maximum volume of the intermediate cavity of ~0.05% of reach volume and the time of cavity 

collapse at 0.222 s. The collapse of the intermediate cavity is indicated as a high-frequency, low-

amplitude pressure head spike superimposed with the reservoir wave traveling toward the valve, and 

is subsequently attenuated in succeeding pressure rise traces. The major difference between the three 

models is in the physical description of a distributed vaporous cavitation zone that expands from the 

intermediate cavity toward the valve and is subsequently condensed back to the liquid phase. 

Expansion and compression of the liquid-vapor mixture in DVCM and DGCM is described by 

discrete cavities lumped at computational sections. The distributed vaporous region in GIVCM is 

described by two-phase flow equations; the mixture is condensed back to the liquid phase by an 

incoming shock wave front. Experimental results exhibit an additional low-amplitude pressure spike 

that was not predicted by the three models. The increased differences in timing between the computed 

and experimental results for the third and fourth major pressure pulse are likely due to unsteady 

friction effects (pressure above the vapor pressure). The ratio of the CPU user time for 

DVCM:DGCM:GIVCM is 1:1.6:2.4. 

 

The maximum head at the valve for a velocity of 1.40 m/s is the water hammer head generated at a 

time of 2L/a after the valve closure (Fig. 6). The water hammer head predicted by DVCM, DGCM, 

and GIVCM Hmax;υ,1 = 210 m matches the measured head. Vaporous cavitation occurs in the pipeline 

(Fig. 7) following the formation of a vapor cavity at the valve (steep HGL slope). The duration of the 

first cavity at the valve !∀max;υ,1 = [measurement: 0.318 (11.27L/a); DVCM: 0.307 (10.87L/a); DGCM: 

0.310 (10.99L/a); GIVCM: 0.312 (11.05L/a)] s is much longer than the duration of the cavity for the 

experimental run with velocity 0.30 m/s. Only 18% of the negative water hammer head is reduced to 

reach the vapour pressure head at 2L/a. Head in the upstream end tank is relatively small compared 

with the water hammer head (12% for the 1.40-m/s case and 35% for the 0.30-m/s case). The head 

trace at the midpoint Hmp (Fig. 7) shows the existence of distributed vaporous cavitation regions, 

intermediate cavities, and shock waves. The shock waves gradually transform to water hammer waves 

before a large cavity collapses at the valve. The amount of released air is negligible because the wave 

induced by the cavity collapse at the valve propagates with a water hammer wave speed as a sharp 



wavefront. It appears that higher-intensity cavitation along the pipeline blurs the short-duration 

pressure pulse after the first cavity collapses at the valve (Fig. 6); however, the magnitude of the 

pressure pulse incorporates the pulse due to cavity collapse and pulse reflected off the upstream end 

tank. Timing for the three numerical models is faster than for the experimental results, and this is 

more noticeable for DVCM results. In addition, DVCM exhibits a high-frequency pressure spike just 

prior to the collapse of the second cavity [Fig. 6(a)]. Again, the discrepancies between the numerical 

results are attributed to the different physical descriptions of vaporous cavitation and resulting 

phenomena along the pipeline. The maximum cavity volume at the valve for all three models is 4% of 

the reach volume; maximum cavity volumes along the pipeline are different. The order of magnitude 

of DVCM and DGCM cavity volumes at 15 interior computational sections is ~10–1,000 times 

smaller than the cavity volume at the valve. A small amount of gas in a cavity appears to give more 

realistic behavior. The GIVCM generates intermediate cavities at 12 interior sections during the 

transient event with about the same size of the cavity volume as for DVCM and DGCM. Shock 

celerities, as the shock moves into the vaporous zone, are 20–1,300 m/s. The ratio of the CPU user 

time for DVCM:DGCM:GIVCM is 1:1.6:5. 
 

 
Fig 6: Comparison of Heads at Valve in Upward Sloping Pipe for DVCM, DGCM, GIVCM, and 

Measured Results; V0 = 1.40 m/s 

 

 
Fig 7: Comparison of Heads at Midpoint in Upward Sloping Pipe for DVCM, DGCM, GIVCM, and 

Measured Results; V0 = 1.40 m/s 



The upward sloping pipe allows (taking into account the initial flow conditions, pipe slope, and first 

cavity opening at the valve) the discrete cavity to be formed at the valve only (flat HGL) or discrete 

cavity at the valve and distributed vaporous cavitation region along the pipeline (steep HGL) 

(Simpson 1986; Bergant 1992). 

 

Comparison of Numerical and Experimental Runs for Different Reservoir Static Heads 

The results for two different static heads in the upstream end reservoir HT,2 = (12.0; 22.0) m (Tank 2 

in Fig. 2), and initial flow velocity V0 = 0.30 m/s, are compared in Figs. 8 and 9. A valve closure for 

HT,2 = 12.0 m generates column separation with a wide short-duration pressure pulse (Fig. 8) 

compared with HT,2 = 22.0-m column separation with a narrow short-duration pressure pulse [Figs. 3–

5 and 8(d)]. Again, the duration of the first cavity at the value is governed by the amount of valve 

closure head reduction to reach the vapour pressure head at 2L/a (60% of Joukowsky head ∆H for HT,2 

= 12.0 m compared with 76% of ∆H for HT,2 = 22.0 m); the time of cavity existence at the value of 

3.524L/a for HT,2 = 12.0 m is correspondingly longer than 2.253L/a for HT,2 = 22.0 m. Similarly, the 

magnitude and existence of the short-duration pressure pulse are dependent on the magnitude of the 

reservoir wave and relative timing of the cavity collapse at the valve and the reservoir wave reflection, 

respectively. The narrow pressure pulse occurs when the cavity at the valve collapses soon after the 

reflection of the reservoir wave off the cavity [Figs. 3–5 and 8(d)]; when the cavity at the valve 

collapses just prior to the reflection of the reservoir wave off the closed valve a wider pressure pulse 

occurs (Fig. 8) (Simpson 1986; Simpson and Wylie 1991; Bergant 1992). The decrease of static head 

at identical initial flow velocity results in a reduced amplitude of short-duration pressure pulse (lower 

amplitude reservoir wave) and more intense cavitation. All three numerical models accurately predict 

the magnitude of the wide short-duration pressure pulse and the duration of the first cavity at the valve 

in comparison with experimental results (Fig. 8).Timing for DVCM and DGCM is slightly slower for 

the third and fourth pressure pulses. The ratio of the CPU user time for DVCM:DGCM:GIVCM is 

1:1.7:3.3. 

 

 
Fig 8: Comparison of Computed and Measured Heads at Valve in Upward Sloping Pipe for Different 

Static Heads; V0 = 0.30 m/s 

 

Comparison of Numerical and Experimental Runs for Different Pipe Slopes 

The influence of pipe slope when comparing experimental runs for a downstream end valve closure in 

a downward (θ = −3.2°) and an upward (θ = +3.2°) sloping pipe (Fig. 2), for an identical initial flow 

velocity V0 = 0.71 m/s and static pressure head at the valve of 20.0 m (HT,1 = 20.0 m; HT,2 = 22.0 m), 

is investigated. Computed and measured heads at the valve Hυ and at the midpoint Hmp are shown in 

Figs. 10 and 11, respectively. The maximum computed heads in the downward sloping pipe Hmax;v,2 = 

(DVCM: 115.3; DGCM: 117.0; GIVCM: 115.3) m are slightly lower than the maximum measured 

head Hmax;v,2 = 122.1 m. The maximum head for DGCM and measurement occurs after the first cavity 

collapse; whereas the valve closure head is the maximum head for DVCM and GIVCM. The 

maximum computed and measured head in the upward sloping pipe Hmax;v,1 = 117.4 m is the water 



hammer head. The duration of the first cavity at the valve in the downward sloping pipe !∀max;υ,1 = 

[measurement: 0.1626 (5.761L/a); DVCM, DGCM, GIVCM: 0.1622 (5.745L/a)] s is slightly shorter 

than in the upward sloping !∀max;υ,1 = [measurement: 1 0.1668 (5.910L/a); DVCM, DGCM, GIVCM: 

0.1657 (5.870L/ a)] s. The slightly different timing of the cavity collapse at the valve (Fig. 10) and 

intensity of cavitation along the pipeline (Fig. 11) are caused by the difference in head envelope 

(hydraulic grade line) and pipe slope (profile), and the direction of the action of gravity. The gravity 

force is acting in the positive direction in the downward sloping pipe and in the negative direction in 

the upward sloping pipe relative to the position of the valve with a large cavity. More intense 

cavitation along the pipe in the downward sloping pipe (Fig. 11) blurs the short-duration pressure 

pulse at the valve (Fig. 10). The pressure pulse in the upward sloping pipe resembles the wide short-

duration pressure pipe. In addition, the downward sloping pipe allows a distributed vaporous 

cavitation region and intermediate cavities to form along the pipe prior to the discrete cavity opening 

at the valve. The three numerical models do not predict some of the high-frequency, low-amplitude 

pressure spikes found by measurements. The ratio of CPU user time for the downward sloping pipe 

run for DVCM, DGCM, GIVCM is 1:1.7:3.7, and for the upward sloping run it is 1:1.7:2.5. 

 

 
Fig 9: Comparison of Computed and Measured Heads at Midpoint in Upward Sloping Pipe for Different 

Static Heads; V0 = 0.30 m/s 

 

 
Fig 10: Comparison of Computed and Measured Heads at Valve in Upward and Downward Sloping Pipe; 

V0 = 0.71 m/s 

 



 
Fig 11: Comparison of Computed and Measured Heads at Midpoint in Upward and Downward Sloping 

Pipe; V0 = 0.71 m/s 

 

Global Comparison of Numerical and Experimental Results 

The results of computations and measurements are compared for a number of flow regimes initiated 

by a rapid closure of the valve in a downward and an upward sloping pipe (Fig. 2). A comparison is 

made for 15 initial velocities V0 = (0.10– 1.50; velocity increment 0.10 ± 0.02) m/s at two identical 

static heads at the valve of 10.0 and 20.0 m [HT,1 = (10.0; 20.0) m for θ = 23.2°; HT,2 = (12.0; 22.0) m 

for θ = 13.2°]. The objective of the analysis is to verify the performance of the three column 

separation models (DVCM, DGCM, and GIVCM) for a broad range of parameters (robustness of the 

models). 

 

A comparison is made for the ratio of maximum head rise at the valve (Hmax – H0)υ to the Joukowsky 

head rise aV0/g (Fig. 12) in which H0 = steady-state head at the valve. A pipeline must be designed to 

withstand the maximum and minimum pressure (vapor pressure for column separation case). Fig. 12 

shows that all three models give accurate maximum pressure for velocity cases with a maximum head 

rise equal or slightly higher than the Joukowsky head rise. The discrepancies between computed and 

measured results increase for velocity cases generating narrow short-duration pressure pulses. The 

occurrence of narrow short-duration pressure pulses may be observed from Fig. 13, showing the 

duration of the maximum cavity volume at the valve !∀max;υ,1 (first cavity) to the reflection time L/a 

(also see Figs. 3, 4, or 5). A narrow short-duration pressure pulse occurs for !∀max;υ,1 slightly higher 

than an exact multiple of 2L/a. The GIVCM gives slightly better results than DVCM and DGCM for 

these cases. There is reasonable agreement between the computed and measured !∀max;υ,1 for all three 

models and velocity cases (Fig. 13). The maximum cavity volume at the valve of 6.2% of the reach 

volume occurs for the case with V0 = 1.50 m/s, HT,2 = 12.0 m, and θ = 13.2°. 

 

The discrepancies between the measured and computed results found by temporal and global 

comparisons may be attributed to approximate modeling of column separation along the pipeline 

(distributed vaporous cavitation region, actual number, and position of intermediate cavities), 

resulting in slightly different timing of the cavity collapse and superposition of the waves (Bergant 

1992; Simpson and Bergant 1994). In addition, discrepancies may also originate from discretization in 

the numerical models [∆t = L/(aN) = 37.23/(1319 × 16) = 0.00176 s], the unsteady friction term being 

approximated as a steady-state friction term and uncertainties in measurement (Simpson and Bergant 

1996). 

 

Classification of Column Separation Flow Regimes 

A parametric numerical analysis has been performed to compute critical flow conditions and to 

predict column separation flow regimes for a broad range of parameters including the flow velocity 

and static upstream tank head in the upward and downward sloping pipes (Fig. 2). The numerical 



analysis is carried out using the DGCM. Transient regimes in the upward and the downward sloping 

pipe for a rapid closure of the downstream end valve were investigated for 151 initial flow velocities 

V0 = (0.05–1.55, velocity increment 0.01) m/s and 5 static heads in the upstream end tank HT = [5.0, 

10.0, 15.0, 20.0, 25.0 for θ = 23.2°; and 7.0, 12.0, 17.0, 22.0, 27.0 for θ = 13.2° (Fig. 2)]. The 

parameters selected for each computational run are identical to parameters selected for the model and 

measurement comparison analysis (valve closure time tc = 0.009 s, wave speed a = 1319 m/s, number 

of reaches N = 16, gas void fraction αg = 10
-7

, and weighting factor ψ = 1.0). 

 

 
Fig 12: Comparison of Maximum Head at Valve for Computed and Measured Results 

 

 
Fig 13: Comparison of Duration of Maximum Cavity Volume at Valve for Computed and Measured 

Results 

 

Numerical results are presented for the maximum piezometric head at the valve Hmax;υ [Figs. 14(a) and 

14(b)] and for the ratio of maximum pressure head rise (Hmax – H0)υ to the Joukowsky pressure head 

rise aV0/g [Figs. 14(c) and 14(d)]. Hmax;υ is the maximum head in the pipeline during water hammer 

and column separation events. 

 

Numerical results clearly show the influence of the initial velocity, static upstream tank head, and pipe 

slope on the maximum head at the valve as found by the model and measurement comparison analysis. 

Water hammer with no column separation occurs for low-flow velocities. Column separation starts at 

velocities V0 higher than (0.10, 0.13, 0.18, 0.21, 0.25) m/s for respective reservoir heads HT,1 = (5.0, 

10.0, 15.0, 20.0, 25.0) m in a downward sloping pipe (θ = 23.2°) and V0 higher than (0.11, 0.15, 0.18, 

0.22, 0.26) m/s for respective HT,2 = (7.0, 12.0, 17.0, 22.0, 27.0) m in an upward sloping pipe (θ = 

13.2°). Short-duration pressure pulses may be identified as ‘‘triangular waves’’ in Fig. 14 with a 

period of 2L/a superimposed on the water hammer head line. The upper bound of the triangular wave 

captures the narrow-type short-duration pressure pulses, whereas the lower band encompasses wide 

short-duration pressure pulses. Attenuation of the wave is related to the magnitude of the upper 



reservoir wave (shock, water hammer) and the intensity of cavitation along the pipeline. The 

maximum head for higher velocity column separation cases gradually attenuates to the water hammer 

head. For the lower three upstream tank static head levels, the maximum head remains as the water 

hammer head for velocities V0 higher than (0.92, 1.21, 1.50) m/s in a downward sloping pipe, and for 

V0 higher than (1.02, 1.20, 1.51) m/s in an upward sloping pipe. The parametric analysis shows 

stronger attenuation of short-duration pressure pulses in a downward sloping pipe that may have 

contributed to more intense cavitation along the pipe. In addition, the triangular waves indicate the 

potential magnitude of discrepancies between computed and measured maximum heads. 

 

 
Fig 14: Computed Maximum Head at Valve 

 

Transient regimes investigated experimentally and theoretically in a simple reservoir-pipeline-valve 

system (Fig. 2) may be classified regarding the physical state of the liquid and the maximum pipeline 

pressure as follows: 

 

1. Water hammer flow regime: No column separation occurs during transients. 

2. Active column separation flow regime: The maximum pipeline pressure is generated 

following the column separation at the valve and along the pipeline (active column separation 

from the designer’s point of view). The maximum pressure at the valve is governed by the 

intensity of the short-duration pressure pulse (region of triangular waves in Fig. 14). 

3. Passive column separation flow regime: The maximum pipeline pressure is the water hammer 

pressure before intense cavitation occurs. 

 

CONCLUSIONS 

This paper considers the interaction between vapor cavity collapse, the presence of vaporous 

cavitation, and the occurrence of high pressures in the form of short-duration pressure pulses 

following column separation in pipelines. A generalized set of column separation equations for 

pipelines has been presented. Numerical schemes for the solution of these equations are described and 

three column separation models including the DVCM, DGCM, and GIVCM are presented. The 

DVCM and DGCM involve a relatively simple numerical algorithm in comparison with the GIVCM. 

However, the GIVCM enables direct tracking of actual column separation phenomena (e.g., discrete 

cavities, vaporous cavitation zones), and consequently, better insight into the transient event. A 

comparison for a number of results from the three numerical column separation models and 

experimental results for a sloping pipe laboratory apparatus are given. The principle source of 

discrepancies between the computed and measured column separation results appears to originate 

from the method of physical description of vaporous cavitation and resulting phenomena along the 

pipeline. The discrete gas cavity model has been used to characterize column separation regimes 



found by experiments for both an upward and downward sloping pipe resulting from the rapid closure 

of a valve. An approach has been developed in this paper to identify column separation modes for a 

broad range of parameters including initial flow velocity, static head, and pipe slope. Active column 

separation has been used to define situations where the collapse of a vapor cavity results in a 

maximum pressure or short-duration pressure pulse that exceeds the Joukowsky pressure rise for a 

rapid valve closure. 
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APPENDIX II. NOTATION 

The following symbols are used in this paper: 

A = pipe area; 

Am = pipe area in distributed vaporous cavitation region; 

a = water hammer wave speed; 

as = shock wave speed; 

BM, B = known constants in water hammer compatibility equations; 

CM, CP = known constants in water hammer compatibility equations; 

D = pipe diameter; 

f = Darcy-Weisbach friction factor; 

fs  = sampling frequency; 

g = gravitational acceleration; 

H = piezometric head (head, hydraulic grade line); 

Hmax;υ = maximum piezometric head at valve; 



Hmp = piezometric head at midpoint; 

Hq = piezometric head at quarter point; 

Hs = piezometric head on water hammer side of shock wave front; 

Hsυ = piezometric head on distributed vaporous cavitation side of shock wave front; 

HT = piezometric head in reservoir; 

Hυ = piezometric head at valve; 

H0 = steady-state head; 

L = pipe length; length of liquid plug; 

N = number of reaches in pipeline; 

p = pressure 

pR = regulated air pressure; 

ps = pressure on water hammer side of shock wave front; 

psυ = pressure on distributed vaporous cavitation side of shock wave front; 

pT = tank pressure; 

Q = discharge or discharge at downstream side of computational section; 

Qu = discharge at upstream side of computational section; 

T = temperature; 

t = time; 

tc = valve closure time; 

ti = time of cavitation inception; 

tin = time of inception of discrete vapor cavity; 

tr = time of flow reversal in liquid-vapor mixture zone; 

!∀max;υ = duration of first cavity at valve; 

Ux = uncertainty in measurement; 

V = flow velocity or velocity at downstream side of vapour cavity; 

Vm = liquid-vapor mixture velocity; 

Vmi = inception velocity of liquid-vapor mixture; 

Vmt = terminal velocity in the distributed cavitation region; 

Vu = velocity at upstream side of vapor cavity; 

V0 = initial flow velocity; 

X = distance; 

α = valve opening; 

αg = gas void fraction; 

αυ = void fraction of vapor; 

∆H = Joukowsky pressure head rise; 

∆t = time step; 

∆x = reach length; 

Δx = control volume length; 

θ = pipe slope; 

ρ = liquid density; 

ρm = liquid-vapor mixture density; 

ψ = weighting factor; and 

∀!" = discrete vapor cavity volume. 

 

Subscripts 

g = gas; 

j = computational section index; 

k = reach index; 

m = liquid-vapor mixture; 

mi = condition of inception of vaporous cavitation; 

mt = terminal velocity in liquid-vaporous mixture zone; 

s = shock wave front; 

u = upstream; 

υ = vapor; and 

υc = discrete vapor cavity. 


