
Pipeline Muffling and A Priori Current Ramping: Architectural
Techniques to Reduce High-Frequency Inductive Noise

Michael D. Powell and T. N. Vijaykumar
School of Electrical and Computer Engineering

Purdue University
West Lafayette, IN 47907

{mdpowell,vijay}@purdue.edu

-
w-
nd
e
des
s
pro-
es.
ent
ir-
duc-
nd
,

ive
nce
ck-
w-
to
ck

ve
nd

ou-
ur-
e
ffi-
the
lay
for

ub-
n-
nF
ses
e

ns.
ec-

kage
ol-
and
ABSTRACT
While circuit and package designers have addressed microproces-
sor inductive noise issues in the past, multi-gigahertz clock fre-
quencies and billion-transistor-level integration are exacerbating
the problem, necessitating microarchitectural solutions. The large
net on-die decoupling capacitance used to address this noise
throughout the chip consumes substantial area and can cause a
large leakage current. This paper proposes microarchitectural tech-
niques to reduce high-frequency current variability, reducing the
need for decoupling capacitors. We observe that we can control
inductive noise by reducing current variability either inspace(i.e.,
variability in usage of circuit blocks) or intime (i.e., variability
within a circuit block across clock cycles).We propose pipeline
muffling, a novel technique to reduce changes in the number of
resources being utilized by controlling instruction issue, trading off
some energy and performance to control di/dt in space. We also
extend a previous technique, which incurs performance and energy
degradation, and propose a priori current ramping to allow the cur-
rent of a resource to ramp up ahead of usage, with virtually no per-
formance loss, and ramp down immediately after usage, with little
energy loss. Our techniquesguaranteea worst-case bound on the
di/dt, which is required to reduce the demand for decoupling
capacitors, saving area and reducing leakage.

Categories and Subject Descriptors
C.1.0 [Processor Architectures]: General

General Terms
Reliability.

Keywords
Inductive Noise, Pipeline Muffling, A Priori Current Ramping,
Decoupling Capacitors, Leakage.

1 INTRODUCTION
Inductive noise (Ldi/dt) is a voltage glitch at power/ground con
nections due to a large current spike in a span of time (di/dt) flo
ing through the wire/substrate inductance (L) of the power a
ground rails [5]. Coupled with narrow noise margin, the inductiv
noise induced by current spikes in the processor circuitry degra
data integrity causing reliability problems [2]. As key structure
such as the issue queue and caches get taller and wider, more
cessor signals switch simultaneously causing larger current spik
Low-power techniques such as clock gating exacerbate curr
spikes by gating components on and off [12, 8, 6, 10]. While c
cuit and package designers have addressed microprocessor in
tive noise issues in the past, multi-gigahertz clock frequencies a
billion-transistor-level integration are exacerbating the problem
necessitating microarchitectural solutions.

To prevent current spikes from becoming voltage spikes (induct
noise), designers want processor pipelines to see a low impeda
over a wide range of frequencies. They place capacitors off-pa
age, on-package, and on-die to provide a low impedance at lo
frequencies (in the MHz range), medium frequencies (in the tens
hundreds of MHz), and high-frequencies (near the processor clo
frequency) [9, 8]. This paper focuses on high-frequency inducti
noise, which largely occurs due to variation in resource usage a
is exacerbated by clock gating.

To address the high-frequency inductive noise, large on-die dec
pling capacitors must be placed close to resources with high c
rent variability, such as caches and functional units. If th
decoupling capacitance near a high-variability resource is insu
cient, the parasitic wire resistance and inductance between
resource and some farther-away decoupling capacitance de
compensating for current spikes, causing noise. The demand
large, distributed on-die decoupling capacitance results in a s
stantial total capacitance. The Pentium II included 180 nF of o
die decoupling capacitance while the Alpha 21264 included 320
[13]. The total requirement for decoupling capacitances increa
with I/Vdd [13], indicating an increase in decoupling capacitanc
with future high-power (i.e., high-current), low-Vdd microproces-
sors.

Large on-die decoupling capacitance is a concern for two reaso
First, the capacitance can consume up to 10% of die area [13]. S
ond and more important, the capacitance can cause a large lea
current. A recent Design & Test roundtable discussed the techn
ogy-scaling issue of increasing leakage through the capacitors,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that cop-
ies bear this notice and the full citation on the first page. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
ISLPED’03, August 25-27, 2003, Seoul, Korea.
Copyright 2003 ACM 1-58113-682-X/03/0008...$5.00.

to

fre-
of
at
on-
to
e
nt
n-
ise
ve
lay,
are

te
g

re-

ve
al-
es a
C

ses
ce.
be
te
ch-
cks

uit
rom
(C)
i).

re-
the
se

ut
ess
k
c-
i-
Preston, a participant from Compaq, claimed that amperes of cur-
rent flow quiescently through the capacitors, complicating IDDQ
testing and increasing chip power consumption [7].

This paper proposes two microarchitectural techniques to reduce
high-frequency current variability. We observe that we can control
inductive noise by reducing current variability either in space (i.e.,
variability in usage of circuit blocks) or in time (i.e., variability
within a circuit block across clock cycles). We proposepipeline
mufflingto reduce changes in space by controlling instruction issue
and limiting changes in the number of resources utilized. [12] pro-
posed ramping resource current over time to reduce the rate of cur-
rent change in individual resources. [12] degrades performance
due to delaying of instructions by a few cycles to ramp up clock-
gated circuits, and degrades energy due to waiting (i.e., not clock-
gating for) a few cycles before ramping down to avoid future
ramp-up delays. We proposea priori current ramping, an exten-
sion of [12], to allow the current of a resource to ramp upaheadof
usage, with virtually no performance loss, and ramp downimmedi-
ately after usage, with little energy loss.

While circuit techniques like on-die capacitors attempt to cure cur-
rent variations by preventing them from becoming voltage varia-
tions (noise), we prevent the current variations at the source. Our
techniquesguaranteea worst-case bound on the di/dt (as opposed
to reducing the average), which is required to reduce the demand
for decoupling capacitors, saving area and reducing leakage.

The main contributions of this paper are:

• We propose pipeline muffling which controls instruction issue
and limits the number of used resources to increase (or
decrease) only within a pre-specified delta, trading perfor-
mance (and energy) for reduction in worst-case variability.
Muffling guarantees a 50% reduction in worst-case inductive
noise in execution units with an processor energy-delay pen-
alty of 3%.

• We propose a priori current ramping which allows time for
resource current to ramp up a few cycles ahead of utilization,
and to ramp down immediately after utilization. For the same
reduction in noise as above, [12] incurs a processor energy-
delay penalty of 44%, while a priori ramping incurs a 2% pen-
alty.

2 RELATED WORK

2.1 Contrast to previous architectural proposals
Previous architectural proposals have spread out current by ramp-
ing resources up and down over time to avoid large steps in current

[12, 15]. We discussed [12] in Section 1. [15] applies ramping
only floating-point units.

Other architectural proposals have also focused on medium
quency inductive noise, which occurs over tens to hundreds
cycles (10-100 MHz) [1, 8]. Because ramping current over th
many cycles would be impractical, these techniques focus on c
trolling noise over space rather than time. [16] uses the compiler
control resource utilization in a VLIW processor; this techniqu
will not be effective in an out-of-order system. [8] uses curre
convolution to determine which resources may be utilized and co
trol changes in current. [10] uses voltage sensors to react to no
and change resource utilization accordingly. [8] and [10] may ha
delayed response due to computation time and sensor de
respectively, as mentioned by their authors. These techniques
not applicable to high-frequency noise for which immedia
response is critical. [14] also proposes architecturally controllin
medium-frequency noise, but our paper focuses solely on high-f
quency inductive noise.

2.2 Di/dt modeling and circuit solutions
A number of recent papers model power distribution and inducti
noise. [9] models a processor power distribution network and ev
uates effectiveness of on-die and on-package capacitors. [6] us
microarchitectural simulator to show step power profiles for SPE
2000 benchmarks for a clock-gated microprocessor. [13] propo
a design technique for distributing on-die decoupling capacitan
They note that decoupling capacitance for a circuit block should
allocated in proportion to the power of that block. They evalua
inductive noise in caches and integer units and show their te
nique reduces transmission of noise between these circuit blo
for the Pentium II and Alpha 21264.

Capacitance allocation based on the maximum power of a circ
block, as in [13], occurs because designers assume a step f
zero to maximum current. This assumption makes capacitance
directly proportional to the worst-case rate of current change (d
Architecturally guaranteeinga reduced di within a functional
block reduces the maximum step and the inductive noise, cor
spondingly reducing the need for decoupling capacitance. In
next section, we introduce two techniques for providing the
guarantees.

3 REDUCING HIGH-FREQUENCY NOISE
Because high-frequency inductive noise is distributed througho
the chip, circuit designers use distributed capacitors to addr
inductive noise in individual circuit blocks and to avoid one bloc
affecting others [13]. Accordingly, our techniques address indu
tive noise in a distributed fashion by addressing noise within ind

Table 1: Instruction schedule for 10 ALU operations on a previously idle processor.

Cycle # Conventional Pipeline Muffling,δ = 4 A priori current ramping

1 Issue 8 Issue 4 Issue 8

2 Issue 2 Issue 6 Issue 2, Ramp up current: 8 * (1/2)

3 First 8 execute First 4 execute, issue 2 fake operations Execute 8

4 Second 2 execute Second 6 execute Execute 2, Ramp down current: 6 * (1/2)

5 downward muffling: 2 fake executions Ramp down current: 2 * (1/2)

n
cies
ay
d in
k,
nt,

to
e

il-
1 -

the

-
d

rn
n a
of
.

e
ne-
s,

be
en-
s
le
n-
r-
d-
c-

f
-
ra-

ing
o
ted
te
t
the

s no
n

vidual circuit blocks, rather than in the whole chip. In this section,
we discuss pipeline muffling and a priori current ramping.

3.1 In Space: Pipeline Muffling
Pipeline muffling controls resource-current variability in space by
employing two components,upward and downward, which limit
increases and decreases in current respectively between adjacent
cycles to a pre-specified delta (δ). Though we discuss them sepa-
rately, it is important to note that both upward and downward pipe-
line muffling must be implemented together to provide a bound on
inductive noise.

Upward pipeline muffling smooths increases in resource utilization
by regulating large increases, trading performance for inductive
noise reduction. Utilization increases are restricted to those caus-
ing current increases less thanδ. If operations that would cause
current to increase faster thanδ are available, some of the opera-
tions must wait until the next cycle. Upward muffling, however,
does not restrict peak utilization. Once resource current has
increased to withinδ of the maximum, maximum utilization (and
current) are allowed.

Downward pipeline muffling smooths decreases in resource utili-
zation by padding decreases with “fake” operations. These fake
operations prevent current from decreasing faster thanδ. As the
fake operations exist solely to prevent a large drop in current and
perform no useful work, they trade extra energy for reduction in
inductive noise.

We illustrate the concepts of pipeline muffling in integer ALUs for
the out-of-order pipeline shown in Figure 1 with an example
shown in the second and third columns of Table 1. Assume that a
previously idle, 8-issue, out-of-order processor is ready to issue 10
integer ALU operations, and we wish to reduce worst-case di/dt by
50%. A conventional processor issues those instructions without
regard to inductive noise as in the second column of Table 1. If we
wish to reduce noise by 50%, we setδ equal to the current of 4
ALU operations, meaning the number of ALU operations can nei-
ther increase nor decrease by more than 4 between adjacent cycles.
Because the processor was previously idle, it issues only 4 instruc-
tions on the first cycle (for an increase of 4). On the second cycle,
it issues the remaining 6 instructions (for an increase of 2). On the
third cycle, two “fake” ALU operations are issued to prevent the
current from dropping by more than 4 units.

Upward and downward pipeline muffling can be implemented in
the issue stage of an out-of-order processor. Conventional proces-
sors use select logic to issue ready instructions to a finite number
of available resources. Pipeline muffling augments the select logic
to include theδ conditions for the controlled resources, possibly
altering the number of available resources. With pipeline muffling,
the number of available resources for the next cycle changes
depending on the number of resources in use the current cycle. The
information about the number of resources in use can be computed
in the previous cycle; therefore this additional condition can be
folded into select without substantial delay in the logic. Small inte-
gers (e.g. 2-4 bits) are used for theδ conditions to simplify the nec-
essary logic in the pipeline.

Finally, because pipeline muffling controls variability based o
predetermined, constant estimates of resource current, inaccura
in the estimation are a concern. For example, an estimator m
assume that because high-performance circuits are implemente
dynamic logic and dynamic logic power is dominated by the cloc
this assumption is reasonable. Though clock power is domina
some variability will still occur due to different input bits.

Even in the presence of estimation inaccuracies, it is possible
use pipeline muffling to establish current variability bounds. If th
current consumed by a utilized resource is estimated atδ but actu-
ally may be x% higher or lower, then the actual maximum variab
ity for that resources is an increase from the minimum current, (
x/100)δ, to the maximum current (1 + x/100)δ. The total worst
case variability is then (1 + 2x/100)δ. For example, if the actual
current change of a resource could be 20% higher or lower than
estimated bound,δ, then the actual current bound would be 1.4δ
instead ofδ. By knowing in advance the maximum error in the cur
rent estimate, aδ that will lead to a suitable actual current boun
may be chosen.

3.2 In Time: A Priori Current Ramping
A priori current ramping exploits the observation that in mode
processor pipelines, certain resource usage information is know
few cycles of ahead of the usage. For instance, the number
ALUs that will be in use is known at the end of instruction issue
Because there isat leastone cycle of register read between issu
and execute, as shown in Figure 1, a priori ramping uses that o
cycle gap to ramp up previously-idle clock-gated functional unit
without incurring any performance penalty as occurs in [12]. If
the resource becomes idle after use, it’s current may then
ramped down immediately because there is no performance p
alty associated with ramping it up again. While ramping doe
introduce a small energy penalty, it is less than that of letting id
functional units consume full current to avoid future ramp-up pe
alty, as is done in [12]. A similar observation was made by Dete
ministic Clock Gating (DCG) [11]. DCG, however, uses the ahea
of-time knowledge to perform clock gating and not reduce indu
tive noise.

We illustrate a priori current ramping in the fourth column o
Table 1 for a previously idle system with 10 ready ALU opera
tions. On cycle 1, 8 operations are issued. On cycle 2, the 8 ope
tions are in register read and 8 ALUs are ramped up, consum
half of their maximum current. The final 2 operations are als
issued this cycle. On cycle 3, the first 8 operations are execu
while the last 2 are in register read. On cycle 4, 2 ALUs execu
the last 2 operations, while 6 ALUs ramp down their current. A
this point execution has completed with the same schedule as
base processor (the second column of Table 1), meaning there i
performance loss. Finally, on cycle 5, the last 2 ALUs ramp dow
their current.

fetch decode
reg.
rename issue

reg.
read execute mem

reg.
writeback

FIGURE 1: Out-of-order pipeline stages.

rst
d
a-

o

ch
-

e
ite
,
d
li-

we
to
re

he
e
rele-
ra-
s

al
ger
ll

m-
ber
n

im-
ne
t)
ns
ay
is-

t
n-
e.
in

t

rs,

All
on.
us-
ows
rgy
ee
There are some limitations to the application of a priori current
ramping. To avoid a performance penalty, a priori current ramping
is restricted to using intervening cycles between issue and execute
(for ALUs), and issue and the d-cache (for loads/stores). Assuming
an aggressive 1-cycle register file means only one cycle is available
for current ramping for ALUs. If resource current is brought to half
of the active current during the register read-cycle, a 50% reduc-
tion in maximum di/dt is achieved for that resource. A two-cycle
register file would allow for current to ramp over 2 cycles, corre-
sponding to a 67% reduction in noise.

A priori current ramping can also be applied only to those
resources whose schedule is known at least one cycle in advance of
utilization, such as ALUs and the d-cache. A priori current ramp-
ing cannot be applied to register read, for example, because there is
no time between issue and register read to ramp-up register read,
as shown in Figure 1. A priori current ramping can be expected to
be applicable to back-end resources, however, because of the pres-
ence of register read after issue. While it is possible to move the
register read stage before the issue stage, doing so requires that
operands be stored in the issue queue, adding substantial complica-
tions.

Pipeline muffling and a priori current ramping are orthogonal and
therefore may be applied at the same time for additional inductive
noise savings. For example, if a priori current ramping is limited to
a 50% noise reduction (because there is only one intervening cycle
between issue and execute), but a 75% reduction is desired for the
integer ALUs, pipeline muffling may also be applied with aδ that
reduces variability by 50%. The maximum variabilities multiply,
resulting in a final maximum variability that is 25% of that in the
base case.

4 METHODOLOGY AND RESULTS
In this section, we present our methodology and results. Our fi
results compare pipeline muffling, a priori current ramping, an
the current ramping scheme in [12]. Second, we show combin
tions of pipeline muffling and a priori current ramping applied t
ALUs, the d-cache, and the i-cache.

4.1 Methodology
Table 2 shows the configuration for the simulated system whi
uses the out-of-order pipeline shown in Figure 1. We modify Sim
pleScalar 3.0b [4] and Wattch [3] and simulate a high-perfor-
mance, out-of-order microprocessor executing the Alpha ISA. W
use 23 of the 26 applications in the SPEC 2K benchmark su
(ammp, mcf,and sixtrack are excluded due to simulation time)
fastforwarding 2 billion instructions to skip initialization code, an
then running 500 million instructions. The base IPC for each app
cation is shown under the graph in Figure 2. To estimate di/dt,
extend Wattch to compute current for each cycle in addition
energy based on component level activity similar to the procedu
in [6]. To enable calculation of per-cycle current, we spread t
execution energy of multi-cycle functional units and pipelin
events (e.g., cache accesses and multiplies) over each of the
vant cycles. We use our simulator to determine performance deg
dation, energy penalty, and current variability for the variou
techniques.

We estimate high-frequency current variability within sever
microprocessor circuit blocks: the i-cache, the d-cache, and inte
and floating-point functional units. We convert current to sma
integral estimates to be used in computingδ for pipeline muffling,
as using floating-point values would make the computation cu
bersome in a real implementation. Current is based on the num
of active units within the circuit block, and the estimates are show
in Table 3. For the i-cache and d-cache, the current estimate is s
ply the number of ports in use. For functional units, we determi
the relative per-cycle current of each integer (or floating poin
operation relative to the other integer (floating point) operatio
based on Wattch’s current models. While Wattch’s estimates m
have some error, muffling is tolerant of such inaccuracies, as d
cussed in Section 3.1.

4.2 Comparing techniques
In this section, we compare pipeline muffling, a priori curren
ramping, and the conventional ramping technique of [12] for co
figurations which achieve the same reduction in inductive nois
We configure the three techniques to achieve a 50% reduction
noise within three circuit blocks: the integer ALUs, floating-poin
ALUs, and the d-cache.

In Figure 2 we show performance degradation (black sub-ba
scale on left) and relative energy-delay(full-height bars, scale on
right) for the three techniques over 23 SPEC 2000 applications.
values are relative to a processor with no inductive noise reducti
Because the individual benchmarks behave similarly, our disc
sion is based on the averages as shown in Figure 3. Figure 3 sh
average performance degradation (x-axis), total processor ene
penalty (y-axis), and relative energy-delay (text aside) for the thr
techniques over the 23 SPEC 2000 applications.

Table 2: System parameters.

instruction issue 8, out-of-order, 128-entry RUU

Issue queue/ROB 128 entries, 1-cycle reg. file

L1 caches 64K 2-way, 2 cycle, 2 ports

L2 cache 2M 8-way, 12 cycles

Memory latency 80 cycles

Fetch up to 8 instructions/cycle with
2 branch predictions per cycle

Int ALU & mult/div 8 & 2

FP ALU & mult/div 4 & 2

Table 3: Latencies and relative integral current estimates
within circuit blocks.

Component latency (cycles) current per cycle

Integer ALUs

Add/Multiply/Divide 1/3/12 14/7/1

Floating-Point ALUs

Add/Multiply/Divide 2/4/12 6/3/1

I- and D-caches

I-cache/D-cache 2/2 1/1

at a
age

-
v-
g
ra-
re

ion
f-

bi-
e
he
a
is
e,
d
hat
a-
i-

he
e
i-
rent
e
ne
ke
We see that conventional current ramping from [12] incurs a 19%
performance degradation compared to 1.5% for pipeline muffling
and 0% for a priori current ramping. Unlike the ramping scheme in
[12], pipeline muffling incurs performance degradation only for
resource-utilization changes that would cause a current change
greater thanδ (e.g., an increase from 0 to 6 integer adds); therefore
the performance loss is small. Because a priori current ramping
ramps current before the resources are needed, it incurs no perfor-
mance loss.

The performance degradation for conventional current ramping is
substantially larger than reported by [12] because we are applying
the technique toall integer, floating-point, and d-cache resources.
[12] does not report to which specific resources they apply their
technique.

The figure indicates similar energy penalties of 1.4% and 1.8% for
muffling and a priori ramping. Though the difference is small, it
occurs because a priori ramping uses extra energy to ramp down
the current ofanyunit that becomes idle, while muffling uses extra
energy only for fake operations to prevent large decreases that
would violateδ. Both techniques have substantially lower energy
penalties than the 21% of the [12] technique. The energy penalty
for [12] occurs almost entirely due to leaving resources active for
ten cycles after they are last used to avoid delay due to future ramp
up. This procedure is unnecessary in a priori ramping, which
ramps up resource current without inserting delay.

4.3 Combination of techniques
In this section, we show the effects of combining pipeline muffling
and a priori current ramping. Recall from Section 3.2 that noise
reduction from a priori current ramping is limited by the number of

cycles between the issue stage and resource utilization and th
priori ramping can be applied to only those resources whose us
is known in advance. We show that pipeline muffling can be com
bined with a priori current ramping to increase inductive noise sa
ings without incurring the performance penalty of using mufflin
alone. Because a priori current ramping avoids performance deg
dation, a design combining the techniques will reduce noise mo
than a priori ramping and have smaller performance degradat
than a design using muffling alone. We also apply pipeline mu
fling to pipeline resources that cannot use a priori ramping.

Table 4 compares results of using mufflingaloneto achieve a 75%
inductive noise reduction (top section, first row) against the com
nation (second row) for the integer and floating-point ALUs. Th
combination uses pipeline muffling to reduce inductive noise in t
ALUs by 50% and a priori current ramping to reduce noise by
further 50%, for a total of 75%. From the table, we see that there
virtually no performance degradation for the combined techniqu
in contrast to 1.1% for muffling alone. However the combine
technique has a total energy penalty of 1.3%, 0.5% higher than t
of muffling alone. This extra energy is expected for the same re
son a priori ramping had higher energy than muffling in the prev
ous section.

Previous results have shown inductive noise reduction only in t
pipeline back-end. It is possible to apply pipeline muffling to th
front-end as well, specifically to the i-cache. Our two-ported
cache, which is normally accessed every cycle, experiences cur
variability during a cache miss. This current variability can b
reduced by 50% using pipeline muffling by accessing only o
port during the cycle after a miss returns and by performing a fa
i-cache access to one port in the cycle after a miss (i.e., settingδ =

FIGURE 2: Base IPC and comparison of techniques for all applications.

ap
plu ap

si art bz
ip

cra
fty eo

n

eq
ua

ke

fac
ere

c
fm

a3
d

ga
lge

l
ga

p gc
c

gz
ip

luc
as

mes
a

mgri
d

pa
rse

r
pe

rl
sw

im twolf
vo

rte
x vp

r

wup
sis

e

RAM

0.4

0.2

0.6

0.0

performance degradation (scale on left) energy-delay relative to same benchmark (scale on right)

1.4

1.2

1.6

1.0

(R): Conventional current ramping [12] (A): A priori current ramping (M): Pipeline Muffling

Pe
rfo

rm
an

ce
 D

eg
ra

da
tio

n

Re
la

tiv
e

en
er

gy
-d

el
ay

2.0 1.9 1.5 2.2 2.2 2.7 4.0 2.6 4.1 3.6 2.8 2.1 2.0 0.8 3.3 2.9 1.7 1.3 2.0 1.3 2.4 1.4 3.5 base
IPC

0.94 1.02

Table 4: Combination of techniques

Configuration Perf. loss % Energy loss %

75% noise reduction: Int ALUs, FP ALUs

muffling alone 1.1 0.8

combined 0.1 1.3

50% noise reduction: i-cache

muffling 1.0 0.3

50%: i-cache. 75%: Int ALUs, FP ALUs, d-cache

combined 1.9 3.1
FIGURE 3: Comparing
techniques.

A M

0.0 0.1 0.2
0.0

0.1

0.2

Performance Degradation

 E
ne

rg
y p

en
alt

y

R
A: A priori current ramping
M: Pipeline muffling

R: Conventional current ramping [12]

Relative Energy-Delay:
R: 1.44
A: 1.02
M: 1.03

-

-
r

r-
e-

f

n

nd
le.

y

-
r-

-
e

-
n

g
.

In
m-

d
-

r

d

1). A priori ramping is not applicable because we cannot determine
in advance when a cache miss will return, as either an L2 miss or
main memory access may occur. The middle section of Table 4
shows results for pipeline muffling applied to provide a 50%
reduction in inductive noise in the i-cache only. I-cache misses are
rare in the simulated benchmarks, and both performance and
energy degradation are small.

Finally, we show results for pipeline muffling and a priori current
ramping combined through several pipeline stages. The last section
of Table 4 shows results when pipeline muffling is applied for a
50% inductive noise savings in the i-cache, integer ALUs, floating-
point ALUs, and d-cache with a priori current ramping added in
the integer ALUs, floating-point ALUs, and d-cache for a total sav-
ings of 75% in those three current blocks. The total performance
degradation is 1.9% with an energy degradation of 3.1%, combin-
ing for an energy-delay penalty of 5.1%.

4.4 Reducing Decoupling Capacitance
As discussed in Section 2.2, [13] estimates the amount of on-die
decoupling capacitance to be proportional to the worst-case current
variability which is equal to maximum current in a conventional
design. We reduce current variability by up to 75% in circuit
blocks (i.e., L1 caches and ALUs) whose maximum currents
aggregate to 30% to 45% of total processor current. Therefore we
estimate the total on-die decoupling capacitance reductions
achieved by our techniques to be 22% to 34%. Because decoupling
capacitance area and leakage are proportional to the amount of
capacitance, reductions in area and leakage would be similar.

5 CONCLUSIONS
We propose two techniques, pipeline muffling and a priori current
ramping, to reduce high-frequency inductive noise within circuit
blocks of a microprocessor. Pipeline muffling controls instruction
issue and limits changes in the number of used resources to a pre-
specified delta, trading performance and energy for reduction in
worst-case inductive noise. Muffling guarantees a 50% reduction
in worst-case inductive noise in execution units with an processor
energy-delay penalty of 3%. A priori current ramping allows time
for resource current to ramp up a few cycles ahead of utilization
and to ramp down immediately after utilization. A priori current
ramping guarantees a 50% reduction in worst-case inductive noise
with a 2% energy penalty and virtually no performance loss. We
estimate total on-die decoupling capacitance reductions achieved
by our techniques to be up to 22% to 34%. Our techniques will
grow in importance in future technologies as decoupling-capaci-
tance leakage worsens.

ACKNOWLEDGMENTS
This research is supported in part by NSF under CAREER award
9875960-CCR, NSF Instrumentation grant CCR-9986020, SRC
contract 2000-HJ-768, DARPA contract F33615-02-1-4003, an
Intel Ph.D. fellowship, and an NSF Graduate Research Fellowship.

REFERENCES
[1] W. Becker, H. Smith, et al. Mid-frequency simultaneous

switching noise in computer systems. In1997 Electronic
Components and Technology Conference, pp. 676–681,
1997.

[2] D. Boggs. Breathing life into a paper tiger. InKeynote
speech: 33rd International Symposium on Microarchitec
ture, Dec. 2000.

[3] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A frame-
work for architectural-level power analysis and optimiza
tions. In 27th International Symposium on Compute
Architecture, pp. 83–94, June 2000.

[4] D. Burger and T. M. Austin. The SimpleScalar tool set, ve
sion 2.0. Technical Report 1342, Computer Sciences D
partment, University of Wisconsin–Madison, June 1997.

[5] Y. S. Chang, S. K. Gupta, and M. A. Breuer. Analysis o
ground-bounce in deep sub-micron circuits. InProceedings
of the VLSI test symposium, pages 110–116, 1997.

[6] W. El-Essawy, D. H. Albonesi, and B. Sinharoy. A mi-
croarchitectural-level step-power analysis tool. InInterna-
tional Symposium on Low Power Electronics and Desig,
pages 263–266, Aug. 2002.

[7] T. Gabara, C. Nicol, T. Ning, R. Preston, N. Shanbhag, a
C. Svensson. Power delivery and distribution roundtab
IEEE Design and Test of Computers, pages 98–103, Oct–
Dec 2000.

[8] E. Grochowski, D. Ayers, and V. Tiwari. Microarchitectur-
al simulation and control of di/dt-induced power suppl
voltage variation. InEighth International Symposium on
High Performance Computer Architecture (HPCA), pages
7–16, Feb. 2001.

[9] D. J. Herrell and B. Beker. Modeling of power distribution
systems for high-performance microprocessors.IEEE
Transactions on Advanced Packaging, 22(3):240–248,
1999.

[10] R. Joseph, D. Brooks, and M. Martonosi. Control tech
niques to eliminate voltage emergencies in high-perfo
mance processors. InNinth International Symposium on
High Performance Computer Architecture (HPCA), pages
79–90, Feb. 2003.

[11] H. Li, S. Bhunia, Y. Chen, T. N. Vijaykumar, and K. Roy.
Deterministic clock gating to reduce microprocessor pow
er. InNinth International Symposium on High Performanc
Computer Architecture (HPCA), pp. 113–122, Feb. 2003.

[12] M. D. Pant, P. Pant, D. Willis, and V. Tiwari. An architec-
tural solution for the inductive noise problem due to clock
gating. InProceedings of the International Symposium o
Low Power Electronics and Design, pages 255–257, 1999.

[13] M. D. Pant, P. Pant, and D. S. Wills. On-chip decouplin
capacitor optimization using architectural level prediction
IEEE Transactions on VLSI Systems, 10(3):319–326, 2002.

[14] M. D. Powell and T. N. Vijaykumar. Pipeline damping: A
microarchitectural technique to reduce inductive noise.
Proceedings of the 30th International Symposium on Co
puter Architecture (ISCA 30), June 2003.

[15] A. Tang, N. Chang, S. Lin, W. Xie, S. Nakagawa, an
L. He. Ramp up/down floating point unit to reduce induc
tive noise. InLecture Notes in Computer Science, volume
2008, pages 291–321, 2001.

[16] H.-S. Yun and J. Kim. Power-aware modulo scheduling fo
high-performance vliw processors. InProceedings of the
International Symposium on Low Power Electronics an
Design, Aug. 2001.

	ABSTRACT
	1 Introduction
	2 Related Work
	2.1 Contrast to previous architectural proposals
	Table 1: Instruction schedule for 10 ALU operations on a previously idle processor.

	2.2 Di/dt modeling and circuit solutions

	3 Reducing High-Frequency Noise
	3.1 In Space: Pipeline Muffling
	FIGURE 1: Out-of-order pipeline stages.

	3.2 In Time: A Priori Current Ramping
	Table 2: System parameters.
	Table 3: Latencies and relative integral current estimates within circuit blocks.

	4 Methodology and Results
	4.1 Methodology
	4.2 Comparing techniques
	FIGURE 2: Base IPC and comparison of techniques for all applications.
	Table 4: Combination of techniques

	4.3 Combination of techniques
	FIGURE 3: Comparing techniques.

	4.4 Reducing Decoupling Capacitance

	5 Conclusions
	Acknowledgments
	References

