
 Open access Journal Article DOI:10.1109/TVLSI.2011.2178275

Pipelined Radix- 2^{k} Feedforward FFT Architectures — Source link

Mario Garrido, Jesus Grajal, Miguel Ángel Martín Sánchez, Oscar Gustafsson

Institutions: Linköping University

Published on: 01 Jan 2013 - IEEE Transactions on Very Large Scale Integration Systems (Institute of Electrical and
Electronics Engineers (IEEE))

Topics: Feedforward neural network, Decimation and Feed forward

Related papers:

 An algorithm for the machine calculation of complex Fourier series

 MDC FFT/IFFT Processor With Variable Length for MIMO-OFDM Systems

 A 2.4-GS/s FFT Processor for OFDM-Based WPAN Applications

 Pipelined Parallel FFT Architectures via Folding Transformation

 Design and implementation of a 1024-point pipeline FFT processor

Share this paper:

View more about this paper here: https://typeset.io/papers/pipelined-radix-2-k-feedforward-fft-architectures-
5dku5xiwia

https://typeset.io/
https://www.doi.org/10.1109/TVLSI.2011.2178275
https://typeset.io/papers/pipelined-radix-2-k-feedforward-fft-architectures-5dku5xiwia
https://typeset.io/authors/mario-garrido-1ni35vbaym
https://typeset.io/authors/jesus-grajal-4jhhitlv28
https://typeset.io/authors/miguel-angel-martin-sanchez-1k53gu42k8
https://typeset.io/authors/oscar-gustafsson-19uhudf2cj
https://typeset.io/institutions/linkoping-university-1gig5b28
https://typeset.io/journals/ieee-transactions-on-very-large-scale-integration-systems-23miu8e8
https://typeset.io/topics/feedforward-neural-network-38emymc4
https://typeset.io/topics/decimation-1taqqaxb
https://typeset.io/topics/feed-forward-20xlvqsx
https://typeset.io/papers/an-algorithm-for-the-machine-calculation-of-complex-fourier-2mwjmk0q9u
https://typeset.io/papers/mdc-fft-ifft-processor-with-variable-length-for-mimo-ofdm-2io0zzobir
https://typeset.io/papers/a-2-4-gs-s-fft-processor-for-ofdm-based-wpan-applications-58cdlci2pz
https://typeset.io/papers/pipelined-parallel-fft-architectures-via-folding-2oq71tnqsq
https://typeset.io/papers/design-and-implementation-of-a-1024-point-pipeline-fft-a6knvbmsq3
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/pipelined-radix-2-k-feedforward-fft-architectures-5dku5xiwia
https://twitter.com/intent/tweet?text=Pipelined%20Radix-%20$2%5E%7Bk%7D$%20Feedforward%20FFT%20Architectures&url=https://typeset.io/papers/pipelined-radix-2-k-feedforward-fft-architectures-5dku5xiwia
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/pipelined-radix-2-k-feedforward-fft-architectures-5dku5xiwia
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/pipelined-radix-2-k-feedforward-fft-architectures-5dku5xiwia
https://typeset.io/papers/pipelined-radix-2-k-feedforward-fft-architectures-5dku5xiwia

Pipelined Radix-2(k) Feedforward FFT

Architectures

Mario Garrido Gálvez, J Grajal, M A. Sanchez and Oscar Gustafsson

Linköping University Post Print

N.B.: When citing this work, cite the original article.

©2013 IEEE. Personal use of this material is permitted. However, permission to

reprint/republish this material for advertising or promotional purposes or for creating new

collective works for resale or redistribution to servers or lists, or to reuse any copyrighted

component of this work in other works must be obtained from the IEEE.

Mario Garrido Gálvez, J Grajal, M A. Sanchez and Oscar Gustafsson, Pipelined Radix-2(k)

Feedforward FFT Architectures, 2013, IEEE Transactions on Very Large Scale Integration

(vlsi) Systems, (21), 1, 23-32.

http://dx.doi.org/10.1109/TVLSI.2011.2178275

Postprint available at: Linköping University Electronic Press

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-88360

http://dx.doi.org/10.1109/TVLSI.2011.2178275
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-88360

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION SYSTEMS 1

Pipelined Radix-2k Feedforward FFT Architectures
Mario Garrido, Member, IEEE, J. Grajal, M.A. Sánchez and Oscar Gustafsson, Senior Member, IEEE

Abstract—The appearance of radix-22 was a milestone in the
design of pipelined FFT hardware architectures. Later, radix-22

was extended to radix-2k. However, radix-2k was only proposed
for Single-path Delay Feedback (SDF) architectures, but not
for feedforward ones, also called Multi-path Delay Commutator
(MDC).

This paper presents the radix-2k feedforward (MDC) FFT
architectures. In feedforward architectures radix-2k can be used
for any number of parallel samples which is a power of two.
Furthermore, both decimation in frequency (DIF) and decimation
in time (DIT) decompositions can be used.

In addition to this, the designs can achieve very high throug-
puts, which makes them suitable for the most demanding appli-
cations. Indeed, the proposed radix-2k feedforward architectures
require fewer hardware resources than parallel feedback ones,
also called Multi-path Delay Feedback (MDF), when several
samples in parallel must be processed.

As a result, the proposed radix-2k feedforward architectures
not only offer an attractive solution for current applications, but
also open up a new research line on feedforward structures.

Index Terms—Fast Fourier Transform (FFT), Radix-2k, Multi-
path Delay Commutator (MDC), Pipelined Architecture, Very-
large-scale integration (VLSI).

I. INTRODUCTION

THE fast Fourier transform (FFT) is one of the most im-

portant algorithms in the field of digital signal processing.

It is used to calculate the discrete Fourier transform (DFT)

efficiently. In order to meet the high performance and real-

time requirements of modern applications, hardware designers

have always tried to implement efficient architectures for the

computation of the FFT. In this context, pipelined hardware

architectures [1]–[24] are widely used, because they provide

high throughputs and low latencies suitable for real time, as

well as a reasonably low area and power consumption.

There are two main types of pipelined architectures: feed-

back (FB) and feedforward (FF). On the one hand, feedback

architectures [1]–[14] are characterized by their feedback

loops, i.e., some outputs of the butterflies are fed back to the

memories at the same stage. Feedback architectures can be

divided into Single-path Delay Feedback (SDF) [1]–[6], which

process a continuous flow of one sample per clock cycle, and

M. Garrido and O. Gustafsson are with the Department of Electrical
Engineering, Linköping University, SE-581 83 Linköping, Sweden, e-mails:
mariog@isy.liu.se, oscarg@isy.liu.se

J. Grajal is with the Department of Signal, Systems and Radiocommu-
nications, Universidad Politécnica de Madrid, 28040 Madrid, Spain, e-mail:
jesus@gmr.ssr.upm.es

M.A. Sánchez is with the Department of Electrical Engineering,
Universidad Politécnica de Madrid, 28040 Madrid, Spain, e-mail: ma-
sanchez@die.upm.es

This work was supported by the FPU Fellowship AP2005-0544 of the
Spanish Ministry of Education, the Project TEC2008-02148 of the Spanish
National Research and Development Program, and the Swedish ELLIIT
Program.

Multi-path Delay Feedback (MDF) or parallel feedback [7]–

[14], which process several samples in parallel. On the other

hand, feedforward architectures [4], [5], [15]–[19], also known

as Multi-path Delay Commutator (MDC) [4], do not have

feedback loops and each stage passes the processed data to

the next stage. These architectures can also process several

samples in parallel.

In current real-time applications, the FFT has to be calcu-

lated at very high throughput rates, even in the range of GSam-

ples/s. These high-performance requirements appear in appli-

cations such as Orthogonal Frequency Division Multiplexing

(OFDM) [9]–[12], [22] and Ultra Wideband (UWB) [10]–

[13]. In this context two main challenges can be distinguished.

The first one is to calculate the FFT of multiple independent

data sequences [22], [23]. In this case, all the FFT proces-

sors can share the rotation memory in order to reduce the

hardware [22]. Designs that manage a variable number of

sequences can also be obtained [23]. The second challenge

is to calculate the FFT when several samples of the same

sequence are received in parallel. This must be done when the

required throughput is higher than the clock frequency of the

device. In this case it is necessary to resort to FFT architectures

that can manage several samples in parallel.

As a result, parallel feedback architectures, which had not

been considered for several decades, have become very popu-

lar in the last few years [8]–[14]. Conversely, not very much

attention has been paid to feedforward (MDC) architectures.

This paradoxical fact, however, has a simple explanation.

Originally, SDF and MDC architectures were proposed for

radix-2 [2], [17] and radix-4 [3], [17]. Some years later, radix-

22 was presented for the SDF FFT [4] as an improvement

on radix-2 and radix-4. Next, radix-23 and radix-24, which

enable certain complex multipliers to be simplified, were also

presented for the SDF FFT. An explanation of radix-2k SDF

architectures can be found in [6]. Finally, the current need for

high throughput has been meet by the MDF, which includes

multiple interconnected SDF paths in parallel. However, radix-

2k had not been considered for feedforward architectures

until the first radix-22 feedforward FFT architectures were

introduced a few years ago [24].

In this work we present the radix-2k feedforward FFT

architectures. The proposed designs include radix-22, radix-23

and radix-24 architectures. The paper shows that radix-2k can

be used for any number of parallel samples which is a power

of two. Accordingly, radix-2k FFT architectures for 2, 4 and 8

parallel samples are presented. These architectures are shown

to be more hardware-efficient than previous feedforward and

parallel feedback designs in the literature. This makes them

very attractive for the computation of the FFT in the most

demanding applications.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION SYSTEMS 2

Fig. 1. Flow graph of the 16-point radix-2 DIF FFT.

The paper is organized as follows. Section II explains the

radix-22 FFT algorithm and Section III shows how to design

radix-22 FFT architectures. As a result, the pipelined radix-

22 feedforward FFT architectures are presented in Section IV,

where architectures for different number of parallel samples

using DIF and DIT decompositions are proposed. In Sec-

tion V, the results are extended to radix-2k and feedforward

FFT architectures for radix-23 and radix-24 are presented. In

Section VI, the proposed designs are compared to previous

ones and in Section VII experimental results are provided.

Finally, the main contributions of this work are summarized

in Section VIII.

II. THE RADIX-22 FFT ALGORITHM

The N -point DFT of an input sequence x[n] is defined as:

X[k] =

N−1
∑

n=0

x [n] Wnk
N , k = 0, 1, . . . , N − 1 (1)

where Wnk
N = e−j 2π

N
nk.

When N is a power of two, the FFT based on the Cooley-

Tukey algorithm [25] is most commonly used in order to

compute the DFT efficiently. The Cooley-Tukey algorithm

reduces the number of operations from O(N2) for the DFT to

O(N log2 N) for the FFT. In accordance with this, the FFT

is calculated in a series of n = logρ N stages, where ρ is the

base of the radix, r, of the FFT, i.e. r = ρα.

Figures 1 and 2 show the flow graphs of 16-point radix-2
and radix-22 FFTs, respectively, decomposed using decimation

in frequency (DIF) [26]. At each stage of the graphs, s ∈
{1, . . . , n}, butterflies and rotations have to be calculated. The

lower edges of the butterflies are always multiplied by −1.

These −1 are not depicted in order to simplify the graphs.

The numbers at the input represent the index of the input

sequence, whereas those at the output are the frequencies, k,

Fig. 2. Flow graph of the 16-point radix-22 DIF FFT.

TABLE I

PROPERTIES OF THE RADIX-22 FFT ALGORITHM FOR DIF AND DIT.

Properties Radix-22 DIF DIT

Butterflies bn−s bn−s

Trivial rotations
bn−s · bn−s−1 = 1 bn−s · bn−s−1 = 1

(odd s)

Non-trivial rotations
bn−s+1 + bn−s = 1 bn−s−1 + bn−s−2 = 1

(even s)

of the output signal X[k]. Finally, each number, φ, in between

the stages indicates a rotation by:

Wφ
N = e−j 2π

N
φ (2)

As a consequence, samples for which φ = 0 do not need

to be rotated. Likewise, if φ ∈ [0, N/4, N/2, 3N/4] the

samples must be rotated by 0◦, 270◦, 180◦ and 90◦, which

correspond to complex multiplications by 1, −j, −1 and j,

respectively. These rotations are considered trivial, because

they can be performed by interchanging the real and imaginary

components and/or changing the sign of the data.

Radix-22 is based on radix-2 and the flow graph of a radix-

22 DIF FFT can be obtained from the graph of a radix-2 DIF

one. This can be done by breaking down each angle, φ, at odd

stages into a trivial rotation and a non-trivial one, φ′, where

φ′ = φ mod N/4, and moving the latter to the following stage.

This is possible thanks to the fact that in the radix-2 DIF

FFT the rotation angles at the two inputs of every butterfly,

φA and φB , only differ by 0 or N/4. Thus, if φA = φ′ and

φB = φ′ + N/4, the rotation φ′ is moved to the following

stage in accordance with:

Ae−j 2π

N
φ′

±Be−j 2π

N (φ′+N/4) = [A± (−j)B] · e−j 2π

N
φ′

(3)

where the first side of equation (3) represents the computations

using radix-2 and the second one using radix-22, A and B

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION SYSTEMS 3

Fig. 3. Proposed 4-parallel radix-22 feedforward architecture for the computation of the 16-point DIF FFT.

being the input data of the butterfly. In radix-2, A and B are

rotated before the butterfly is computed, whereas in radix-22

B is rotated by the trivial rotation −j before the butterfly,

and the remaining rotation is carried out after the butterfly.

Consequently, rotations by φ′ can be combined with those

rotations of the following stage. This derivation of radix-22

from radix-2 can be observed in Figures 1 and 2 for the

particular case of N = 16.

Analogously, the radix-22 DIT FFT can be derived from

the radix-2 DIT FFT. Contrary to DIF, for DIT the non-trivial

rotations φ′ are moved to the previous stage instead of the

following one.

III. DESIGNING RADIX-22 FFT ARCHITECTURES

The proposed architectures have been derived using the

framework presented in [24]. The design is based on analyzing

the flow graph of the FFT and extracting the properties of

the algorithm. These properties are requirements that any

hardware architecture that calculates the algorithm must fulfill.

The properties of the radix-22 FFT are shown in Table I. The

following paragraphs explain these properties and how they

are obtained.

The properties depend on the index of the data, I ≡
bn−1, . . . , b1, b0, where (≡) will be used throughout the paper

to relate both the decimal and the binary representations of a

number. This index is included in Fig. 2 both in decimal and

in binary.

On the one hand, the properties related to the butterfly

indicate which samples must be operated together in the

butterflies. This condition is bn−s both for DIF and DIT

decompositions and means that at any stage of the FFT, s,

butterflies operate in pairs of data whose indices differ only

in bit bn−s, where n = log2 N is the number of stages of the

FFT. In Fig. 2 it can be observed that at the third stage, s = 3,

data with indices I = 12 ≡ 1100 and I ′ = 14 ≡ 1110 are

processed together by a butterfly. These indices differ in bit

b1, which meets bn−s, since n = log2 N = log2 16 = 4 and,

thus, bn−s = b4−3 = b1.

Fig. 4. Circuit for data shuffling.

On the other hand, there are two properties for rotations.

At odd stages of the radix-22 DIF FFT only those samples

whose index fulfills bn−s · bn−s−1 = 1 have to be rotated.

These rotations are trivial and the symbol (·) indicates the

logic AND function. For the 16-point radix-22 FFT in Figure 2

only samples with indices 12, 13, 14 and 15 must be rotated at

the first stage. For these indices b3 ·b2 = 1 is fulfilled, meeting

the property bn−s · bn−s−1 = 1, since n = 4 and s = 1.

Conversely, at even stages rotations are non-trivial and they are

calculated over indexed data for which bn−s+1 + bn−s = 1,

where the symbol (+) indicates the logic OR function.

IV. RADIX-22 FEEDFORWARD FFT ARCHITECTURES

This section presents the radix-22 feedforward architectures.

First, a 16-point 4-parallel radix-22 feedforward FFT architec-

ture is explained in depth in order to clarify the approach

and show how to analyze the architectures. Then, radix-

22 feedforward architectures for different number of parallel

samples are presented.

Figure 3 shows a 16-point 4-parallel radix-22 feedforward

FFT architecture. The architecture is made up of radix-2

butterflies (R2), non-trivial rotators (⊗), trivial rotators, which

are diamond-shaped, and shuffling structures, which consist

of buffers and multiplexers. The lengths of the buffers are

indicated by a number.

The architecture processes four samples in parallel in a

continuous flow. The order of the data at the different stages

is shown at the bottom of the figure by their indices, together

with the bits bi that correspond to these indices. In the

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION SYSTEMS 4

(a) 2-parallel radix-22 feedforward FFT.

(b) 4-parallel radix-22 feedforward FFT.

(c) 8-parallel radix-22 feedforward FFT.

Fig. 5. Proposed radix-22 feedforward architectures for the computation of the 64-point DIF FFT.

horizontal, indexed samples arrive at the same terminal at

different time instants, whereas samples in the vertical arrive

at the same time at different terminals. Finally, samples flow

from left to right. Thus, indexed samples (0, 8, 4, 12) arrive

in parallel at the inputs of the circuit at the first clock cycle,

whereas indexed samples (12, 13, 14, 15) arrive at consecutive

clock cycles at the lower input terminal.

Taking the previous considerations into account, the archi-

tecture can be analyzed as follows. Firstly, it can be observed

that butterflies always operate in pairs of samples whose

indices differ in bit bn−s, meeting the property in Table I.

For instance, the pairs of data that arrive at the upper butterfly

of the first stage are: (0, 8), (1, 9), (2, 10) and (3, 11). The

binary representation of these pairs of numbers only differ in

b3. As, n = 4 and s = 1 at the first stage, bn−s = b4−1 = b3,

so the condition is fulfilled. This property can also be checked

for the rest of the butterflies in a similar way.

Secondly, Table I shows that rotations at odd stages

are trivial and only affect samples whose indices fulfill

bn−s · bn−s−1 = 1. By particularizing this condition for the

first stage, b3 · b2 = 1 is obtained. In the architecture shown in

Figure 3 the indices that fulfill this condition are those of the

lower edge and, thus, a trivial rotator is included at that edge.

On the other hand, the condition for non-trivial rotations at

even stages is bn−s+1 + bn−s = 1, b3 + b2 = 1 being for the

second stage. As b3 + b2 = 0 for all indexed samples at the

upper edge of the second stage, this edge does not need any

rotator. Conversely, for the rest of edges b3 + b2 = 1, so they

include non-trivial rotators.

The rotation memories of the circuit store the coefficients φ
of the flow graph. It can be seen that the coefficient associated

to each index is the same as that in the flow graph of Fig. 2. For

instance, at the flow graph the sample with index I = 14 has

to be rotated by φ = 6 at the second stage. In the architecture

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION SYSTEMS 5

Fig. 6. Proposed 4-parallel radix-22 feedforward architecture for the computation of the 64-point DIT FFT.

shown in Fig. 3 the sample with index I = 14 is the third

one that arrives at the lower edge of the second stage. Thus,

the third position of the rotation memory of the lower rotator

stores the coefficient for the angle φ = 6.

Thirdly, the buffers and multiplexers carry out data shuf-

fling. These circuits have already been used in previous

pipelined FFT architectures [4], [17]–[20], and Figure 4 shows

how they work. For the first L clock cycles the multiplexers

are set to ”0”, L being the length of the buffers. Thus, the first

L samples from the upper path (set A) are stored in the output

buffer and the first L samples from the lower path (set C) are

stored in the input buffer. Next, the multiplexer changes to ”1”,

so set C passes to the output buffer and set D is stored in the

input buffer. At the same time, sets A and B are provided in

parallel at the output. When the multiplexer commutes again

to ”0”, sets C and D are provided in parallel. As a result, sets

B and C are interchanged.

Finally, the control of the circuit is very simple: As the

multiplexers commute every L clock cycles and L is a power

of two, the control signals of the multiplexers are directly

obtained from the bits of a counter.

Figure 5 shows the proposed radix-22 feedforward ar-

chitectures for the computation of the 64-point DIF FFT.

Figures 5(a), 5(b) and 5(c) show the cases of 2-parallel, 4-

parallel and 8-parallel samples, respectively. These circuits can

be analyzed as has been done for the architecture in Figure 3.

For this purpose, the order of the samples at every stage has

been added at the bottom of the architectures.

As can be seen in Fig. 5, in the proposed architectures the

number of butterflies depends on to the number of samples

in parallel, P = 2p. For any P -parallel N -point FFT the

number of butterflies is P/2 · log2 N = P · log4 N . Therefore,

the number of complex adders is 2P · log4 N . Likewise,

the number of rotators is 3P/4 · (log4 N − 1). The only

exception is for P = 2. In this case, the number of rotators is

2 · (log4 N − 1).
The proposed architectures can process a continuous flow

of data. The throughput in samples per clock cycle is equal

to the number of samples in parallel, P = 2p, whereas the

latency is proportional to the size of the FFT divided by

the number of parallel samples, i.e., N/P . Thus, the most

suitable architecture for a given application can be selected

by considering the throughput and latency that the application

demands. Indeed, the number of parallel samples can be

increased arbitrarily, which assures that the most demanding

requirements are met.

Finally, the memory size does not increase with the number

of parallel samples. For the architectures shown in Fig. 5, the

shuffling structure at any stage s ∈ [p, n− 1] requires P = 2p

buffers of length L = N/2s+1. According to this, the total

sample memory of the architectures is:

n−1
∑

s=p

2p · L =

log
2
N−1

∑

s=p

2p ·
N

2s+1
= N − 2p = N − P (4)

Therefore, a total sample memory of N addresses is enough

for the computation of an N -point FFT independently of the

degree of parallelism of the FFT. Indeed, the total memory of

N −P addresses that the proposed architectures require is the

minimum amount of memory for an N -point P -parallel FFT.

Sometimes input samples are provided to the FFT in natural

order and output frequencies are also required in natural

order [27], [28]. Under these circumstances, reordering circuits

are required before and after the FFT to adapt the input and

output orders [27], [28]. For the proposed radix-22 feedfor-

ward FFTs the memory requirements for natural I/O depend

on the FFT size and on the number of parallel samples. For

a P -parallel N -point FFT a total memory of size N − N/P
is enough to carry out the input reordering, whereas a total

memory of size N is enough for the output reordering [24].

The proposed approach can also be used to derive radix-

22 feedforward architectures FFT for DIT. In this case, the

properties for DIT in Table I must be considered. Accordingly,

Figure 6 shows a 4-parallel radix-22 feedforward architecture

for the computation of the 64-point DIT FFT. This architecture

can be compared with the DIF version in Figure 5(b). It can

be noted that both DIF and DIT architectures use the same

number of hardware components. Nevertheless, the layout

of the components is different. For any number of parallel

samples, DIF and DIT architectures also require the same

number of components.

V. EXTENSION TO RADIX-2k

Table II shows the properties for the radix-23 and radix-

24 FFT algorithms. As for radix-22, these properties have

been obtained directly from the flow graphs of the algorithms.

The conditions for butterflies are the same for all stages of

the FFT, whereas the conditions for rotations depend on the

stage, s. Rotations are classified into trivial (T), non-trivial

(NT), and rotations by W8 or W16. Rotations by W8 and

W16 are not-trivial, but include a reduced set of angles [29].

According to equation (2), rotations by W8 only consider

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION SYSTEMS 6

TABLE II

PROPERTIES OF THE RADIX-23 AND RADIX-24 FFT ALGORITHMS FOR DIF AND DIT.

Properties Radix-23 DIF DIT

Butterflies ∀s bn−s bn−s

Rotations

s = 3i+ 1 bn−s ·(bn−s−1 + bn−s−2) = 1 W8 bn−s · bn−s−1 = 1 T

s = 3i+ 2 bn−s · bn−s−1 = 1 T bn−s−1 ·(bn−s + bn−s+1) = 1 W8

s = 3i+ 3 bn−s+2 + bn−s+1 + bn−s = 1 NT bn−s−1 + bn−s−2 + bn−s−3 = 1 NT

Properties Radix-24 DIF DIT

Butterflies ∀s bn−s bn−s

Rotations

s = 4i+ 1 bn−s · bn−s−1 = 1 T bn−s · bn−s−1 = 1 T

s = 4i+ 2 (bn−s+1 + bn−s) ·(bn−s−1 + bn−s−2) = 1 W16 (bn−s+1 + bn−s) ·(bn−s−1 + bn−s−2) = 1 W16

s = 4i+ 3 bn−s · bn−s−1 = 1 T bn−s · bn−s−1 = 1 T

s = 4i+ 4 bn−s+3 + bn−s+2 + bn−s+1 + bn−s = 1 NT bn−s−1 + bn−s−2 + bn−s−3 + bn−s−4 = 1 NT

(a) 2-parallel radix-23 feedforward FFT.

(b) 4-parallel radix-23 feedforward FFT.

Fig. 7. Proposed radix-23 feedforward architectures for the computation of the 64-point DIF FFT.

angles that are multiples of π/4, whereas W16 only includes

multiples of π/8. This allows for the simplification of the

rotators that carry out the rotations. For this purpose, different

techniques have been proposed in the literature. They include

the use of trigonometric identities [30], the representation of

the coefficients in canonical signed digit (CSD) [9] and the

scaling of the coefficients [29]. Finally, in the table i ∈ Z and,

thus, for radix-2k the type of rotation repeats every k stages.

Figures 7(a) and 7(b) show the proposed radix-23 feedfor-

ward architectures, respectively for 2 and 4 samples in parallel.

It can be observed that radix-23 feedforward architectures

only require general non-trivial rotators every three stages.

Additionally, the architectures must calculate rotations by W8,

which are represented by squared-shaped rotators. Compared

to the 2-parallel radix-22 feedforward architecture in Fig-

ure 5(a), the 2-parallel radix-23 feedforward FFT in Figure 7(a)

has the same number of butterflies, rotators and total memory.

However, some of the rotators for radix-23 calculate rotations

by W8, which can be simplified. Likewise, the 4-parallel radix-

23 feedforward FFT in Figure 7(b) includes fewer general

rotators than the radix-22 one in Figure 5(b).

The proposed radix-24 feedforward FFT architectures for

N = 256 are shown in Figure 8. The architectures also include

square-shaped rotators, which carry out the rotations by W16.

Note that the 2-parallel radix-24 feedforward FFT is very

similar to the 2-parallel radix-22 one, with the difference that

general rotators every four stages in radix-22 are substituted

by W16 rotators in radix-24. For 4-parallel samples, radix-24

also needs fewer general rotators than radix-22 and radix-23.

Architectures for a higher number of samples in parallel

can also be obtained using radix-2k. For a general case of a

P -parallel radix-2k N -point feedforward FFT, the number of

complex adders is equal to:

P · log2 N (5)

the number of general rotators can be calculated as:

P ·

(

log2 N

k
− 1

)

, if P < 2k (6)

2k − 1

2k
· P ·

(

log2 N

k
− 1

)

, if P ≥ 2k (7)

and the total memory is N − P . Likewise, the throughput is

always equal to the number of parallel samples, P , and the

latency is N/P .

Note that apart from general rotators, the architectures must

include rotators that calculate the simpler non-trivial rotations

by WL, where L = 2k is the number of angles of the kernel.

These kernels are W8 and W16, respectively for radix-23 and

radix-24, which allow for efficient hardware implementations.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION SYSTEMS 7

(a) 2-parallel radix-24 feedforward FFT.

(b) 4-parallel radix-24 feedforward FFT.

Fig. 8. Proposed radix-24 feedforward architectures for the computation of the 256-point DIF FFT.

TABLE III

COMPARISON OF THE PROPOSED RADIX-2k FEEDFORWARD ARCHITECTURES TO OTHER APPROACHES FOR THE COMPUTATION OF AN N -POINT FFT.

PIPELINED AREA PERFORMANCE

ARCHITECTURE Rotators Complex Complex Data Latency Throughput

Type Radix Total General W8 or W16 Adders Memory (cycles) (samples/cycle)

2-PARALLEL ARCHITECTURES

FF (MDC) Radix-2 [4] 2(log4 N − 1) 2(log4 N − 1) 0 4(log4 N) N N/2 2

FB (MDF) Radix-22 [12] 2(log4 N − 1) 2(log4 N − 1) 0 8(log4 N) N N/2 2

FB (MDF) Radix-24 [11] 2(log4 N − 1) 2(log16 N − 1) 2(log16 N) 8(log4 N) 3N/2 N/2 2

FF (MDC) Proposed, radix-22 2(log4 N − 1) 2(log4 N − 1) 0 4(log4 N) N N/2 2

FF (MDC) Proposed, radix-23 2(log4 N − 1) 2(log8 N − 1) log8 N 4(log4 N) N N/2 2

FF (MDC) Proposed, radix-24 2(log4 N − 1) 2(log16 N − 1) 2(log16 N) 4(log4 N) N N/2 2

4-PARALLEL ARCHITECTURES

FF (MDC) Radix-4, [5] 3(log4 N − 1) 3(log4 N − 1) 0 8(log4 N) 8N/3 N/3 4

FF (MDC) Radix-4, [18], [19] 3(log4 N − 1) 3(log4 N − 1) 0 8(log4 N) N N/4 4

FB (MDF) Radix-24, [9] 4(log4 N − 1) 4(log16 N − 1) 4(log16 N) 16(log4 N) N N/4 4

FB (MDF) Radix-24, [13] 4(log4 N − 1) 4(log16 N − 1) 4(log16 N) 16(log4 N) N N/4 4

FF (MDC) Proposed, radix-22 3(log4 N − 1) 3(log4 N − 1) 0 8(log4 N) N N/4 4

FF (MDC) Proposed, radix-23 4(log4 N − 1) 4(log8 N − 1) 2(log8 N) 8(log4 N) N N/4 4

FF (MDC) Proposed, radix-24 3.5 log4 N − 4 4(log16 N − 1) 3(log16 N) 8(log4 N) N N/4 4

8-PARALLEL ARCHITECTURES

FF (MDC) Radix-8, [5] 6 log4 N − 7 7(log8 N − 1) 2(log8 N) 16(log4 N) 16N/7 2N/7 8

FF (MDC) Radix-2, [16] 8(log4 N − 1) 8(log4 N − 1) 0 16(log4 N) N N/8 8

FB (MDF) Radix-2, [7] 8(log4 N − 1) 8(log4 N − 1) 0 32(log4 N) N N/8 8

FB (MDF) Radix-24, [8] 8(log4 N − 1) 8(log16 N − 1) 8(log16 N) 32(log4 N) N N/8 8

FF (MDC) Proposed, radix-22 6(log4 N − 1) 6(log4 N − 1) 0 16(log4 N) N N/8 8

FF (MDC) Proposed, radix-23 6 log4 N − 7 7(log8 N − 1) 2(log8 N) 16(log4 N) N N/8 8

FF (MDC) Proposed, radix-24 7 log4 N − 8 8(log16 N − 1) 6(log16 N) 16(log4 N) N N/8 8

Nevertheless, if k is larger, radix-2k architectures include

WL kernels with larger number of angles. As a result, the

implementation of these rotators becomes more complicated,

being necessary to resort to general rotators in most cases.

Note also that the proposed radix-2k feedforward FFT

architectures can be used for any number of parallel samples,

P = 2p. Conversely, conventional feedforward architectures

based on radix-r are only for r ≥ P .

VI. COMPARISON AND ANALYSIS

Table III compares the proposed structures to other efficient

pipelined architectures for the computation of an N -point FFT.

The architectures are classified into 2-parallel, 4-parallel and

8-parallel ones. The first two columns indicate the type of

architecture and the radix. The rest of the table shows the

trade-off between area and performance. On the one hand,

area is measured in terms of the number of rotators, adders

and memory. As different applications demand different input

and output orders, circuits for data reordering before and

after the FFTs are not considered in the comparison. Rotators

are required for non-trivial rotations. In Table III they are

classified into rotators for W8 and W16, and general rotators

for other non-trivial rotations. The total number of rotators is

also included.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION SYSTEMS 8

TABLE IV

AREA AND PERFORMANCE OF THE PROPOSED P -PARALLEL N -POINT

RADIX-22 FEEDFORWARD FFT ARCHITECTURES FOR 16 BITS.

FFT Area Latency Freq. Throughput

P N Slices DSP48E (µs) (MHz) (MS/s)

4

16 386 12 0.026 458 1831

64 695 24 0.081 384 1536

256 1024 36 0.221 389 1554

1024 1425 48 1.055 270 1081

4096 2388 60 6.120 173 693

8

16 688 24 0.025 400 3204

64 1312 48 0.081 283 2263

256 1979 72 0.223 242 1937

1024 2497 96 0.630 249 1995

4096 3540 120 2.744 200 1598

16

64 2657 96 0.078 245 3921

256 3754 144 0.151 252 4033

1024 5044 192 0.406 229 3666

4096 6423 240 1.516 193 3082

On the other hand, performance is represented by through-

put and latency. The latency is defined as the number of

clock cycles that the architecture needs to process an input

sequence, considering that it receives a continuous flow of

data. Meanwhile, the throughput indicates the number of

samples per clock cycle that are processed. In all architectures

this throughput is equal to the number of samples that are

processed in parallel.

Among 2-parallel architectures, the proposed radix-2k feed-

forward FFTs require the same number of rotators, adders

and memory as the radix-2 feedforward FFT [4]. However,

some of the rotators in radix-23 and radix-24 FFTs can be

simplified, as they only have to calculate rotations by W8

and W16. Compared to previous radix-24 parallel feedback

architectures [11], the proposed radix-24 designs save 50% of

the adders and reduce the memory requirements, while having

the same number of rotators.

As regards 4-parallel architectures, the proposed radix-22

feedforward FFT and the radix-4 feedforward FFT [18], [19]

require the lowest number of rotators, adders and memory

among all the designs in the literature. Although radix-22

and radix-4 architectures require the same total number of

hardware resources for 4-parallel samples, the layout of these

resources is different: Whereas radix-22 admits circuits for

data management and rotators between radix-2 butterflies, in

radix-4 pairs of consecutive sets of radix-2 butterflies must

necessarily be together in order to form the radix-4 butterfly.

By comparing the proposed 4-parallel radix-23 and radix-24

architectures to the 4-parallel radix-4 feedforward FFT [18],

[19], it can be observed that radix-23 and radix-24 have the

same number of adders and memory, but need fewer general

rotators.

The proposed 4-parallel architectures also improve on paral-

lel feedback architectures [9], [13]. The reason lies in the fact

that in feedback FFTs the utilization ratio of butterflies is 50%
and the parallelization cannot improve this ratio. Conversely,

the proposed designs have a utilization ratio of 100%, so the

number of adders is halved. Likewise, the number of rotators

is reduced in the proposed architectures with respect to parallel

64 256 1024 4096
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

32

48

64

80

24

36

48

60

36

48

60

24
36

48

60

A
re

a
(S

li
ce

s)

FFT length (N)

4P FS Radix−2, [21]

4P FS Radix−4, [21]

4P FF Radix−4, [5]

Proposed, 4P FF Radix−2
2

(a) 4-parallel pipelined FFT architectures.

64 256 1024 4096
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

52

84

116

148

48

72

96

120

36

60

84

100

48

72

96

120

A
re

a
(S

li
ce

s)

FFT length (N)

8P FS Radix−2, [21]

8P FS Radix−4, [21]

8P FS Radix−8, [21]

Proposed, 8P FF Radix−2
2

(b) 8-parallel pipelined FFT architectures.

Fig. 9. Area of 4-parallel and 8-parallel pipelined FFT architectures.

feedback ones. Specifically the proposed radix-22 architecture

saves 25% of the total number of rotators. Furthermore, the

proposed 4-parallel radix-24 feedforward FFT saves 50% of

the adders and 25% of the W16 rotators with respect to radix-

24 parallel feedback architectures [9], [13].

Finally, the proposed 8-parallel radix-2k architectures im-

prove on all previous designs in the literature. The proposed

8-parallel radix-22 feedforward FFT saves 25% of the rotators

with respect to radix-2 feedforward FFTs [16], and 50% of

the adders and 25% of the rotators with respect to feedback

architectures [7]. The proposed 8-parallel radix-23 feedforward

FFT reduces the memory requirements and latency of previous

radix-8 feedforward FFTs [5], and the proposed 8-parallel

radix-24 feedforward FFT saves 12% of the W16 rotators and

50% of the adders with respect to radix-24 parallel feedback

designs [8].

VII. EXPERIMENTAL RESULTS

The presented architectures have been programmed for the

use in FPGAs. The designs are parameterizable in the number

of points, N , wordlength and number of samples in parallel,

P . Table IV shows post-place and route results for different

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION SYSTEMS 9

64 256 1024 4096
0

1000

2000

T
h

ro
u

g
h

p
u

t
(M

S
am

p
le

s/
s)

FFT length (N)

4P FS Radix−2, [21]

4P FS Radix−4, [21]

4P FF Radix−4, [5]

Proposed, 4P FF Radix−2
2

8P FS Radix−2, [21]

8P FS Radix−4, [21]

8P FS Radix−8, [21]

Proposed, 8P FF Radix−2
2

Fig. 10. Throughput of 4-parallel and 8-parallel pipelined FFT architectures.

configurations of N and P , using a wordlength of 16 bits. The

target FPGA is a Virtex-5 FPGA, XC5VSX240T -2 FF1738.

This FPGA includes DSP48E blocks that can be used to carry

out mathematical operations. In the proposed designs these

blocks have been used to implement complex multipliers that

carry out the rotations of the FFT.

Figure 9 compares the area of the proposed architectures

to other equivalent high-throughput pipelined FFTs architec-

tures [5], [21] for the same FPGA and synthesis conditions.

Full streaming architectures (FS) have been generated using

the tool presented in [21], which provides optimized pipelined

architectures for a given radix and number of parallel samples.

As in previous section, the results in the graphs do not include

additional circuits for adapting the input and output data

orders.

The results for 4-parallel pipelined architectures are shown

in Fig. 9(a). In the figure, the numbers next to the lines indicate

the amount of DSP48E slices that each architecture requires.

It can be observed that the proposed radix-22 architectures

require less area than previous designs for any FFT size, N .

This improvement increases with the size of the FFT. For 8-

parallel samples, Fig. 9(b) shows that the proposed designs

also improve over radix-2 and radix-4 architectures, and the

larger N the larger the savings. Architectures that use radix-8

need less DSP48E blocks at the cost of a significant increase

in the number of slices.

Figure 10 compares the throughput of the proposed designs

to other 4-parallel and 8-parallel pipelined FFTs. As can be

observed, the proposed designs achieve the highest through-

puts both for 4-parallel and 8-parallel designs. Indeed, even

higher throughput can be achieved by resorting to 16-parallel

radix-22 feedforward architectures, as was shown in Table IV.

VIII. CONCLUSIONS

This paper extends the use of radix-2k to feedforward

(MDC) FFT architectures. Indeed, it is shown that feedforward

structures are more efficient than feedback ones when several

samples in parallel must be processed.

In feedforward architectures radix-2k can be used for any

number of parallel samples which is a power of two. Indeed,

the number of parallel samples can be chosen arbitrarily

depending of the throughput that is required. Additionally,

both DIF and DIT decompositions can be used.

Finally, experimental results show that the designs are

efficient both in area and performance, being possible to obtain

throughputs of the order of GSamples/s as well as very low

latencies.

IX. ACKNOWLEDGMENT

The authors would like to thank Dr. Richard Conway for

his valuable suggestions about the presentation of the work.

REFERENCES

[1] L. Yang, K. Zhang, H. Liu, J. Huang, and S. Huang, “An efficient locally
pipelined FFT processor,” IEEE Trans. Circuits Syst. II, vol. 53, no. 7,
pp. 585–589, Jul. 2006.

[2] H. L. Groginsky and G. A. Works, “A pipeline fast Fourier transform,”
IEEE Trans. Comput., vol. C-19, no. 11, pp. 1015–1019, Oct. 1970.

[3] A. M. Despain, “Fourier transform computers using CORDIC itera-
tions,” IEEE Trans. Comput., vol. C-23, pp. 993–1001, Oct. 1974.

[4] S. He and M. Torkelson, “Design and implementation of a 1024-point
pipeline FFT processor,” in Proc. IEEE Custom Integrated Circuits

Conf., May 1998, pp. 131–134.

[5] M. A. Sánchez, M. Garrido, M. L. López, and J. Grajal, “Implementing
FFT-based digital channelized receivers on FPGA platforms,” IEEE

Trans. Aerosp. Electron. Syst., vol. 44, no. 4, pp. 1567–1585, Oct. 2008.

[6] A. Cortés, I. Vélez, and J. F. Sevillano, “Radix rk FFTs: Matricial
representation and SDC/SDF pipeline implementation,” IEEE Trans.

Signal Process., vol. 57, no. 7, pp. 2824–2839, Jul. 2009.

[7] E. H. Wold and A. M. Despain, “Pipeline and parallel-pipeline FFT
processors for VLSI implementations,” IEEE Trans. Comput., no. 5, pp.
414–426, May 1984.

[8] S.-N. Tang, J.-W. Tsai, and T.-Y. Chang, “A 2.4-GS/s FFT processor for
OFDM-based WPAN applications,” IEEE Trans. Circuits Syst. I, vol. 57,
no. 6, pp. 451–455, Jun. 2010.

[9] H. Liu and H. Lee, “A high performance four-parallel 128/64-point
radix-24 FFT/IFFT processor for MIMO-OFDM systems,” in Proc.

IEEE Asia Pacific Conf. Circuits Syst., 2008, pp. 834–837.

[10] L. Liu, J. Ren, X. Wang, and F. Ye, “Design of low-power, 1GS/s
throughput FFT processor for MIMO-OFDM UWB communication
system,” in Proc. IEEE Int. Symp. Circuits Syst., May 2007, pp. 2594–
2597.

[11] J. Lee, H. Lee, S. in Cho, and S.-S. Choi, “A high-speed, low-complexity
radix-24 FFT processor for MB-OFDM UWB systems,” in Proc. IEEE

Int. Symp. Circuits Syst., 2006, pp. 210–213.

[12] N. Li and N. P. van der Meijs, “A radix 22 based parallel pipeline FFT
processor for MB-OFDM UWB system,” in Proc. IEEE Int. SOC Conf.,
2009, pp. 383–386.

[13] S.-I. Cho, K.-M. Kang, and S.-S. Choi, “Implemention of 128-point fast
Fourier transform processor for UWB systems,” in Proc. Int. Wireless

Comm. Mobile Comp. Conf., 2008, pp. 210–213.

[14] W. Xudong and L. Yu, “Special-purpose computer for 64-point FFT
based on FPGA,” in Proc. Int. Conf. Wireless Comm. Signal Process.,
2009, pp. 1–3.

[15] C. Cheng and K. K. Parhi, “High-throughput VLSI architecture for FFT
computation,” IEEE Trans. Circuits Syst. II, vol. 54, no. 10, pp. 863–867,
Oct. 2007.

[16] J. A. Johnston, “Parallel pipeline fast Fourier transformer,” in IEE Proc.

F Comm. Radar Signal Process., vol. 130, no. 6, Oct. 1983, pp. 564–
572.

[17] B. Gold and T. Bially, “Parallelism in fast Fourier transform hardware,”
IEEE Trans. Audio Electroacoust., vol. 21, no. 1, pp. 5–16, Feb. 1973.

[18] E. E. Swartzlander, W. K. W. Young, and S. J. Joseph, “A radix 4 delay
commutator for fast Fourier transform processor implementation,” IEEE

J. Solid-State Circuits, vol. 19, no. 5, pp. 702–709, Oct. 1984.

[19] J. H. McClellan and R. J. Purdy, Applications of Digital Signal Pro-

cessing. Prentice-Hall, 1978, ch. 5, Applications of Digital Signal
Processing to Radar.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION SYSTEMS 10

[20] M. Garrido, K. K. Parhi, and J. Grajal, “A pipelined FFT architecture
for real-valued signals,” IEEE Trans. Circuits Syst. I, vol. 56, no. 12,
pp. 2634–2643, Dec. 2009.

[21] P. A. Milder, F. Franchetti, J. C. Hoe, and M. Püschel, “Formal datapath
representation and manipulation for implementing DSP transforms,” in
Proc. IEEE Design Automation Conf., Jul. 2008, pp. 385–390.

[22] Y.-W. Lin and C.-Y. Lee, “Design of an FFT/IFFT processor for MIMO
OFDM systems,” IEEE Trans. Circuits Syst. I, vol. 54, no. 4, pp. 807–
815, Apr. 2007.

[23] S. Li, H. Xu, W. Fan, Y. Chen, and X. Zeng, “A 128/256-point pipeline
FFT/IFFT processor for MIMO OFDM system IEEE 802.16e,” in Proc.

IEEE Int. Symp. Circuits Syst., Jun. 2010, pp. 1488–1491.
[24] M. Garrido, “Efficient hardware architectures for the computation of the

FFT and other related signal processing algorithms in real time,” Ph.D.
dissertation, Universidad Politécnica de Madrid, 2009.

[25] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation
of complex Fourier series,” Math. Comput., vol. 19, pp. 297–301, 1965.

[26] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing.
Prentice-Hall, 1989.

[27] Y.-N. Chang, “’An Efficient VLSI Architecture for Normal I/O Order
Pipeline FFT Design’,” IEEE Trans. Circuits Syst. II, vol. 55, no. 12,
pp. 1234–1238, Dec. 2008.

[28] M. Garrido, J. Grajal, and O. Gustafsson, “’Optimum circuits for bit
reversal’,” IEEE Trans. Circuits Syst. II, vol. 58, no. 10, pp. 657–661,
Oct. 2011.

[29] M. Garrido, O. Gustafsson, and J. Grajal, “Accurate rotations based on
coefficient scaling,” IEEE Trans. Circuits Syst. II, vol. 58, no. 10, pp.
662–666, Oct. 2011.

[30] F. Qureshi and O. Gustafsson, “Low-complexity reconfigurable complex
constant multiplication for FFTs,” in Proc. IEEE Int. Symp. Circuits

Syst., May 2009, pp. 1137–1140.

Mario Garrido received the M.S. degree in elec-
trical engineering and the Ph.D. degree from the
Technical University of Madrid (UPM), Madrid,
Spain, in 2004 and 2009, respectively. Since 2010
he is a postdoctoral researcher at the Linköping
University, Sweden.

His research focuses on the design and optimiza-
tion of VLSI architectures for signal processing
applications. This includes the design of hardware
architectures for the calculation of transforms, such
as the fast Fourier transform (FFT), hardware cir-

cuits for data management and the CORDIC algorithm. His research covers
high-performance circuits for real-time computation, as well as designs for
low area and low power consumption.

J. Grajal was born in Toral de los Guzmanes
(León), Spain, in 1967. He received the Ingeniero
de Telecomunicacin and the Ph.D. degrees from the
Technical University of Madrid, Madrid, Spain in
1992 and 1998, respectively. Since 2001, he has been
an Associate Professor at the Signals, Systems, and
Radio Communications Department of the Technical
School of Telecommunication Engineering of the
Technical University of Madrid. His research activi-
ties are in the area of hardware-design for radar sys-
tems, radar signal processing and broadband digital

receivers for radar, and spectrum surveillance applications.

M.A. Sánchez Marcos is a PhD candidate in
the Department of Electronic Engineering at the
Universidad Politécnica de Madrid, Spain. He re-
ceived his MS degree in telecommunications with
a major in electronics from the same university
in 2003. His research interest include embedded
systems and application-specific high-performance
programmable architectures.

Oscar Gustafsson (S’98–M’03–SM’10) received
the M.Sc., Ph.D., and Docent degrees in 1998, 2003,
and 2008, respectively, all from Linköping Univer-
sity, Sweden. He is currently an Associate Professor
and Head of the Electronics Systems Division in the
Department of Electrical Engineering at the same
university.

He is a member of the VLSI Systems and Ap-
plications and the Digital Signal Processing techni-
cal committees of the IEEE Circuits and Systems
society. Currently, he serves as an associate editor

for IEEE Transactions on Circuits and Systems II and Integration, the VLSI
Journal. He has served and serves in various positions for conferences such
as ISCAS, PATMOS, PrimeAsia, Asilomar, Norchip, ECCTD, and ICECS.

His research interests are design and implementation of DSP algorithms and
arithmetic circuits. He has authored and co-authored more than 130 papers in
international journals and conferences on these topics.

