
234 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 2, FEBRUARY 2001

Pipeline Vectorization
Markus Weinhardt and Wayne Luk, Member, IEEE

Abstract—This paper presents pipeline vectorization, a method
for synthesizing hardware pipelines based on software vector-
izing compilers. The method improves efficiency and ease of
development of hardware designs, particularly for users with
little electronics design experience. We propose several loop
transformations to customize pipelines to meet hardware resource
constraints while maximizing available parallelism. For runtime
reconfigurable systems, we apply hardware specialization to
increase circuit utilization. Our approach is especially effective
for highly repetitive computations in digital signal processor
(DSP) and multimedia applications. Case studies using field pro-
grammable gate arrays (FPGAs)-based platforms are presented to
demonstrate the benefits of our approach and to evaluate tradeoffs
between alternative implementations. For instance, the loop-tiling
transformation, has been found to improve vectorization perfor-
mance 30–40 times above a PC-based software implementation,
depending on whether runtime reconfiguration (RTR) is used.

Index Terms—High-level synthesis, parallelization, pipelining,
reconfigurable computing, vectorization.

I. INTRODUCTION

M
ANY application developers recognize that the key to ef-
fective use of custom computing systems is to maximize

their available parallelism. This task, which has to be achieved
while meeting specific hardware resource constraints, is diffi-
cult to perform by hand.

Vectorizing compilers have proved successful in detecting
and exploiting parallelism for conventional processors with a
fixed architecture. A vector execution unit adapted for digital
signal processor (DSP) and multimedia processing has also been
identified as an important component of novel computer archi-
tectures such as the vector IRAM [1]. This paper presents an ap-
proach for automatically producing optimized pipelined circuits
from a high-level program using techniques derived from soft-
ware vectorizing compilers. The compile-time and runtime re-
configurability of field programmable gate arrays (FPGAs) can
also be efficiently exploited.

Our approach, which we call pipeline vectorization [2]–[4],
essentially involves the synthesis of pipelined processors that
execute inner loops of programs. Data dependence analysis sim-
ilar to software vectorization is performed, which determines if
a pipeline can be generated for a loop. Therefore, it generates
circuits that exhibit more parallelism than many other automatic
high-level hardware design tools.

Manuscript received February 29, 1999; revised April 6, 2000. This work
was supported by a European Union training project financed by the Commis-
sion in the TMR program, the U.K. Engineering and Physical Sciences Re-
search Council, Embedded Solutions Ltd., and Xilinx Inc. This paper was rec-
ommended by Associate Editor R. Camposano.

The authors are with the Department of Computing, Imperial Col-
lege, London SW7 2BZ, U.K. (e-mail: m.weinhardt@computer.org;
wl@doc.ic.ac.uk).

Publisher Item Identifier S 0278-0070(01)00943-5.

There are significant differences between pipeline vector-
ization and software vectorization. For instance, our approach
covers a wider range of loops since it does not consider
out-of-order execution. It can be used with a variety of storage
allocation methods. In contrast to software vectorization, we do
not explicitly generate vector instructions. Instead, all instruc-
tions of the loop body are vectorized and chained by pipelining
input data through the entire dataflow graph synthesized from
the loop body. To widen the applicability of our technique, we
devise several loop transformations that adjust the amount of
hardware used in vectorized loops to the available hardware
resources. For reconfigurable implementations, we explore
methods to increase circuit utilization by runtime circuit
specialization and runtime reconfiguration (RTR).

Our approach includes the synthesis of nonpipelined circuitry
for nonvectorizable loops and conditional and sequential pro-
gram code. It can be used in two modes—hardware mode and
codesign mode. In hardware mode, a processor is generated for
the entire program (which includes only synthesizable opera-
tions as defined in Section III-A1), rendering descriptions from
a high-level sequential programming language into an efficient
hardware description language (HDL). Alternatively, in code-

sign mode, parts of the program (such as nonsynthesizable or
highly irregular parts) remain in software to be executed on
a host microprocessor. This mode results in a hardware-soft-
ware codesign system with data and control transfer between
host processor and custom hardware automatically being imple-
mented.

This paper is organized as follows. First, we discuss relevant
previous work. Section III then presents the core pipeline vec-
torization design flow, the main contribution of this paper. Next,
Sections IV and V describe the other important contributions:
optimizing loop transformations and runtime circuit specializa-
tion. Section VI reports on a prototype compiler implementa-
tion and Section VII provides case studies and results evalu-
ating pipeline vectorization. Finally, Section VIII presents con-
clusions and future work.

II. BACKGROUND

Increasingly, system description is written in a high-level
software language [5]. This method simplifies algorithm
development and facilitates experiments to map different
components into hardware. Our approach not only supports this
method, but it goes a step further by providing a framework in
which efficient hardware can be produced automatically from a
software description. It is particularly suited for reconfigurable
systems, which have been shown to be useful in various appli-
cation domains [6]. We attempt to simplify the programming
of these systems, which typically consist of a host processor
and FPGA hardware boards [7], [8]. Programming difficulties

0278–0070/01$10.00 © 2001 IEEE

Authorized licensed use limited to: Imperial College London. Downloaded on August 13,2010 at 17:10:28 UTC from IEEE Xplore. Restrictions apply.

WEINHARDT AND LUK: PIPELINE VECTORIZATION 235

include analyzing the tradeoffs between software and hard-
ware, designing software and hardware parts using different
languages and tools and debugging the interface between these
parts.

Some tools approach these problems by using a programming
language input to specify both software and hardware in a uni-
form manner. This enables systematic analysis of the tradeoffs
as well as automatic synthesis of the interface between software
and hardware. However, while a sequential program is a nat-
ural specification for the host processor, hardware coprocessors
synthesized from sequential code often fail to exploit the hard-
ware’s parallelism sufficiently. For instance, this is the case in
the PRISM system [9]. The configuration and communication
overhead is often larger than the achieved speedup itself. Better
results can be obtained for systems that integrate a micropro-
cessor core and reconfigurable hardware on a chip. An example
of this approach is the Garp chip [10] and its -based compiler
[11].

Guccione adopts data-parallel vector operations on data
streams to describe pipelined circuits [12], [13]. However, this
method requires the user to learn a new programming language
that is only used for the hardware part of an application. The
same is true for Transmogrifier [14], a research compiler al-
lowing only task-level parallelism.

Hardware programming systems based on communicating
sequential processes such as OCCAM [15] and Handel-C
[16] are suitable for control intensive applications. However,
the user has to specify parallel operations explicitly. As for
data-parallel , the software parts of an application must be
written in a different language and interfaced manually to the
hardware parts.

In the application-specific integrated circuit domain,
high-level synthesis systems generate register-transfer struc-
tures from behavioral (algorithmic) specifications [17]–[19].
These methods employ sophisticated scheduling, resource
allocation, and binding techniques for general processor archi-
tectures. They perform an exhaustive design-space exploration,
which makes the tools very slow, especially if compared to a
software compiler. A commercial high-level synthesis system
is Synopsys’ Behavioral Compiler [20], which can handle array
data and generate memory accesses. However, to pipeline loops,
the user has to analyze loop-carried dependences manually (as
defined in Section III-A3) and specify a safe initiation interval,
which preserves the dependences and the original order of
memory reads and writes. Another system, C2Verilog, [21]
uses ANSI to produce a Verilog register-transfer structure
using high-level synthesis techniques. However, it does not
perform loop pipelining.

Several research projects address the automatic synthesis of
pipelined circuits from program loops. The closest to our ap-
proach is the NAPA compiler [22]. However, that system tar-
gets specifically the NAPA processor [23] and considers only in-
nermost loops. No automatic vectorization or optimizing trans-
formations similar to ours are reported. The scheduling of in-
structions is performed on an atomic basis and, thus, is less
flexible than hardware pipelining, which can also use internally
pipelined operators. Finally, a loop parallelization method is

Fig. 1. Core design flow.

also included in the Alpha System [24]. However, it is restricted
to producing linear systolic arrays whereas our techniques can
vectorize more general programs.

III. CORE DESIGN FLOW

We first present the core pipeline-vectorization design flow,
as shown in Fig. 1. Most parts of the figure are relevant for both
the codesign and the hardware mode. Only the software branch
on the bottom left side and the hardware–software partitioning
phase do not exist for the hardware mode. The core design flow
consists of three major phases: preprocessing, hardware syn-
thesis, and partitioning and integration. They are described in
the following sections. The extension of the core design flow to
include loop transformations will be covered in Section IV.

A. Preprocessing

Preprocessing consists of four steps: hardware candidate se-
lection (Section III-A1), loop normalization (Section III-A2),

Authorized licensed use limited to: Imperial College London. Downloaded on August 13,2010 at 17:10:28 UTC from IEEE Xplore. Restrictions apply.

236 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 2, FEBRUARY 2001

dependence analysis (Section III-A3), and removing vector de-
pendences (Section III-A4). These steps are necessary to per-
form hardware synthesis effectively.

1) Hardware Candidate Selection: This step selects pro-
gram parts suitable for hardware synthesis. Regular iterative
computations, which perform identical operations on a large
set of data. are likely to achieve high performance in hardware.
Hence, loops are natural candidates for hardware processors.
We attempt to vectorize innermost FOR loops and generate
pipelines for them. FOR loops have an induction (index)
variable necessary for normalization and vectorization and
have predetermined loop counts. Thus, they can be handled
by efficient control circuitry. It is possible to transform some
WHILE loops to FOR loops by induction variable detection
[25]. Other WHILE loops, outer loops, and other program
constructs are nonpipeline candidates and, therefore, are
unlikely to result in fast efficient hardware. They should only
be considered in combination with pipeline candidates or left
for software execution. However, our procedure will consider
all loops since the loop transformations presented in Section IV
rearrange loop nests.

There are some additional restrictions for the candidates: they
must not contain nonsynthesizable operations such as recursive
function calls, external operating system calls, or library calls.1

In hardware mode, programs containing any nonsynthesiz-
able operations are not considered legal input. Thus, the entire
legal input program is a candidate and candidate selection only
distinguishes between pipeline and nonpipeline candidates.

The example edge detector program in Fig. 2 will be used to
synthesize a pipeline circuit. Its inner loop is a pipeline candi-
date and its outer loop (by definition) a nonpipeline candidate.
We use language syntax here because our compiler prototype
(Section VI) uses a front end. Our approach is valid for any
sequential imperative programming language.

2) Loop Normalization: For vectorization, we have to nor-
malize the pipeline candidate loops by the following transfor-
mations.

• Remove all additional induction variables and normalize
the loop’s lower bound to zero and its step to one (induc-
tion variable substitution [26]).

• Normalize the index expressions to linear expressions of
the induction variable (subscript normalization [26]). For
induction variable , the resulting expression has the form

. is called the access’ stride.
If one or more index expressions cannot be normalized, the

loop is only a nonpipeline candidate. In particular, indirect array
accesses, where array elements are accessed by intermediate re-
sults prevent vectorization as in software vectorizing compilers
[26].

Normalizing the inner candidate loop in Fig. 2 will create the
loop header

and substitute by in the loop body.

1Nonrecursive function calls can be inlined. Therefore, we assume—without
loss of generality—that no function calls exist in the candidates.

Fig. 2. Edge detector program.

3) Dependence Analysis: The next processing stage ana-
lyzes pipeline candidate loops for dependences. There are three
general types of dependences [27]. True or flow dependence

occurs when a variable is assigned or defined in one statement
and used in a subsequently executed statement. Antidependence

occurs when a variable is used in one statement and reassigned
in a subsequently executed statement. Output dependence oc-
curs when a variable is assigned in one statement and reassigned
in a subsequently executed statement. General dependences
are either loop independent or loop carried. The former occurs
between statements in the same loop iteration and the latter
between statements in different iterations. For loop-carried de-
pendences, the dependence distance is the number of iterations
between the statements that cause the dependence. In a loop
nest, we determine for each loop hierarchy the loop-carried
dependences since only these affect the loop-level parallelism.

Since pipeline execution overlaps the loop iterations but
maintains their order, memory writes are never out of order.
Hence, we only have to consider true dependences but not
anti or output dependences. Therefore, pipeline vectorization
applies to more loops than software vectorization. We utilize
standard dependence analysis methods [27] to detect these
dependences. Unfortunately, these methods are not completely
accurate. In some cases, they cannot determine the absence of
dependences, thus failing to detect potential parallelism.

Next, we check if the detected true loop-carried dependences
occur in all loop iterations with the same dependence distance.
We call these dependences regular. All dependences stemming
from scalar variables and from array accesses with the same
stride are regular [3]. It is possible to synthesize hardware
obeying these dependences, but the resulting circuits may
contain feedback cycles. In contrast to software vectorization,
regular dependences do not prevent pipeline synthesis, although
they can reduce parallelism because the feedback paths restrict
the speedup achieved by pipelining in a later processing stage.

Irregular dependences can be handled provided that the orig-
inal order of read and write accesses of the arrays involved
are maintained. However, this usually requires many sequential
memory accesses and is only feasible with very fast memories
such as on-chip memories.

In the program in Fig. 2, there are no dependences from array
accesses: array is only read and array is only written.

Authorized licensed use limited to: Imperial College London. Downloaded on August 13,2010 at 17:10:28 UTC from IEEE Xplore. Restrictions apply.

WEINHARDT AND LUK: PIPELINE VECTORIZATION 237

Fig. 3. Fibonacci numbers program.

The following example shows that our approach can deal with
loops not usually vectorized by software vectorizing compilers.
The loop

has a loop-carried dependence stemming from the assignment to
array but no value written to memory is read in a subsequent
loop iteration. Only out-of-order execution of the assignments
would lead to a real dependence. Hence, it is an antidependence
and we can disregard it and vectorize the loop.

To the contrary, the program computing the Fibonacci num-
bers in Fig. 3 contains true loop-carried dependences. The as-
signment to depends on the two previous assignments.
Since both dependences are regular (dependence distances 1 and
2), we can generate a pipeline circuit for this program. But the
dependences have to be handled as described in the next para-
graph.

4) Removing Vector Dependences: The hardware synthesis
technique presented in the next section cannot handle true loop-
carried dependences stemming from array (vector) accesses, as
shown in Fig. 3. Therefore, pipeline candidate loops have to be
transformed to remove them in the following way. First, vector
accesses depending on earlier iterations are substituted by new
scalar variables in the candidate loop body. Next, at the end of
the loop body, instructions are inserted that assign these vari-
ables to the values they depend on in the original program. For
dependences with dependence distances larger than one, addi-
tional variables and assignments are inserted. Finally, assign-
ments to initialize the variables are added before the loop. For
the Fibonacci number program, accesses and are
substituted. Fig. 4 shows the resulting transformed program. It
only contains dependences stemming from the new scalar vari-
ables and . In every iteration, their values from the
previous iteration are read. These dependences will be handled
by the hardware synthesis phase.

B. Hardware Synthesis

The hardware synthesis phase contains three steps:
dataflow graph generation (Section III-B1) and extension
(Section III-B2), pipelining (Section III-B3), and controller
synthesis (Section III-B4).

For those candidate loops that pass the dependence test, in-
dependent pipeline circuits are synthesized. They are later inte-
grated in larger designs or instantiated in separate configurations
(see Section III-C).

Various storage allocation schemes can be used. For instance,
scalar variables can be held in hardware registers and arrays
can be stored on off-chip memory. On some FPGA families,
small arrays of data can also be stored in very fast on-chip

Fig. 4. Transformed Fibonacci program.

memory. Array elements are fed to the pipeline as continuous
data streams through vector inputs and output streams are
written back to local memory through vector outputs. In this
way, one loop iteration is executed every pipeline cycle. All
element addresses for the linear array accesses can be computed
in parallel with the loop computations. Thus, they do not slow
down the application. However, for arbitrary accesses, address
computations depend on loop computation results and must
be scheduled accordingly, thereby slowing down the circuits.
Pointer accesses are indirect accesses to the entire host memory
space and are only possible in tightly coupled architectures
with direct memory access (DMA).

We first generate an acyclic dataflow graph for the loop body.
Next, regular loop-carried dependences are resolved, possibly
introducing feedback cycles. Finally, the circuit is pipelined and
a controller is synthesized.

1) Dataflow Graph Generation: We generate an acyclic
combinational dataflow graph for the loop body by analyzing
its internal dependences and allocating a new operator for each
operation in the program’s expressions. This simple “direct
compilation” shares no resources within the loop body but
later allows overlapping loop iterations by pipelining. We treat
array accesses and scalar variables uniformly. Since the loop
body can only contain linear code and conditional statements,
we can use a control flow/data flow transformation [19] to
generate one combined dataflow graph for the entire loop body.
It computes all program branches in parallel and uses multi-
plexers to select the correct values of conditionally assigned
variables. Resources in these mutually exclusive paths can
be shared without interfering with pipelining (cf. the PISYN
system [18]). For instance, an adder and a subtractor with the
same inputs can be replaced by a combined adder/subtractor if
their outputs are not required concurrently. Our dataflow graph
generation is similar to the method used in the Transmogrifier

compiler [14], but our method avoids unnecessary memory
accesses: when an input value remains unchanged in one branch
of a conditional statement, we do not read the old value in and
write the unchanged value back. Instead, write-enable signals
are generated for the RAM accesses to write values only if the
appropriate conditions are met.

To further reduce redundant memory accesses, index-shifted
accesses to the same array are combined and realized by shift
registers [28]. Using these delayed values of the input stream
avoids accessing the same value in memory more than once and
reduces the number of required vector inputs. This reduction is
crucial since all vector input streams must be read and all output
streams written once for every loop iteration. Thus, the pipeline

Authorized licensed use limited to: Imperial College London. Downloaded on August 13,2010 at 17:10:28 UTC from IEEE Xplore. Restrictions apply.

238 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 2, FEBRUARY 2001

Fig. 5. Edge detector dataflow graph.

Fig. 6. Incomplete Fibonacci dataflow graph.

throughput directly depends on the number of vector inputs and
outputs.

Fig. 5 shows the dataflow graph for the edge detector program
from Fig. 2. There are three vector inputs for , ,
and and a vector output for . The shift registers
are represented by delay elements . Note that the statement
of the loop body is implemented by a multiplexer, which either
selects the conditionally assigned value () or the unchanged
value of generated in the previous statement.

The dataflow graph generated for the transformed Fibonacci
program in Fig. 4 is shown in Fig. 6. Obviously, this circuit does
not produce correct outputs since the loop-carried dependences
stemming from variables and are not accounted for.
The registers are only initialized but never updated. The next
section shows how the circuit can be altered to produce correct
output.

2) Dependences and Feedback Cycles: If a loop has reg-
ular loop-carried dependences, the dataflow graph must be ex-
tended to use the correct values upon which a computation de-
pends. The transformation in Section III-A4 substituted depen-
dent array accesses by scalar variables. Thus, all loop-carried
dependences remaining in a pipeline candidate stem from scalar
variables. Such dependences are treated in the following way.
Since one loop iteration is executed every pipeline cycle, the
input register of such a variable (which is read and written in
the loop) must always contain the value computed in the pre-
vious pipeline cycle. To achieve this, a multiplexer is added at
the register’s input. It selects the input value during initializa-
tion and the feedback value during normal operation depending
on an external control signal provided by the environment.

Fig. 7 shows the result for the Fibonacci program in Fig. 4.
For and , multiplexers have been inserted between
the inputs and the registers storing the variables. During initial-
ization, the control signal selects the input values
that are used for the first loop iteration. All subsequent iterations
select the other inputs of the multiplexers that are connected to

Fig. 7. Complete Fibonacci dataflow graph.

the output values of the variables in the previous iteration. In
this example, a feedback cycle from the output of the adder to
the register holding is created (bold lines in Fig. 7). How-
ever, not all dependences result in feedback cycles.

This example shows that the feedback operators synthe-
sized by pipeline vectorization are more general than those
available in single-instruction multiple-data (SIMD) parallel
programming languages [27]. Such languages feature special
REDUCE or SCAN operations but they are limited to single
operators with direct output feedback to one input (for instance,
ADD-SCAN for an accumulator). The same is true for software
vectorizing compilers, which extract these operations. Arbi-
trarily, customized feedback units, as the one shown in Fig. 7,
are only possible when a pipeline is implemented in hardware.

3) Pipelining and Timing: So far, we have generated a
dataflow graph that computes one loop iteration once all input
registers are set. It may not be very efficient because the
combinational delays of chained operators may accumulate to
a long critical path. The critical path delay can be reduced by
pipelining, effectively overlapping different loop iterations, and
thereby improving the performance. Although the latency is
also increased, it often has only a minimal effect since the time
for filling and flushing the pipeline is normally negligible.

Theoretically, it is possible to pipeline an acyclic dataflow
graph very deeply and run it at a very high clock speed. In a
practical implementation, however, the system clock cycle is
restricted by the combinational delay of the controller (cf. Sec-
tion III-B4). Since most pipelines are fed by data from external
memory, we also require that an external memory access (as-
suming synchronous RAM) completes in one cycle. Hence, we
choose an appropriate value for for each target architecture,
cf. Section VI-C.

Authorized licensed use limited to: Imperial College London. Downloaded on August 13,2010 at 17:10:28 UTC from IEEE Xplore. Restrictions apply.

WEINHARDT AND LUK: PIPELINE VECTORIZATION 239

Fig. 8. Pipelined edge detector dataflow graph.

For correct operation, pipelining has to insert the same
number of registers on all noncyclic paths from an input
register to an output. Register insertion, however, is forbidden
in feedback cycles because this would change the circuit’s
behavior. If the maximum delay within a feedback cycle is
larger than , several system clock cycles are required for one
pipeline cycle. Then the pipeline cycle time is a multiple of

such that . As mentioned above, vector accesses
restrict the throughput, too. The pipeline cycle must contain
at least clock cycles, where is the number of
clock cycles needed to perform all vector accesses to external
memory required for one loop iteration.

Every access to the same memory bank takes one cycle but
accesses to different banks can occur concurrently. Hence, all
accesses are sequential for architectures with one memory bank
and equals the number of accesses. However, on archi-
tectures with several memory banks the allocation of the pro-
gram arrays to the memory banks determines how many ac-
cesses can occur concurrently. This allocation can be performed
manually by the user or automatically [28], which aims to min-
imize .

The resulting pipeline cycle time is ,
where the number of clock cycles per pipeline cycle
is the smallest number such that meets the above stated
requirements and . It is computed
as the following:

Neglecting the time required for filling and flushing the
pipeline, we can now easily predict that a loop with iterations
executes in cycles or in time .

We use a standard retiming technique [29] to insert the min-
imal number of flip-flops necessary to achieve . For recon-
figurable devices, the technique is extended to take into account
that in many FPGAs, combinational gate outputs can be latched
in the same cell. Pipelining requires estimates of all operators’
delays. They are provided by a technology-specific component
library parametrized by operator bit width. The same library is
used to estimate the pipeline’s area (or resource usage) by sum-
ming up the area used by all components. These estimates are
used in the partitioning step described later.

Pipelining reduces the critical path of the edge detector in
Fig. 5 by inserting additional registers. Fig. 8 shows the cir-
cuit after two pipeline stages have been inserted. The Fibonacci
dataflow graph in Fig. 7 cannot be improved since it contains
only one operator. Nevertheless, wherever possible, the hard-
ware computation and the writing of output values are pipelined
in candidate loops.

4) Controller Synthesis: Finally, control circuitry for the
pipeline is generated. For FPGA implementations where there
are abundant latches, we generate a one-hot controller triggered
by an external START signal. As mentioned above, let be
the cycle time of the controller. First, the controller initializes
the pipeline loop’s index variable and then repeatedly loops
through cycles to complete a pipeline cycle. At the be-
ginning of a new pipeline cycle, the loop index is incremented.

All memory accesses of a loop iteration are scheduled in one
of the cycles with memory writes (for results produced in a
previous iteration) before memory reads (for input values of the
next iteration). By storing them in registers, all input and output
values are presented to the pipeline synchronously at the begin-
ning of a pipeline cycle. The registers within the pipeline are
only clock enabled at the beginning of a pipeline cycle. Thus,
the pipeline is effectively clocked with the period and it con-
tains multicycle operators.

A validity bit is used to control the filling and flushing of the
input shift registers and the pipeline stages. It also guarantees
that only valid output values are written to external memory.
When all computations are completed, a STOP signal is raised.
It can be used by external circuitry or to notify the calling host
program in codesign mode about completion of coprocessor
tasks. Along with the controller states, we generate operators
to compute memory addresses for the external memory banks
and multiplex them to the memories’ address buses.

C. Partitioning and Integration

The last pipeline vectorization phase performs hard-
ware–software partitioning as well as hardware integration.

1) Hardware–Software Partitioning: Partitioning deter-
mines which parts of a program will be executed in software
and which in hardware and it does not exist in hardware mode.
The partitioning depends on several properties of the program.
Obviously, only hardware candidates can be allocated to

Authorized licensed use limited to: Imperial College London. Downloaded on August 13,2010 at 17:10:28 UTC from IEEE Xplore. Restrictions apply.

240 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 2, FEBRUARY 2001

hardware. The combined area estimations of the corresponding
circuits of all chosen candidates must not exceed the given
hardware area. For reconfigurable systems, separate configura-
tions can be generated for each loop and the FPGA resources
are reused by reconfiguration.

The main partitioning criterion, however, is the expected
speedup achieved by the coprocessor. This estimation problem
and an automatic partitioning procedure have been addressed
elsewhere [3], [4] and are beyond the scope of this paper. Par-
titioning extensions related to the optimizing transformations
will be covered in the respective sections.

However, automatic partitioning is not always desirable. The
user might want to influence the result. Our methodology sup-
ports producing explanations and helps the user in partitioning
a program manually.

Partitioning also determines if hardware is synthesized for
nonpipeline candidates. Though they are not likely to signifi-
cantly speed up computations, they can, for instance, initialize
variables directly in hardware and, therefore, reduce the need
for slow data transfers from the host. Generating hardware for
the outer loop in Fig. 2 sets variable for each execution of the
inner loop and thus allows us to compute the memory addresses
for the array accesses completely in hardware. Hence, the entire
program can be executed in hardware without host interaction.
The hardware integration phase discussed in the next section
synthesizes circuitry for the selected nonpipeline candidates.

On the software side, the program running on the host is gen-
erated by substituting the chosen loops by runtime library calls
for executing the pipeline as well as copying data between host
and coprocessor. For reconfigurable hardware implementation,
appropriate library functions reconfigure the FPGAs if a new
coprocessor is needed.

2) Hardware Integration: Hardware integration first synthe-
sizes dataflow graphs for the selected nonpipeline candidates
and integrates them with the selected pipeline circuits. We use
a simple syntax directed synthesis technique [15]. It generates a
controller executing instructions in their original order. Only as-
signments within a basic block (a linear piece of program code)
are performed concurrently if there are no local dependencies
between them. If the resulting delay of an assignment becomes
larger than , the clock-cycle time of the pipelined circuit,
the assignment is performed in several cycles. Thus, the per-
formance-critical pipelined part of the design is never slowed
down. Since nonpipelined circuitry is only intended for outer
control loops and initialization, we do not attempt to share op-
erators amongst instructions as in high-level synthesis systems
[19]. This avoids time-consuming optimizations and compli-
cated control. The new controllers are easily combined with the
pipeline controllers by combining their START and STOP sig-
nals.

Next, the dataflow graphs are transformed into a device-spe-
cific netlist by instantiating all operators with macros from
the component library also used for estimation. These netlists
have to be combined with interface circuitry for host and
local memory access and clock signals on the system used.
Differential netlist generation applies only for partially re-
configurable systems (see Section V-C). The netlists are then
further processed with off-the-shelf vendor tools. The fixed

clock cycle can normally be achieved. Though it is difficult
to estimate routing delays, it suffices to include reasonable
slack for routing in the delay estimates used in pipelining and
syntax directed synthesis. The controllers do not contain deep
combinational logic since we generate one-hot controllers.

In case the implemented circuit does not meet the estimated
area or delay targets, a step indicated by the dotted line in
Fig. 1 back annotates the dataflow graphs with more accurate
values and the subsequent steps are repeated. For instance,
more pipeline stages can be inserted to reduce the delay.
Alternatively, an experienced user can review and optimize the
generated circuits manually.

IV. LOOP TRANSFORMATIONS

The core design flow discussed so far is limited to programs
with innermost loops of suitable size: problems occur when the
loop body is too small to warrant the hardware overheads or
too large to fit in the given hardware. The method is also sensi-
tive to programming styles. For instance, the edge detector pro-
gram in Fig. 2 could not be vectorized if small inner loops had
been used to compute and . The loop would no
longer be an innermost loop and, therefore, would not be con-
sidered a pipeline candidate. This section shows how transfor-
mation techniques known from parallelizing software compilers
such as loop unrolling, loop tiling, loop merging, loop distribu-
tion, and loop interchange can be adapted to overcome these
problems and widen the applicability of pipeline vectorization.
Since the transformations naturally involve the part of the appli-
cation remaining in software, they are more systematic and com-
prehensive than just optimizing the hardware parts after parti-
tioning and hardware generation in a codesign system. We apply
all transformations when applicable, giving priority to unrolling
and tiling since they have the biggest influence on the resulting
performance.

The hardware synthesis part of the core design flow is ex-
tended, as shown in Fig. 9. The transformations generate new
variations of the candidates and add them to the internal pro-
gram representation. Then, the hardware synthesis is repeated
for the new loops (see path I in Fig. 9). Finally, the best suited
among the original and alternative processors are implemented
(path III, Fig. 9).2 Since the transformations only manipulate
the internal program and high-level dataflow graph representa-
tions, all interesting alternatives can be generated quickly. Only
the implementation of the selected processors involves running
slow hardware design tools, such as place and route tools.

A. Loop Unrolling

In software compilers, loop unrolling is an important tech-
nique to increase basic block sizes, extending the scope of
local optimizations. Unrolling inner loops results in larger loop
bodies. For pipeline vectorization, this means larger processors
and, therefore, more potential parallelism. However, the size of
the processors must match the available hardware resources.

A candidate loop can be completely unrolled if its bounds are
constant. This situation occurs in many programs; for instance,

2Path II in Fig. 9 refers to the circuit specializations discussed in Section V.

Authorized licensed use limited to: Imperial College London. Downloaded on August 13,2010 at 17:10:28 UTC from IEEE Xplore. Restrictions apply.

WEINHARDT AND LUK: PIPELINE VECTORIZATION 241

Fig. 9. Extended hardware synthesis design flow.

in image processing applications with loops over small con-
stant-size templates [30]. Specific examples include the skele-
tonization program used in Section VII-B or filters with a con-
stant number of taps.

If an innermost loop is completely unrolled, the next outer
loop can be vectorized. However, this does not always lead to a
feasible pipeline coprocessor for the outer loop since the trans-
formed loop body might be larger than the available hardware
resources or the coprocessor might be too slow due to too many
vector inputs and outputs. Therefore, partitioning will decide if
the original or the unrolled candidate is selected.

Partial unrolling is not useful for pipeline vectorization since
it increases the number of vector inputs and outputs and the
pipeline cycle time and the hardware size. It is only useful when
combined with vectorizing the next outer loop. This is achieved
by loop tiling, described next.

B. Loop Tiling

Loop tiling is a transformation for cases where complete un-
rolling is not applicable due to variable loop bounds or resulting
coprocessors becoming too large. In these cases, it is very bene-
ficial to partially unroll a loop, thereby adjusting the circuit size
to the given hardware resources, and vectorize the next outer
loop. Loop tiling achieves this by combining loop partitioning
and interchange (Section IV-D). We adapt this technique for
pipeline vectorization.

Transformation steps 1 and 2 in Fig. 10 show loop tiling in the
general form used here. The transformation works on two nested
loops, where and do not contain loops them-
selves. The inner loop is partitioned in tiles, which will eventu-
ally be unrolled. The tile size is chosen as the maximum
number of “processing elements” [instances of the loop body

] fitting in the given hardware resources along with the
operations in and , which are executed before
the first tile and after the last tile, respectively. Hence, is

Fig. 10. Hardware-specific loop tilting.

estimated by
, where is the size of the hardware

resources; , , and are the estimated
sizes of , and ; and “/” denotes integer
division. Loop tiling will then result in a coprocessor that is
approximately times larger and times faster than
the coprocessor generated from the original loop.

Authorized licensed use limited to: Imperial College London. Downloaded on August 13,2010 at 17:10:28 UTC from IEEE Xplore. Restrictions apply.

242 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 2, FEBRUARY 2001

Transformation step 1 partitions the loop for a given
(also known as strip mining) and renormalizes the bounds and
steps. Rather than unrolling the inner loop, step 2 interchanges
the outer loop with the tile loop. This allows us to vectorize
the former outer loop and to unroll the reduced inner loop
without considering the (now outermost) tile loop. and

are first “sunk” in the tile loop (by adding guards) since
interchange is only possible for perfectly nested loops—loop
nests without statements between the inner and outer loop.

However, loop tiling is not possible if the bounds of the inner
loop depend on the outer loop index or if data dependences pre-
vent the loop interchange. Fortunately, this can be checked be-
fore starting the entire transformation since step 2 is legal iff
the original loops are fully permutable [31]. This is the case if
all dependences carried by these loops have nonnegative dis-
tances. This condition can be tested during dependence anal-
ysis. It means that no dependence on an earlier iteration of the
inner loop is allowed. In the generated pipelines, no backward
dataflow between “processing elements” is allowed but non-
local forward flow is.

The output of step 2 cannot directly be vectorized. Thus,
we devise additional hardware-specific transformations ex-
tending software loop tiling. The nonconstant upper bound

prevents unrolling the inner loop.
Since is constant, the upper bound can never be larger
and we substitute it by . To maintain correctness, the loop
body has to be guarded by for the case that

is the actual minimum. We rewrite this guard to

where % denotes the modulo operator. It is now explicit that
this formula can only evaluate to false for the last tile

. Step 3 shows this transformation.
Now the inner loop can be unrolled in step 4. Unfortunately,

the guard has to be replicated, too, although it can be omitted
for the case . This condition is always true because every
tile performs at least one inner loop iteration.

Implementing the guards in hardware adds a comparator to
each processing element. However, since the guards do not de-
pend on the index variable , flags for the guards can be as-
signed outside the vectorized loop. In codesign mode, the outer
loops can generate the flags in software and pass them to the
hardware, thus avoiding the hardware comparators. Step 5 in
Fig. 10 shows this final transformation. Note that to

need only be computed once since they do not
change in the tile loop, whereas and
need to be adjusted in the tile loop. The resulting program gener-
ates a dataflow graph adjusted to the given hardware resources.
An example will be given in Section VII-A.

C. Loop Merging

Loop merging is another means of increasing parallelism
in loop bodies. Its scope is limited to loops (or loop nests)
traversing the same index space and all dependences of the
original loops must be preserved in the merged loop. If direct

Fig. 11. Shifted loop merging.

Fig. 12. Dataflow graphs for merged loop.

merging violates dependences, shifted loop merging may be
possible. It combines loop alignment with loop merging [27].

An example is given in Fig. 11, where and represent linear
image processing operators depending on a 3 3 neighborhood.
Since direct merging would violate dependences from line 3 to
line 6 in the original program, the loops have to be aligned: iter-
ation of the first loop is fused with iteration of the second
loop. The alignment parameter is chosen as the minimal in-
teger that preserves all dependences. The shifted merged loop
contains an extra iterations and guards are added to skip ex-
ecution during either the first or the last iterations. For this
example, (for the outer loop) is sufficient.

Fig. 12(a) shows the corresponding dataflow graph for .
The operator is delayed by one iteration of the outer loop. We
see that the merged pipeline requires five vector inputs and two
outputs. This might slow down the pipeline considerably and
not make merging worthwhile. It must be checked by the final
coprocessor selection in the hardware–software partitioning
phase. On the other hand, we can efficiently implement these
vector inputs and outputs on architectures with several concur-
rently accessible memory banks by allocating p1, and
to different banks. We discuss a detailed case study on this in
Section VII-B.

By choosing a larger alignment parameter , this transforma-
tion becomes suitable for multichip systems. Fig. 12(b) shows
the resulting dataflow graph if we “overdelay” by one (
in this example). In this case, the pipelines of the original loop
bodies become completely independent and communicate only
via memory. Hence, they can easily be allocated to separate
FPGAs that share access to a memory bank for array . In this
case, we do not really merge the loops but determine how two
(or more) pipelines can overlap forming a composite pipeline.

Authorized licensed use limited to: Imperial College London. Downloaded on August 13,2010 at 17:10:28 UTC from IEEE Xplore. Restrictions apply.

WEINHARDT AND LUK: PIPELINE VECTORIZATION 243

For pipelines, a speed-up factor up to can be achieved com-
pared to sequential execution. The minimal or overdelayed
value is chosen depending on the given target architecture.

D. Other Loop Transformations

The following paragraphs discuss loop transformations,
which are of limited importance for pipeline vectorization. We
do not attempt to transform entire loop nests as in [31] since it
is difficult to define a strategy for such a global transformation
in the context of pipeline vectorization. This is an area of future
research.

Loop Distribution: Loop distribution is the opposite of loop
merging. It results in smaller pipelines and, thus, can be applied
if a loop body is too large to fit on the given hardware. A loop
cannot be distributed if dependences of the original loop are
violated. As in loop tiling—which is a form of loop distribu-
tion—pipeline feedback paths must not be cut. We do not con-
sider loop distribution any further since it is only necessary for
very limited FPGA resources.

Loop Interchange: Loop interchange swaps perfectly nested
loops. As discussed for loop tiling, it is legal if the interchanged
loops are fully permutable. This transformation does not change
the size of the generated hardware, but can increase the length
of the vectorized loop, thereby reducing the overhead for set-
ting up, filling, and flushing the pipeline. Furthermore, it can
increase the locality of data accesses by changing the index vari-
able relevant for vectorization.

Strip Mining: Finally, strip mining (the first step of loop
tiling) can reduce local memory requirements if combined with
array region analysis and applied to the vectorized loop.

E. Partitioning Extensions

Automatic hardware–software partitioning is extended by a
recursive algorithm that selects the transformed loop, which re-
sults in the largest feasible coprocessor. Alternatively, the user
selects the applied transformations. He can also select parame-
ters as the tile size. This is especially useful if the area targets are
not met and the dotted design flow cycle in Fig. 1 is activated.

V. RUNTIME CIRCUIT SPECIALIZATION

Constant propagation has long been used in software and
hardware compilers to optimize programs or circuit designs.
The advent of reconfigurable hardware has opened the opportu-
nity to propagate values that are not constant, thereby reducing
a design’s delay and area [32]. Whenever a value changes, the
circuit is reconfigured. Rather than changing the input of flex-
ible operators, a design that exploits RTR uses smaller operators
obtained by constant propagation. Hence, more of a program’s
operators can be implemented on a given hardware area. Be-
cause of the reconfiguration overhead, only values changing in-
frequently should be considered. Therefore, we only consider
those variables for value propagation that do not change inside
the loops to be vectorized. The hardware–software partitioning
must evaluate the tradeoff between design improvement and re-
configuration overhead.

We distinguish two cases of RTR. First, the number of prop-
agated values is limited and the values themselves are known

Fig. 13. Limited value propagation.

at compile time. Second, there is an arbitrary number of values
unknown at compile time. We present methods for exploiting
these cases for pipeline vectorization next.

A. Limited Value Propagation

If the number of possible values is limited, the hardware can-
didate can be reproduced for all values. Consider the transfor-
mation of the example in Fig. 13. The program is a string pat-
tern matcher where computes a Boolean value
indicating if the input string contains the pattern at posi-
tion . The original version uses the variable input in the
FOR loop. By standard definition-use analysis, the conditional
assignment to can be propagated to its use in the FOR loop
(Fig. 13, step 1). Next, step 2 moves the evaluation of out
of the FOR loop. The loop is duplicated but each instance now
has a constant input to , which results in smaller and faster
hardware. This transformation can easily be extended for more
than two values or more than one variable being considered. It
performs constant propagation in software and effectively pro-
duces several independent loops. Standard hardware generation
is applicable and the design flow path I in Fig. 9 is used. As
with the other loop transformations, the original program code
is retained since only the partitioning phase decides if the prop-
agated version will be used.

We can also generate independent loops for tiled loops if the
tiling is necessary due to limited hardware resources while the
inner loop length (and, therefore, the number of tiles) stays con-
stant. Unrolling the tile loop (which is the outermost loop con-
sidered) generates an independent vectorizable loop for every
tile with constant values for and for all guards (cf. Fig. 10).
Note, however, that the tiling transformation should be repeated
if RTR is considered since value propagation reduces the area of
a “processing element.” Hence, more elements fit on the avail-
able hardware and the tile size can be increased.

This case of RTR is suitable for chip-level and partially re-
configurable systems. However, the tradeoffs will be different.
If partial reconfiguration is not supported, the reconfiguration
time will be large regardless of how small the difference be-
tween two configurations is. Therefore, chip-level RTR will not
be useful for examples like the pattern matcher in Fig. 13, where
only three comparators can be simplified. The gain will be neg-
ligible compared with the reconfiguration overhead.

Authorized licensed use limited to: Imperial College London. Downloaded on August 13,2010 at 17:10:28 UTC from IEEE Xplore. Restrictions apply.

244 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 2, FEBRUARY 2001

On the other hand, for partially reconfigurable devices, the re-
configuration time is proportional to the amount of logic altered.
We use tools like ConfigDiff [33] to determine the fastest par-
tial configuration to switch between two similar designs. Hence,
small changes can be performed very quickly.

B. Arbitrary Value Propagation

The second case of RTR occurs if a variable can assume any
value at runtime. Then we cannot prepare separate configura-
tions for each of them at compile time. Since it is prohibitive to
run the entire design tool suite for new values at runtime, this
case cannot be handled with FPGAs that can only be config-
ured completely. It is only suitable for partially reconfigurable
FPGAs that allow adaptation of an operator to any constant
input values within a few cycles at runtime. Therefore, a circuit
“skeleton” is synthesized, which reserves area for the largest
possible constant input operator. At runtime, all these opera-
tors are adapted to the given values. Doing this also requires
a special component library that provides the operator skeletons
along with information on how to generate the configuration in-
structions for a given input value and a given position of the
operator on the chip.

Generating such a circuit skeleton adds an alternative
implementation for a given hardware candidate, but the candi-
date loop itself remains unchanged. Since the constant input
operators have smaller delays than their flexible counterparts,
their pipelined versions might contain less registers. Therefore,
pipelining and controller synthesis—but not dataflow graph
generation—is repeated for these new implementations (see
path II in Fig. 9). As for limited value propagation, the tile
size for partially unrolled loops is increased. Thus, tiling
should be repeated. Eventually, the best suited processors are
implemented (see path III in Fig. 9) as outlined in Section IV.

This is the most flexible approach to RTR. Unfortunately,
generating such designs has not yet been completely automa-
tized. However, we present a manually implemented case study
in Section VII-A.

C. Runtime Reconfiguration Partitioning and Integration

In RTR systems, the original or the specialized circuit must
be selected automatically (unless only the specialized circuit fits
on the given hardware). There is a tradeoff between the recon-
figuration time and the amount of computation performed in one
configuration. The reconfiguration time depends on the FPGA
technology (partial or complete reconfiguration) and on the re-
configuration frequency. The latter depends on the overall con-
trol flow of the program. Its analysis involves estimating loop
and branch execution counts and must be addressed in the con-
text of the overall speed-up estimation, cf. [3], [4]. Alternatively,
an implementation can be selected manually.

For partially reconfigurable systems, differential netlists can
be generated. This additional step replaces complete configura-
tions by differential configurations that just change the differ-
ences between two consecutive configurations. Therefore, even
the configuration times of unrelated coprocessors are reduced,
especially if they share the same control circuitry.

VI. COMPILER IMPLEMENTATION

A. SUIF Pipeline Compiler

Our pipeline vectorization prototype implementation is based
on the SUIF compiler framework [34], which provides and
Fortran front ends and powerful loop analysis and transforma-
tion libraries. We have implemented a prototype SUIF pipeline
compiler (SPC), which targets FPGA-based reconfigurable sys-
tems. The supported input language is .

The compiler’s analysis phase produces explanations
whether a loop is a hardware candidate and if it can be vector-
ized. This helps the user to change the program accordingly, for
instance, by eliminating dependences, so that faster hardware
can be generated for more loops. For the candidates, area and
speed estimations are given as well. Thus, an experienced
user can assess the chances of improving the generated circuit
manually and decide which parts of an application benefit from
FPGA hardware.

The user selects hardware candidates and loop transforma-
tions either interactively or using program annotations. Then an
operator-level netlist is synthesized for the selected candidates
and output to a file.

B. Target Systems

SPC is not developed for specific board architectures or
FPGA families. Only the number and size of the target architec-
ture’s memory banks and FPGA-specific component libraries
have to be provided so that SPC can generate an architecture
and device-specific netlist. An FPGA family-specific extension
generates a constraint file for place and route tools.

We currently use a PC-based RC1000-PP board [7] with a
Xilinx XC4085XL FPGA and two 2-MB memory banks. The
board allows for fast DMA transfers between host and local
on-board RAM at 100 MB/s. FPGA configuration takes 780 ms
on this board but we expect much faster configuration for the
new Xilinx Virtex FPGA used in the next version of this board.

C. Tool Integration

Both SPC and the low-level vendor tools are controlled by
a compilation script. After completion of SPC, the generated
netlist is combined with hardware descriptions of RC 1000-PPs
host and RAM interfaces to form a complete FPGA design. The
RAM interface contains logic to generate control signals for the
board’s asynchronous RAM so that it can be accessed like syn-
chronous RAM by the generated circuit. Next, the script calls
the vendor tools and generates a bitstream. The place and route
tool uses the constraint file generated by SPC, which also spec-
ifies the maximum delays permitted for multicycle operators
in the pipelines. Thus, all generated designs run at the same
clock speed. For the current chip generation, we use 25 MHz
or ns.

The results given in Section VII have been produced with the
assistance of SPC. For all applications, the SPC runtime is just
a few seconds. The entire compilation time is by far dominated
by the FPGA vendor’s place and route tool.

Authorized licensed use limited to: Imperial College London. Downloaded on August 13,2010 at 17:10:28 UTC from IEEE Xplore. Restrictions apply.

WEINHARDT AND LUK: PIPELINE VECTORIZATION 245

Fig. 14. String pattern matcher program.

TABLE I
ANALYSIS OF STRING PATTERN MATCHER

D. Limitations

SPC is currently limited to the core design flow in hardware
mode and the two most important loop transformations: un-
rolling and tiling. Due to the limitations of current FPGA tech-
nology, no floating-point operations are allowed. Since irreg-
ular dependences require complicated control within a pipeline
cycle, SPC does not support these yet. Finally, since most re-
configurable systems do not have direct access to host memory,
we do not handle pointers. We are constantly extending the SPC
prototype to remove these restrictions and to implement the en-
tire pipeline vectorization framework.

VII. RESULTS

This section presents pipeline vectorization results. First, two
detailed case studies are presented in Sections VII-A and VII-B.
Finally, Section VII-C summarizes performance results of these
and other benchmark programs.

A. String Pattern Matcher

This case study, a string pattern matcher, evaluates the bene-
fits of loop tiling and runtime circuit specialization. Therefore,
it is implemented on a PC-based Xilinx 6200 DS board [8] using
a partially reconfigurable XC6216 FPGA. The program, shown
in Fig. 14, is the same as that in Fig. 13 but with arbitrary pat-
tern lengths and values.3 Therefore, the inner loop cannot be
unrolled. However, the outer loop (index) can be vectorized
after the tiling transformation has been applied. The resulting
pipeline circuit is a linear data path of comparators and registers.
Both compile-time reconfigurable (CTR) and RTR versions are
possible. The CTR version contains generic comparators and the
XC 6200s protected registers so that pattern bytes can be loaded
directly from the host, whereas the specialized RTR version con-
tains constant comparators. The XC 6216 is large enough to im-
plement the controller and 54 CTR processing elements or 90
smaller specialized RTR processing elements.

Table I shows the raw performance of the implementations
running at 25 MHz in comparisons per second and speedups
over software on a 300 MHz Pentium II PC. All values are actual
measurements except those related to inner-loop vectorization,
which are estimated. The values for the tiled implementations

3Note that much faster algorithms for string pattern matching exist. However,
they cannot easily be implemented in hardware since they are less regular than
the simple algorithm used here.

include the times for changing a tile, amortized over 100 000
pipeline cycles.

However, the hardware performance data do not include the
overheads for initializing the FPGA configuration and data
transfer since their significance depends on the overall number
of tiles. The CTR and RTR performance numbers only concern
the case when all processing elements are used. Fig. 15 shows
the overall execution times including configuration and data
transfer times, which are indicated by two additional lines in the
graph. Since the execution time of a tiled implementation only
depends on the number of tiles, their graphs are step functions.

We conclude that loop tiling is a transformation which en-

ables a considerable speedup for string pattern matching in the
first place and RTR further improves the performance by ap-
proximately 50% for large patterns.

B. Morphological Skeletonization

In this section, we apply our method to a morphological skele-
tonization algorithm [30]. It is implemented on the RC 1000-PP
board mentioned in Section VI-B. This example evaluates loop
unrolling and shifted loop merging. Fig. 16 shows the algo-
rithm’s structure. is initialized with the input image and

with an empty image. Then the operators erosion,
dilation, and difference/union are repeatedly performed on the
data until is completely eroded. The dotted arrows indi-
cate which operators’ outputs are used for the next repetition.

The erosion operator consists of two nested inner loops that
iterate over a constant 5 5 template. Pipelining the innermost
loops would not be beneficial since it only contains one op-
erator computing the minimum of two inputs. However, after
completely unrolling both inner loops, a pipeline containing 20
minimum operators can be generated. It can compute one output
pixel every pipeline cycle.

The upper part of Table II gives pipeline frequencies in
megahertz (the reciprocal of pipeline cycle lengths), raw per-
formance in operations per second, and execution times

in milliseconds for a 512 512 pixel image as well as the
total time for the independent execution of all skeletonization
operators.

The performance can be improved by merging all operators
to produce one large pipeline. The last line in Table II shows
that the advantage of loop merging is limited for one memory
bank since too many memory accesses have to be performed
sequentially in one cycle. For two banks, however, merging is
effective. It halves the execution time.

We measured 65 ms for the completion of one skeletonization
iteration for a 512 512 pixel image on the RC 1000-PP. Even
including data transfer (5 ms amortized over 15–30 iterations),
the hardware coprocessor was measured to be 16 times faster
than software (1045 ms on the 300 MHz PC).

To summarize, loop unrolling is an enabling transformation

for the erosion and dilation loops, whereas shifted loop merging
further improves the entire skeletonization program.

C. Benchmark Results

Table III summarizes performance results of several bench-
mark programs. All but and are imple-
mented on the RC 1000-PP board. The columns show runtimes

Authorized licensed use limited to: Imperial College London. Downloaded on August 13,2010 at 17:10:28 UTC from IEEE Xplore. Restrictions apply.

246 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 2, FEBRUARY 2001

Fig. 15. Execution times for string pattern matcher for N = 1000000.

Fig. 16. Morphological skeletonization.

TABLE II
ANALYSIS OF SKELETONIZATION OPERATORS

TABLE III
BENCHMARK RESULTS

in milliseconds for software (SW) on a 300 MHz Pentium II PC
and hardware (HW), hardware speedup (SpUp), device utiliza-
tion (percent of logic cells used), and parallelization factor (PF).
The latter is an indication of the effect of vectorization: it shows
how many arithmetic or logic operations can, in principle, be
performed in parallel in a pipeline. These operations would have
to be performed sequentially without parallelization. The high
values of PF indicate that the observed hardware acceleration
is mainly achieved through vectorization. Note that the speedup

cannot directly be derived from PF since the number of micro-
processor clock cycles required per operation depends on the
type of the operation and runtime effects such as cache misses.
Also, the hardware cannot exploit the available parallelism com-
pletely if the pipeline is I/O bound. Note that the device utiliza-
tion reported is very inaccurate since cells used only for routing
are counted, too. Additionally, the current SPC prototype is not
optimized for area. For instance, the pipelining algorithm used
does not minimize the registers inserted.

The and programs are the tiled pat-
tern matcher implementations on the 6200 DS board discussed
in Section VII-A. The given runtimes result from a pattern
length of 400 and an input length of 100 000. The speedups are
lower than those reported in Table I since not all processing
elements are used in all tiles. Note that the parallelization
factor depends on the size of the used FPGA in these tiled
implementations. In all other programs, it is limited by the
programs themselves.

The program is the image skeletonization presented in
the previous section and is an image sharpen
operator which also uses a 5 5 template. is
a general convolver with a 3 3 template of loadable coef-
ficients, whereas is a similar program with con-
stant coefficients—an image smoothing operator. Because gen-
eral multipliers are substituted by constant multipliers or elimi-
nated at all, the area requirement is hugely decreased. However,
because both designs have the same memory access patterns
and can both be pipelined, similar runtimes are measured. The
same is true for program , the edge detector program
in Fig. 2. shows that several operators (vertical and

Authorized licensed use limited to: Imperial College London. Downloaded on August 13,2010 at 17:10:28 UTC from IEEE Xplore. Restrictions apply.

WEINHARDT AND LUK: PIPELINE VECTORIZATION 247

horizontal edge detectors) combined in a bigger pipeline can ex-
ecute as fast as a simple operator (). The runtimes
for all these programs refer to 512 512 pixel greyscale im-
ages.

Finally, is a binary matrix multiplication pro-
gram. It multiplies input vectors with a loadable 32 32 binary
matrix. We measured results for 100 000 input vectors.

The results show that pipeline vectorization results in FPGA
circuits, which speed up programs from 50% (factor 1.5) up to
53 times over a fast microprocessor. The parallelization factor,
an indicator independent of the implementation technology,
shows that the vectorized implementation of all circuits is one
to two orders of magnitude faster than a nonvectorized circuit
generated from the same high-level program.

VIII. CONCLUSION AND FUTURE WORK

This paper presents a framework for producing optimized
pipelined circuits from high-level programs. It combines the
vectorization of inner loops to extract parallelism in a sequen-
tial program with circuit pipelining to exploit this parallelism
in hardware. The framework includes new optimizing transfor-
mations that customize hardware processors to meet specific
resource constraints and exploit RTR. The case studies show
that some transformations result in hardware acceleration that
cannot be achieved easily by hand. Others improve the perfor-
mance of processors significantly. All benchmarks show that
pipeline vectorization generally synthesizes much more effi-
cient circuits than simpler sequential high-level design tech-
niques. The time efficiency is often comparable with manu-
ally designed VHDL designs, although the circuits might not
be as area efficient. To produce more competitive designs, fu-
ture compilers will include advanced design techniques like the
use of on-chip RAM as delay lines [28]. Our framework can se-
lect, generate, and integrate coprocessors automatically while
retaining the flexibility to allow users to influence the synthesis
process.

Our approach appears to be simpler to use than other -based
hardware design systems. Software source code can often be
left unchanged or only minor changes are necessary to enable
vectorization and pipeline synthesis. In contrast, parallel design
languages, even if -based, require the user to identify available
parallelism and synchronize parallel program components. For
instance, to design an efficient convolver, parallel statements
are required to pipeline the computations. The designer needs
to have a clear idea of the resulting circuit and the resulting
program often has little resemblance to the original software
source code. Also, memory allocation and hardware–software
interface generation are error-prone manual tasks.

In its current state, pipeline vectorization is not as universal as
high-level synthesis systems: no design-space exploration, gen-
eral scheduling techniques, or resource sharing are employed.
Instead of using heuristic optimizations to tackle these prob-
lems, we use higher level dependence analysis information in
software source code. Hence, we can use what often is the most
effective schedule available for regular iterative computations:
pipelining.

Our current compiler prototype targets FPGAs. We do not op-
timize space by sharing operators for the sake of both compila-
tion and execution speed. It is more important to have very fast
processors for the program “hot spots” rather than a slow uni-
versal design with many idle operators. Space is not our main
concern since reconfigurable systems have other options for
computations not fitting on a given hardware design: software or
reconfiguration. Moreover, hardware sharing may increase the
amount of routing to the shared resource, increasing both delay
and size of the resulting circuit.

Our research shows that the systems available today are
generally useful for reconfigurable computing applications. For
most loosely coupled reconfigurable architectures, however,
the slow communication over the system bus is still a major
obstacle to achieving high speedups. Advanced tightly coupled
systems [10], [23] could improve this situation. Another
problem is the long runtime of the FPGA vendor tools that are
not comparable to modern software compilers. These tools need
to improve in order to make reconfigurable computing more
attractive. For instance, the place and route tools could offer
a prototyping mode for quick results and a slower optimizing
mode just as software compilers do. Coarse-grain FPGAs
specifically designed for reconfigurable applications might be
another solution to this problem since simple fast mapping
tools can be developed for them [11].

Future work will include combining the fine-grain vectoriza-
tion presented in this paper with coarse-grain task-level paral-
lelism. With this approach, the abovementioned communica-
tion latency could be hidden by overlapping communication
and computation. Strategies to transform entire loop nests will
also be studied and automatic partitioning will be included in
our compiler prototype. We are interested in supporting various
input languages, particularly parallel ones, in order to optimize
existing parallel programs. Further extensions will allow users
to include manually designed hardware blocks and to synthesize
digit-serial designs.

REFERENCES

[1] C. E. Kozyrakis and D. A. Patterson, “A new direction for computer
architecture research,” IEEE Computer, vol. 31, pp. 24–32, Nov. 1998.

[2] M. Weinhardt and W. Luk, “Pipeline vectorization for reconfigurable
systems,” in Proc. IEEE Symp. Field-Programmable Custom Computing

Machines. Napa, CA, Apr. 1999, pp. 52–62.
[3] M. Weinhardt, “Compilation and pipeline synthesis for reconfigurable

architectures,” in Reconfigurable Architectures Workshop, Geneva,
Switzerland, Apr. 1997, pp. 105–112.

[4] , “Übersetzungsmethoden für strukturprogrammierbare rechner,”
Ph.D. dissertation (in German), Univ. Karlsruhe, Karlsruhe, Germany,
July 1997.

[5] SystemC. The open systemC initiative. [Online]. Available:
http://www.systemc.org

[6] J. E. Vuillemin, P. Bertin, D. Roncin, M. Shand, H. H. Touati, and P. Bou-
card, “Programmable active memories: Reconfigurable systems come of
age,” IEEE Trans. VLSI Syst., vol. 4, pp. 56–69, Jan. 1996.

[7] Embedded Solutions Ltd. RC1000-PP product information sheet.
[Online]. Available: http://www.embedded-solutions.ltd.uk/ProdApp/
RC1000PP.htm

[8] S. Nisbet and S. A. Guccione, “The XC6200DS development system,”
in Field Programmable Logic and Applications, New York: Springer-
Verlag, 1997, pp. 61–68.

[9] P. M. Athanas and H. F. Silverman, “Processor reconfiguration through
instruction-set metamorphosis,” IEEE Computer, vol. 26, pp. 11–18,
Mar. 1993.

Authorized licensed use limited to: Imperial College London. Downloaded on August 13,2010 at 17:10:28 UTC from IEEE Xplore. Restrictions apply.

248 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 2, FEBRUARY 2001

[10] J. R. Hauser and J. Wawrzynek, “Garp: A MIPS processor with a recon-
figurable coprocessor,” in Proc. FPGAs Custom Computing Machines.
Napa, CA, Apr. 1997, pp. 12–21.

[11] T. J. Callahan and J. Wawrzynek, “Instruction level parallelism for re-
configurable computing,” in Field Programmable Logic and Applica-

tions, New York: Springer-Verlag, 1998, pp. 248–257.
[12] S. A. Guccione and M. J. Gonzalez, “A data-parallel programming

model for reconfigurable architectures,” in Proc. FPGAs Custom

Computing Machines. Napa, CA, Apr. 1993, pp. 79–87.
[13] S. Guccione, “Programming fine-grained reconfigurable architectures,”

Ph.D. dissertation, Univ. Texas, Austin, TX, 1995.
[14] D. Galloway, “The transmogrifier C hardware description language and

compiler for FPGAs,” in Proc. FPGAs Custom Computing Machines.
Napa, CA, Apr. 1995, pp. 136–144.

[15] I. Page and W. Luk, “Compiling Occam into FPGAs,” in
FPGAs. Abingdon, U.K.: Abingdon, 1991, pp. 271–283.

[16] Handel-C Reference Manual, Embedded Solutions Limited, Abingdon,
U.K., 1998.

[17] R. Camposano, “From behavior to structure: High-level synthesis,”
IEEE Des. Test Comput., vol. 7, pp. 8–19, Oct. 1990.

[18] R. Camposano and W. Wolf, High-Level VLSI Synthesis. Norwell,
MA: Kluwer, 1991, ch. 3.

[19] D. D. Gajski, N. D. Dutt, A. Wu, and S. Lin, High-Level Synthesis: In-

troduction to Chip and System Design. Norwell, MA: Kluwer , 1992.
[20] “Behavioral Compiler User Guide,” Synopsys, Mountain View, CA,

v1998.08, 1998.
[21] D. Soderman and Y. Panchul, “Implementing C algorithms in reconfig-

urable hardware using C2Verilog,” in Proc. FPGAs Custom Computing

Machines. Napa, CA, Apr. 1998, pp. 339–342.
[22] M. B. Gokhale and J. M. Stone, “NAPA C: compiling for a hybrid

RISC/FPGA architecture,” in Proc. FPGAs Custom Computing Ma-

chines. Napa, CA, Apr. 1998, pp. 126–135.
[23] C. R. Rupp, M. Landguth, T. Garverick, E. Gomersall, and H. Holt, “The

NAPA adaptive processing architecture,” in Proc. FPGAs Custom Com-

puting Machines. Napa, CA, Apr. 1998, pp. 28–37.
[24] E. Fabiani, D. Lavenier, and L. Perraudeau, “Loop parallelization on a

reconfigurable coprocessor,” in Proc. Workshop Design, Test, Applica-

tions, Dubrovnik, Croatia, June 1998.
[25] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers—Principles, Tech-

niques, and Tools. Reading, MA: Addison-Wesley, 1986.
[26] H. Zima and B. Chapman, Supercompilers for Parallel and Vector Com-

puters. Reading, MA: Addison-Wesley, 1991.
[27] M. Wolfe, High Performance Compilers for Parallel Com-

puting. Reading, MA: Addison-Wesley, 1996.

[28] M. Weinhardt and W. Luk, “Memory access optimization and RAM in-
ference for pipeline vectorization,” in Field Programmable Logic and

Applications, New York: Springer-Verlag, 1999, pp. 61–70.
[29] C. E. Leiserson and J. B. Saxe, “Optimizing synchronous systems,” J.

VLSI Comput. Syst., vol. 1, pp. 41–67, 1983.
[30] H. R. Myler and A. R. Weeks, Computer Imaging Recipes in

C. Englewood Cliffs, NJ: Prentice-Hall, 1993.
[31] M. E. Wolf and M. S. Lam, “A loop transformation theory and an algo-

rithm to maximize parallelism,” IEEE Trans. Parallel Distrib. Syst., vol.
2, pp. 452–471, Oct. 1991.

[32] M. J. Wirthlin and B. L. Hutchings, “Improving functional density
through runtime constant propagation,” in ACMIGDA Int. Symp.

Field-Programmable Gate Arrays. Monterey, CA, Feb. 1997, pp.
86–92.

[33] W. Luk, N. Shirazi, and P. Y. K. Cheung, “Compilation tools for run-time
reconfigurable designs,” in Proc. FPGAs Custom Computing Machines.
Napa, CA, Apr. 1997, pp. 56–65.

[34] The Stanford SUIF Compiler Group, Stanford University. [Online].
Available: http:// suif.stanford.edu

Markus Weinhardt received the Dipl. and Dr.Ing. degrees in informatics from
the University of Karlsruhe, Karlsruhe, Germany, in 1992 and 1997, respec-
tively.

He is currently a Marie Curie Postdoctoral Fellow in the Department of Com-
puting, Imperial College, University of London, U.K. His research interests in-
clude reconfigurable and parallel computing, focusing on high-level compila-
tion techniques.

Wayne Luk (S’85–M’89) received the M.A., M.Sc., and D.Phil. degrees in en-
gineering and computing science from the University of Oxford, Oxford, U.K.

He is a Member of the Academic Staff in the Department of Computing, Im-
perial College, University of London, U.K. His research interests include theory
and practice of customizing hardware and software for specific application do-
mains such as graphics and image processing, multimedia, and communications.
His current work involves high-level compilation techniques and tools for par-
allel computers and embedded systems, particularly those containing reconfig-
urable devices such as field-programmable gate arrays.

Authorized licensed use limited to: Imperial College London. Downloaded on August 13,2010 at 17:10:28 UTC from IEEE Xplore. Restrictions apply.

