PipeRench: A Coprocessor for Streaming Multimedia Acceleration

Herman Schmit Matthew Moé Mihai Budiuf Srihari Cadambi

R. Reed Taylor = Ronald Laufer

School of Computer Scienteand Department of ECE
Carnegie Mellon University

Pittsburgh, PA 15213
f{seth, nmi hai b}@s. cnu. edu
*{her man, noe, cadanbi , rt 2i, rel }@-ce. cnu. edu

Seth Copen Goldstein

Abstract switched into SIMD operation [17]. The instruction band-
width issue has created renewed interest in vector process-
Future computing workloads will emphasize an archi- ing [14, 24].
tecture’s ability to perform relatively simple calculations A fundamentally different way of addressing these prob-
on massive quantities of mixed-width data. This pa- lems is to configure connections between programmable
per describes a novel reconfigurable fabric architecture, logic elements and registers in order to construct an effi-
PipeRench, optimized to accelerate these types of compueient, highly parallel implementation of the processing ker-
tations. PipeRench enables fast, robust compilers, supportsel. This interconnected network of processing elements is
forward compatibility, and virtualizes configurations, thus called areconfigurable fabricand the data set used to pro-
removing the fixed size constraint present in other fabrics. gram the interconnect and processing elementsiéigu-
For the first time we explore how the bit-width of processing ration. After a configuration is loaded into a reconfigurable
elements affects performance and show how the PipeRenckabric, there is no further instruction bandwidth required to
architecture has been optimized to balance the needs ofperform the computation. Furthermore, because the oper-
the compiler against the realities of silicon. Finally, we ations are composed of small basic elements, the size of
demonstrate extreme performance speedup on certain comthe processing elements can closely match the required data
puting kernels (up to 190x versus a modern RISC proces-size. This approach is calledconfigurable computing.
sor), and analyze how this acceleration translates to appli- Despite reports of amazing performance [11], reconfig-
cation speedup. urable computing has not been accepted as a mainstream
computing technology because most previous efforts were
based upon, or inspired by, commercial FPGAs and fail to
meet the requirements of the marketplace. The problems
inherent in using standard FPGAs include

1. Introduction

Workloads for computing devices are rapidly changing. ' '
On the desktop, the integration of digital media has made 1. Logic granularity: FPGAs are designed for logic re-

real-time media processing the primary challenge for ar-
chitects [10]. Embedded and wireless computing devices
need to process copious data streaming from sensors and

receivers. These changes emphasize simple, regular compu-2.

tations on large sets of small data elements. There are two
important respects in which this need does not match the
processing strengths of conventional processors. First, the
size of the data elements underutilizes the processor’s wide
datapath. Second, the instruction bandwidth is much higher
than it needs to be to perform regular, dataflow-dominated
computations on large data sets.

Both of these problems are being addressed through pro-
cessor architecture. Most recent ISAs have multimedia in-

placement. The granularity of the functional units is
optimized to replace random logic, not to perform mul-
timedia computations.

Configuration time: The time it takes to load a con-
figuration in the fabric is calledonfiguration time In
commercial FPGAs, configuration times range from
hundreds of microseconds to hundreds of millisec-
onds. To show a performance improvement this start-
up latency must be amortized over huge data sets,
which limits the applicability of the technique.

. Forward-compatibility: FPGASs require redesign or

recompilation to gain benefit from future generations
of the chip.

struction set extensions that allow a wide datapath to be 4. Hard constraints. FPGAs can implement only ker-

nels of a fixed and relatively small size. This is part

of the reason that compilation is difficult—everything Jli] = o

must fit. It also causes large and unpredictable discon- for (int ' =0 j<Taps: j++)

tinuities between kernel size and performance. yIil = y[i] + x[i+]1*Wj];
5. Compilationtime: Currently the synthesis, placement }

and routing phases of designs take hundreds of times

longer than what the compilation of the same kernel

would take for a general-purpose processor.

for (int i=0; i<maxlnput; i++) {

This paper describes PipeRench, a reconfigurable fab-
ric designed to increase performance on future computing
workloads. PipeRench realizes the performance promises
of reconfigurable computing while solving the problems Figure 1. C code for a FIR filter and a pipelined ver-
outlined above. PipeRench uses a technique capifeeline sion for a three-tap filter.
reconfigurationto solve the problems of compilability, re-
configuration time, and forward-compatibility. The archi-
tectural parameters of PipeRench, including the logic block 3
granularity, were selected to optimize the performance of a
suite of kernels, balancing the needs of a compiler against
design realities in deep-submicron process technology. 4

PipeRench is currently used as an attached processor. 5
This places significant limitations on the types of applica-
tions that can realize speedup, due to limited bandwidth be- 6
tween PipeRench, the main memory and the processor. We
believe this represents the initial phase in the evolution of
reconfigurable processors. Just as floating-point computa- These functions take two formStream-based functions
tion migrated from software emulation, to attached proces- process a large data input stream and produce a large data
sors, to coprocessors, and finally to full incorporation into output stream, whileustom instructiongake a few inputs
processor ISAs, so will reconfigurable computing eventu- and produce a few outputs. After presenting a simple ex-
ally be integrated into the CPU. ample of each type of function to illustrate how a reconfig-

In the next section, we use several examples to illustrateurable fabric can improve performance, we discuss the ways
the advantages and architectural requirements of reconfigin which a fabric can be integrated into a complete system.
urable fabrics. We introduce the idea of pipeline reconfigu-
ration in Section 3, and describe how this technique solves2 2. A Stream-Based Function: FIR
the practical problems faced by reconfigurable computing.

Section 4 describes a class of architectures that can imple- A reconfigurable fabric can be most effective when used
ment pipelined reconfiguration. We evaluate these architecg jmplement entire pipelines from applications. Here we
tures in Section 5. We cover related work in Section 6, andjyestigate a simple but prototypical pipeline for imple-
in Section 7 we summarize and discuss future research. menting a finite-impulse response (FIR) filter. The FIR filter
exhibits all but feature 3 from the requirement list in Sec-

2. Reconfigur able Computing tion 21 Figure 1 shovys the C code and a hgrdware imp!e-

mentation. When FIR is mapped to a reconfigurable fabric,

i the general-purpose multipliers shown in the hardware de-

2.1. Attributes of Target Kernels scription are implemented as constant multipliers, where the
constants are the] i] values. This resultsin less hardware

Functions for which a reconfigurable fabric can provide and fewer cycles than a general-purpose multiplier.

a significant benefit exhibit one or more of the following Figure 2 compares an 8-bit FIR using 12-bit coefficients
features: running on a particular instance of PipeRench to implemen-
tations on a Xilinx FPGA using parallel distributed arith-

1. The function operates on bit-widths that are different metic (shown as Xilinx PDA in Figure 2) and double-rate

from the processor’s basic word size. bit-serial distributed arithmetic (shown as Xilinx DDA).
2. The data dependencies in the function allow multiple Both the PipeRench chip and Xilinx FPGA are imple-
function units to operate in parallel. mented in 100mmof silicon using a 0.35 micron process.

. The function is composed of a series of basic opera-
tions that can be combined into a single specialized
operation.

. The function can be pipelined.

. Constant propagation can be performed, reducing the
complexity of the operations.

. The input values are reused many times within the
computation.

CPU

PipeRench

2
S 150 Xilinx PDA
8 = = = Xilinx DDA 5(35/3;‘
& @ TiDSP L1 Tightly Coupled
g g Coproccessor R A
o econfigurable
£ 1.3GBlsec | Fabric
1%}
g L2
= Memory Bus
800M B/sec)

)

Loosely Coupled
. Attached processor
Main Memory
FIR Filter Taps

1/0 Bus
133MB/seC 3

Figure 2. Performance on 8-bit FIR filters:

PipeRench, Xilinx FPGA using parallel and serial Figure 4. Possible locations for reconfigurable fabric
arithmetic, and Texas Instruments DSP. in memory hierarchy. Bandwidth figures are typical
for a 300 MHz Sun UltraSPARC-II.

and 3) from Section 2.1. The reconfigurable computing so-
lution replaces th&@(n) loop with an adder tree of height
O(logn). Furthermore, the adders used are significantly
narrower than the adders on the processor. The circuit can
also be pipelined, so that when executed on a vector it re-
tires one result every cycle.

In evaluating a reconfigurable fabric, it is important to
take into account both configuration time and the commu-
Figure 3. C code and its hardware implementation nication latency and bandwidth between the processor and
for population count. the fabric. If popCount() is called only once, it makes little
sense to configure the fabric to perform the operation since
the time to configure the fabric will be larger than the sav-
ings obtained by executing popCount() on the fabric.

When popCount() is used outside of a loop and data de-
pendencies require that the result be used immediately after
itis computed, the fabric needs direct access to the proces-
sor registers. On the other hand, if popCount() is used in
a loop, where there are no immediate dependencies on the
results, performance can be better if the fabric can directly
access memory. In this paper we concentrate on the latter
case.

int
popCount (unsi gned n) {
int sunme0, i;
for (i=0; i<8; i++)
sum += (n >> i) & 1;
return sum

}

The FPGA runs at approximately 60MHz for both applica-
tions, while PipeRench’s clock is 100MHz. PipeRench out-
performs both Xilinx implementations over a broader range
of filter sizes. Similarly, PipeRench outperforms the Texas
Instruments TMS320C6201, a commercial DSP that runs
at 200 MHz and contains two 16x16-bit integer multipli-
ers, on filters larger than a few taps. PipeRench exhibits
the same high level of performance as the FPGA. Due to
its support for hardware virtualization, as described in Sec-
tion 3, PipeRench exhibits the same graceful degradationsz_4_ The Fabric's Place
of performance as the DSP.

] . Reconfigurable fabrics provide the computational datap-
2.3. Custom Instructions: Population Count In- 4th with more flexibility. Their utility and applicability is
struction influenced by the manner in which they are integrated into
the datapath. We recognize three basic ways in which a
Most processors, with the exception of vector supercom- fabric may be integrated into a system: as an attached pro-
puters, do not include a native population count instruc- cessor on the I1/O or memory bus, as a coprocessor, or as a
tion and thus it must be implemented in software (see Fig- functional unit on the main CPU. (See Figure 4.)
ure 3). Using a reconfigurable fabric, popCount() can be Attached-processor systems, e.g. PAM [1], Splash [4],
implemented as a custom instruction giving a raw perfor- and DISC [25], have no direct access to the processor.
mance improvement of more than an order of magnitude.Rather, they are controlled over a bus. The primary fea-
The function exhibits three of the qualifying features (1, 2, ture of attached processors is that they are easy to add to

existing computer systems. However, due to the bandwidth Pipeline reconfiguration is a method of virtualizing
and latency constraints imposed by the bus they can enpipelined hardware application designs by breaking the
hance only computations that have a high computation—to-single static configuration into pieces that correspond to
memory-bandwidth ratio. Thus, they are most suited to pipeline stages in the application. These configurations are
stream-based functions that require little or no communi- then loaded, one per cycle, into the fabric. This makes it
cation with the host processor. possible to perform the computation, even if though the
In coprocessor architectures, there is a low-latency, high-whole configuration is never present in the fabric at one
bandwidth connection between the processor and the retime.
configurable fabric, which increases the number of stream- The virtualization process is illustrated in Figure 5,
based functions that can profltably be run on the fabric. which shows a ﬁve-stage pipe"ne being virtualized on a
Recent examples of such systems include Garp [13] ancthree-stage fabric. The top portion of this figure shows the
Napa-1000 [19]. Further specialization occurs when the five-stage application and the state of each of the stages of
fabric is on the main processor’s data path, as in functional-the pipeline in five consecutive cycles. The bottom half of
unit architectures like P-RISC [18], Chimaera [12], and the figure shows the state of the physical stages in the fab-
OneChip [26]. All of these allow custom instructions to be ric that is executing this application. An effective metaphor
executed. The reconfigurable unit is on the processor datafor this procedure is scrolling on a text window. Once the
path and has access to registers. However, these implememipeline is full, every five cycles generates two results from
tations restrict the applicability of the reconfigurable unit the pipeline. In general, whenwastage application is vir-
by disallowing state to be stored in the fabric and in some tualized on a device with a capacity pfstages f < v),
cases by disallowing direct access to memory, essentiallthe throughput of the implementation is proportional to
eliminating their usefulness for stream-based processing. (p — 1)/v. Throughput is a linear function of the capacity
In this paper we describe pipelined reconfigurable archi- of the device; therefore performance improves due to both
tectures, which can be used in any of the fashions describedncreases in clock frequency and decreases in feature size,
above. However, in order to describe the system we arewithout any redesign, until = v. Thereafter, applications’
currently building, we limit ourselves to describing how we performance continues to gain only through increased clock
would apply it as an attached-processor system. The naturagpeed.

evolution of this fabric to a coprocessor or a function unit Because the configuration of stages happens concur-

would only enhance its applicability. rently with the execution of other stages, there is no loss
in performance due to reconfiguration. As the pipeline is
3. Pipelined Reconfigurable Architectures filling with data, stages of the computation are being con-

figured ahead of that data. Even if there is no virtualization,

In the previous section, we described how application- configur.atio.n time is equivalent to the pipeline fill timg of
specific configurations of reconfigurable fabrics can be usedtn® application and therefore does not reduce the maximum
to accelerate certain applications. The computation is em-throughputof the application.
bedded in a single static configuration rather than in a In order for this virtualization process to work, the state
sequence of instructions, thereby reducing the instructionin any pipeline stage must be a function only of the cur-
bandwidth. rent state of that stage and the current state of the previous

The static nature of these configurations, however, stage. In other words, cyclic dependencies must fit within
causes two significant problems. First, the computationone stage of the pipeline. Interconnect that directly skips
may require more hardware than is available. Second, giverPver one or more stages is not allowed, nor are connections
more hardware, there is no way that a single hardware defrom one stage to a previous stage. Fortunately, many com-
sign can exploit the additional resources that will inevitably Putations on streaming data can be pipelined within these
become available in future process generations. In thisconstraints. Furthermore, by including structures we call
section, we review a technique called pipeline reconfigu- pass registersit is possible to create virtual connections
ration [20], that allows a large logical design to be imple- between distant stages.
mented on a small piece of hardware through rapid recon- The primary challenge facing pipeline reconfiguration is
figuration of that hardware. With this technique, the com- configuring a computationally significant pipeline stage in
piler is no longer responsible for satisfying fixed hardware one clock cycle. To do this, we connect a wide on-chip con-
constraints. In addition, the performance of a design im- figuration buffer (either SRAM or DRAM) to the nearby
proves in proportion to the amount of hardware allocated to fabric allowing a pipeline stage to be configured in one cy-
that design; as future process technology makes more tranele. We use the wordtripe to describe both the physical
sistors available, the same hardware designs achieve highestages in the fabric (thphysical stripey and the configu-
levels of performance. ration words that are written into them (thigtual stripeg.

Virtual Pipestage [i ! i RE 34—
Cycle: 1 5 6 e —4
Stage 1 C)()[D)! C * *"ec :)
Stage 2 :‘: ‘7w 7 ‘7wi 7wi‘ 'g
?*‘ i | [. 4—?
Stage 3 o Hio | 1 bl
{} {} {} lg LPEO_____ I,,,,,J wPEL I,,,,,J L,PE,N},,,,T ,,,,,, u
stage 4()() GD G R L —x - |;
Stage 5 o ' | = ' E— '
‘ - [T [
Physical Pipestage | PO | ! |

stage 1(_1) Figure 6. PipeRench Architecture: PEs and inter-
Stage 2 - connect.
Stage 3

Legend: Conflgurlng Executmg long feedback loops impossible, since any feedback must
be contained within one stripe. The global I/O busses are
required because the pipeline stages in an application may

Figure 5. Pipeline Reconfiguration. This diagram e physically located in any of the stripes in the fabric; in-
shows the process of virtualizing a five-stage pipeline puts to and outputs from the application must use a global
on a three-stage device. bus to get to their destination.

All PipeRench devices have four global busses. Two of
these busses are dedicated to storing and restoring stripe
state during hardware virtualization. The other two are used
for input and output. Combinational logic is implemented
using using a set oV B-bit wide ALUs. The ALU oper-
ation is static while a particular virtual stripe is located in
the physical stripe. The carry lines of PipeRench’s ALUs
may be cascaded to construct wider ALUs. Furthermore,
ALUs may be chained together via the interconnect network
to build complex combinational functions.

Any virtual stripe can be written into any physical stripe.
Therefore, all physical stripes must have identical function-
ality and interconnect.

Before a physical stripe is reconfigured with a new vir-
tual stripe, the state of the resident virtual stripe, if any, must
be stored outside of the fabric. Conversely, when a virtual
stripe is returned to the fabric, any stored state for the stripe
must be restored within the physical stripe [5].

4.1. Pass Register File
4. PipeRench
We organize each stripe as an array of processing ele-

In this section, we describe a class of pipeline reconfig- ments (PEs). Each PE contains one ALU and a pass reg-
urable fabrics, called PipeRench devices, and define criticalster file. As described in Section 3, there can be no un-
architectural parameters for this class of fabrics. These ar+egistered interconnect between stripes. Furthermore, any
chitectural parameters are the subject of the performancestate caused by registered feedback within the stripe must
evaluation described in Section 5. be saved and restored. The pass register is designed to pro-

An abstract view of the PipeRench architectural class is vide efficient pipelined (registered) interstripe connections.
shown in Figure 6. The device is composed of a set of phys-Each pass register file has one dedicated register that can be
ical pipeline stages, or stripes. Each stripe is composed otised for intra-stripe feedback and therefore must have its
interconnect and processing elements (PE), which contairstate stored and restored.
registers and ALUs. An ALU is composed of look-uptables ~ As illustrated in Figure 7, the output of the ALU can
(LUTs) and extra circuitry for carry-chains, zero-detection, be written to any one of thé’ registers in the pass regis-
etc. The PEs have access to a global /0 bus. ThrougHer file. If the register is not written by the ALU, the value
the interconnect network, the PEs can access operands frorf the pass register is loaded from the value in the corre-
registered outputs of the previous stripe as well as registeredsponding pass register in the previous stripe. This reduces

or unregistered outputs of the other PEs in the stripe. There 1By limiting the set of physical stripes that may hold a particular virtual

are no busses that go to a previous stripe; this is requ”’ed'strlpe one can eliminate the global busses. This reduces utilization, but
by hardware virtualization (as discussed in [5]) and makes may increase clock frequency sufficiently to make it worthwhile.

ALU o ues from the previous stripe. Like the ALU operations
> ; ; and the pass register files, the interconnect network is pro-
R e R — grammed during configuration and remains unchanged dur-
=mm = 21 ' = ing the lifetime of the virtual stripe.

Foon—L | _ The interconnect we evaluate in Section 5 is a full cross-
Sripen PR REARETEe bar. This is expensive in terms of hardware, but it makes ev-
SIS N T ery design easily placeable by the compiler. Furthermore, a

ALY rich network is necessary to achieve good utilization in a re-
T 1 | configurable fabric [9]. In fact, most fabrics use over 50%
e | o o of their available area on interconnect. As shown in Sec-
! ! ! tion 5, even with a full crosshar we use less than 50% of

the area for the interstripe interconnect. Though we use a

Figure 7. The pass register interconnect. full crossbar, it connects only PEs to PEs—i.e., it iBa
bit wide, Nx NV crossbar, as opposed to @NXB)X(NxXB)
giobal Fifo” i crosshar. A key to making this interconnect useful is that
@ 1 % each PE has a barrel shifter that can shift its inputs up to
(p————) B—1 bitsto the left (see Figure 8). This allows our architec-

ture to do data alignments that are necessary for word-based
arithmetic as described in [6].

B-1 ?f‘('lfﬂ . H
o L e 4.3. Physical Implementation

PE T

A B

e B s Currently we are planning to design this system in
100mn? of silicon in a 0.25 micron process. Half of that
area is for the reconfigurable fabric, while the other half is
s To Global Output Bus for memory to store virtual stripes, control, and chip 1/O.
Fifty square millimeters of silicon provides approximately
500kb of virtual configuration storage, which is adequate

Figure 8. Complete architectural class. for very large applications.

| ——
Control/Carr] Control/Carry
Bits Out Bits

To Interconnect Network

4.4. Architectural Parameters

the amount of state that can be contained in the pass regis-
ter file to a single register, because data that travels through Figure 8 summarizes one of thé PEs in a stripe for
the pipe”ne does not need to be saved and restored. Th&ur parameteriZEd architecture. Inthe fOllOWing SeCtion, we
pass register file also provides a way to route intermediateexplore the following three architectural parameters:
results computed on one stripe to a stripe somewhere down o N the number of PEs in the stripe;
the pipeline, without wasting ALUs or the interconnect net-
work within the stripe. Like the ALU operation, the specific ~ ® B: the width, in bits, of each PE;
registers that are written to and read from the pass register
file are static while a virtual stripe is resident; different PEs
can read and write different registers, but the registers that a

articular PE accesses change only when a different virtual .
Stripe configures the physical stripe. |5 Evaluation

e P: the number of B-bit wide registers in the pass reg-
ister file per PE.

In this section we explore the design space of pipelined
reconfigurable architecures. Using a compiler and CAD
tools, we look at how several kernels perform on implemen-

The pass register file provides pipelined interconnect tations of the fabric that differ in the parameters described
from a PE in one stripe to the corresponding PE in sub- in Section 4.4.
sequent stripes. If data values need to move laterally within
the stripe, they must use the interconnect network, which is5.1. Kernels and Applications
illustrated as a horizontal bar in Figure 6. In each stripe,
the interconnect network accepts inputs from the each of Performance and utilization data were gathered for
the PEs in that stripe, as well as one of the registered val-PipeRench implementations of various kernels. The kernels

4.2. | nterconnect Network

were chosen based on demand for the applications in thahen determine the overall speed of the kernel, in terms of
present and near future, their recognition as industry perfor-throughput, for each architectural instance.
mance benchmarks, and their ability to fit into our compu- The CAD tool flow synthesizes each design point and
tational model. automatically places and routes the final design. Although
the automatic tool flow does not yield the optimal design,
ATR implements the shapesum kernel of the Sandia algo-ye assume that the various points are equally non-optimal,
rithm for automatic target recognition [22]. This algo- aliowing us to compare the designs. Preliminary analysis
rithm is used to find an instance of a template image in showed the CAD tools doing quite well, except for the in-
a larger image, and to distinguish between images thatterconnect, which we hand optimize.
contain different templates. The kernels are written in a single-assignment C-like lan-
Cordic is a 12 stage implementation of the Honeywell tim- guage, DIL, which is intended for both programmers and as
ing benchmark for Cordic vector rotations [15]. Given g intermediate language for a high-level language compiler
a vector in rectangular coordinates and a rotation anglethat targets reconfigurable architectures. The DIL compiler
in degrees, the algorithm finds a close approximation gytomatically synthesizes and places and routes our largest
to the resultant rotation. designs in a few seconds [3]. It is parameterizable so that
DCT is a one-dimensional, eight-point discrete cosine we can generate configurations for any pipelined reconfig-
transform [16]. DCT-2D, a two-dimensional DCT, is urable architecure as described in Section 4.
an important algorithm in digital signal processing and
is the core of JPEG image compression. 5.3. The Fabric
FIR is described in Section 2.2. Here we implement a FIR
filter with 20 taps and 8-bit coefficients.))))
IDEA implements a complete eight-round International There are two main constraints that determine which pa-

Data Encryption Algorithm with the key compiled into rameters generate reallizable. fabrics: the width of a stripe
the configuration [21]. IDEA is the heart of Phil Zim- anq the numper of vert|c§1I wires that must pass over each
merman’s Pretty Good Privacy (PGP) data encryption. stripe. The width of a stripe is mﬂuenced' by the size and
Nqueens is an evaluator for the Nqueens problem on an number of the'PI'Es and'the numbe'r of registers gllocated to
each PE. We limit the width of a stripe to 4.9mm in order to

8x8 board. Given the coordinates of chess queens O ow two of them to be placed side by sidle.

a chessboard, it determines whether any of the queens s
y q The second constraint is to accomodate the number of

can attack each other. . . . -
Over implements the Porter-Duff over operator [2]. This vertical wires that pass over the stripes within two metal
: layers. These wires include those for the global busses, the

is a method of joining two images based on a mask of pass registers, and the configuration bits.

lues f h pixel. . ,
transparency values for each pixe We explore the region of the space bounded by PE bit-

PopCount is described in section Section 2.3. widths (B) of 2, 4, 8, 16, and 32 bits; stripe widths (N x
We also evalute the performance of PipeRench on twoB) Of betwotleené64'b|ts and h256 bl:]s; and regls:.tersl (dP) of
complete applications, JPEG and PGP. In each of these ap?’ 4,b$ an /l . Figure ?c sh ows ;‘ eb(‘iomputatlona err]"
plications we assume PipeRench is integrated into the sys-;f'ty (|téop.s Erea-t]me) oft e”rea 'Z"’(‘j e parc';l]mlaeéerls when
tem on the PCI bus, which has a peak memory bandwidth'©Ur @nd eight registers are allocated to each PE. Interest-

of 132MB/sec. ingly, the result i§ e§sentially indepgndent of'strlpe width.
The reason for this is that as the stripe width increases, the
5.2. Methodology amount of area per stripe devoted to interconnect increases,

but the total number of stripes decreases—yeilding a con-
stant amount of total area devoted to interconnect. In fact,
the total area devoted to interstripe interconnect is less than
50% of the area devoted to the fabric. The total delay from
the output of one stripe into the PE of the next stripe remains
approximately constant because the wire capacitance of the

Our approach is to use CAD tools to synthesize a stripe
based on the parametei§ B, and P. We join this auto-
matically synthesized layout with a custom layout for the
interconnect. Using the final layout we determine the num-
ber of physical stripes that can fit in our silicon budget of 50
mmn? (5 mm x 10 mm)l and the delay CharaCte”?'t'?S of the 2Virtualization requires that data be allowed to flow between any two
components of the stripe (e.g., LUTSs, carry-chain, intercon-stripes, including the last physical one and the first physical one. To obtain
nect, etc.). The delay characterisitics and number of regis-consistent routing delay times we arrange the stripes in two columns: in

; : ; ne column the data flows down and in the other it flows up. This avoids a
ters are then used .by the cpmpller to c'reat.e conflgljlratlon#’cng path from the last to the first physical stripe.
for ea}ch of the archlte:-ctural Instances, yieldinga designofa 3some of the wider stripes can be implemented only with eight
certain number of stripes at a particular frequency. We canregisters.

Four Register Computational Density Eight Register Computational Density

25000
PE Bit-width 25000
H2 m4 08 016 W32
PE Bit-width

o
320000 r ’ 3 $ 20000 - M2 m4 08 16 W32
& 1 P

N
215000 - a0 gl Bl BN O - ¢ 0 1 T
=) = il M
S 2
g g
o Q
010000 - el liesll el |l oullestl eelinsll sl i & 10000 -
e} =
[o
(=1 [
b g

5000 ~ = 5000 + I
. : : : : 0 I I I I I I I I : : : :
64 80 96 112 128 144 160 176 192 208 224 240 256 64 80 96 112 128 144 160 176 192 208 224 240 256
Stripe Width Stripe Width

Figure 9. Computational density.

interstripe interconnect (5mm long in all cases) dominates of variable to be specified. The compiler converts the source
the transistor delays. into a dataflow graph and then, through many transforma-
The computational density does not seem to have ations, creates a final configuration. The important transfor-
monotonic relationship with PE width. This seems counter- mations for this study are operator decomposition, operator
intuitive; as PE size increases, the overhead of configura+tecomposition, fitting, and place-and-route.
tion decreases and the ability to optimize the PE increases. The operator decomposition pass breaks up operators so
Therefore, computational density should increase. But ourthatthey can execute within the target cycle time. For exam-
delay metric includes the delay associated the carry chaimple, a wide adder needs to be broken up into several smaller
of one PE, which increases with PE width. The increasedadders due to the carry-ch