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1. Introduction

Problem Statement. Let 2 be a collection of pairwise-disjoint polyhedral obstacles in
R* with a total of n vertices, edges, and faces, and let B be a ball in R>. With no loss
of generality, we assume that the faces of 2 are triangles and that the radius of B is
1. We consider the motion-planning problem in which B is allowed to move (translate)
freely in R* without intersecting any obstacle. The free configuration space F of B with
respect to 2 is the space of all points p € R so that if B is placed centered at p, then
it does not intersect any obstacle. We wish to bound the combinatorial complexity of F
(defined below) and present an efficient algorithm for computing the boundary of F.

Let By be the placement of B with its center at the origin. F can be expressed in the
following standard manner (see, e.g., [20]). For each obstacle w € , let K, denote the
Minkowski sum'

Ko=0®By={x+y|x €ew, y € By}

The set K, referred to as the expanded obstacle of w, is the set of all centers of B at
placements where it intersects . Hence F = R*\ |, Ko See Fig. 1.

Let S be the set of triangular faces of 2. For each triangle s € S, we can define
K; = 5 ® By. If 5 is bounded, then K is the (nondisjoint) union of (i) a triangular prism
of height 2 with s as a middle cross section, (ii) three bounded cylinders of radius 1
whose axes are the edges of s, and (iii) three balls of radius 1 centered at the vertices
of 5. If s is unbounded, the structure of K changes accordingly. We refer to K; as an
expanded triangle (or a krepl).

A face of F is a maximal connected closed portion of 3 contained in a single
triangular, cylindrical, or spherical portion of some 3K;. An edge of F is a maximal

Fig. 1. The union of Minkowski sums of triangles and a ball.

! Strictly speaking, we should form the sum of w with — By, the reflection of By through the origin; of
course, we obtain the same set since Bp is symmetric.
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connected portion of 3F lying in the intersection of two distinct faces; the two faces
may lie on the boundary of the same krepl or on the boundaries of different kreplach. A
vertex of F is the intersection of three distinct faces, not necessarily of distinct kreplach,
that lies in 8.F. The combinatorial complexity of F, denoted by | F|, is the number of
vertices, edges, and two-dimensional faces of 3.F.

Set U = | J,s K. Each connected component of F is also a connected component
of R*\U, but the latter may have some connected components that do not belong to
JF. These components represent placements at which the ball moves inside an obstacle
without touching its boundary. || is thus upper bounded by |U |, and F can be computed
by first constructing U and then discarding the connected components of R*\U that do
not belong to F. The main problems we are concerned with are thus to estimate the
combinatorial complexity of U and to compute efficiently its boundary aU.

Besides this motion-planning application, the problem of bounding the complexity
of U is a precursor to the harder problem of obtaining a near-quadratic, or even just
subcubic, bound on the complexity of the Euclidean Voronoi diagram of S. Indeed, if
the radius of B is r, then 0U is the locus of all points whose Euclidean distance from
their nearest triangle in S is exactly r. In this sense, 83U is a cross section of the Voronoi
diagram of S.

Previous Results. Motivated by the motion-planning application, there has been much
work on bounding the combinatorial complexity of the union of the Minkowski sums of
a geometric object (“robot”) with a family of geometric objects (“obstacles’), or more
generally, the complexity of the union of a set of geometric objects. See the book [24]
and the survey paper [5] by the authors for a summary of known results on this topic.
Boissonnat et al. [12] proved that the maximum complexity of the union of n axis-parallel
hypercubes in R? is ©(n?/21); the bound improves to ® (n'4/2]) if all hypercubes have
the same size. Aronov et al. [9] proved that the complexity of the union of n convex
polyhedra in R? with a total of s faces is O (n> + ns log n). Aronov and Sharir (8] proved
that the complexity of the union of the Minkowski sums of a convex polyhedron P with
a collection S of n pairwise-disjoint convex polyhedra in R? is O (ns logn), where s is
the total number of faces of the polyhedra in the set {P & Q | Q € S}. All these bounds
are either optimal or near optimal in the worst case. These recent results concern unions
in higher dimensions, and extend the work on unions of objects in the plane. Among
the two-dimensional results, we mention the early result of Kedem et al. {20] that shows
that the complexity of the union of n disks (or “pseudodisks™) is O(n), and the results
of Matousek et al. [22] and Efrat and Sharir [17] that prove near-linear bounds on the
complexity of the union of “fat” triangles and general “fat” convex regions in the plane.
See also [7], [16], and [21]. In a sense, our results are extensions of the analysis of {20]
to three dimensions.

It is conjectured that Voronoi diagrams in three dimensions, under fairly general
assumptions concerning the sites and the distance function, have near-quadratic com-
plexity. A near-cubic bound on the complexity of such diagrams follows from the results
on lower envelopes [23]. The maximum complexity of Voronoi diagrams of n point sites
under the Euclidean distance is known to be @(n?) {15]. The same bound has recently
been established for point sites under the L; and L metrics, or under any simplicial
distance function {12]. Near-quadratic bounds have also been recently established for
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the case of line sites and any polyhedral convex distance function [13], where the bound
is O(n%a(n)logn), and for the case of point sites and any polyhedral convex distance
function [26), where the bound is O(n?logn). In both cases the distance function is
induced by a convex polytope with a constant number of facets. No example with a
substantially superquadratic complexity (i.e., 2(n?*), for any fixed ¢ > 0) is known.
As noted above, any of these results also yields near-quadratic bounds on the complexity
of the corresponding union of the Minkowski sums of the sites with the unit ball under
the given distance function.

Our Results. 1f the conjecture on the complexity of the Voronoi diagram is true for
the case of triangle sites and Euclidean distance, then the complexity of U will be near-
quadratic. Although a subcubic bound on the complexity of the Voronoi diagram still
remains elusive, we prove that the complexity of U is O(n?*#), for any ¢ > 0. Using this
bound, we also derive a near-quadratic algorithm for constructing the complement of
the union U, and thereby obtain a motion-planning algorithm for a ball amid polyhedral
obstacles.

Our results extend and improve a previous initial attack on the problem by the authors
[4], where we only managed to handle the cases in which S is a collection of lines or
segments and to obtain a weaker bound of O (n*/***), for any & > 0. The new analysis
borrows ideas from the previous paper, but has many new ingredients.

The paper is organized as follows. In Section 2 we study the special case in which S
is a set of lines, so U is the union of congruent cylinders (pipes). We extend the previous
result to segments in Section 3; here U is the union of cigars. In Section 4 we prove the
main result of the paper—a near-quadratic bound on the complexity of U for the case
of pairwise-disjoint triangles, so U is the union of kreplach. In Section S we discuss
two generalizations of our results. The first result proves a near-quadratic bound on the
complexity of the union of convex objects of bounded curvature and of roughly the same
size. The second result proves a near-quadratic bound on the number of changes in the
combinatorial structure of a set of congruent disks in the plane, each moving with a
fixed velocity. We also present a near-quadratic algorithm for constructing U and F. We
conclude the paper in Section 6 with a few open problems.

2. The Case of Pipes

Preliminaries and Overview. We first solve the problem, in which S§ = {s;,..., s,}
isasetof nlinesinR. Fori = 1,...,n,letK; = K, = s5; ® B and ¢; = 3K;;
K; is an infinite cylinder (or pipe) of radius 1. Set £ = {K;,..., K,}, U = U:’=l K;,
and C = {cj, ..., c,}. Whenever there is no ambiguity, we will also refer to the ¢;’s as
cylinders; otherwise we will refer to them as cylindrical surfaces. See Fig. 2. We assume
that the lines in S are in general position, which means that every pair of lines is skew,
that no two K;’s are tangent to each other, that no curve of intersection of the boundaries
of any two K;’s is tangent to a third one, and that no four boundaries meet at a point.
An argument based on random perturbation, similar to the one given in [23]}, shows that
this assumption can be made with no loss of generality. The main result of this section
is the following.
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Fig. 2. Two arrangements of cylinders.

Theorem 2.1, The combinatorial complexity of the union of n congruent cylinders in
R3 is O(n®*®), for any & > 0, where the constant of proportionality depends on «.

For a subset R C C, let U (R) denote the union of cylinders bounded by the cylindrical
surfaces in R. Let V(R) denote the set of vertices of U (R), namely, intersection points
of triples of boundaries of cylindrical surfaces in R that lie on 3U (R). By our general
position assumption, each vertex lies on exactly three cylindrical surfaces, and is thus
incident upon only a constant number of edges and faces. The number of edges or 2-
faces of AU that are not incident upon any vertex is O(n?). Therefore the combinatorial
complexity of U is O(n? + |V(C))). In the rest of this section we prove the following:

Proposition 2.2.  For any set C of n congruent cylinders in R? and for any ¢ > 0,

V() = 0(n**).

Overview of the Proof. The proof consists of several main steps, each presented in a
separate subsection, and proceeds through a sequence of technical lemmas. To aid the
reader in following the proof, we have written it from a certain point on in a “backward”
manner: each step relies on a future key lemma and shows how Proposition 2.2 follows
from the analysis so far and from that future lemma.

In the first step, for technical reasons, we choose a subset of cylinders in X whose
union boundary contains at least half of the vertices of V. We also choose the orientation
of the z-axis (by rotating the coordinate frame) carefully so that the acute angle between
the z-axis and the axes of every chosen cylinder is at most cos™! (%).

In the second step we derive a recurrence relation to bound the number of vertices.
The overhead term in the recurrence counts the number of vertices lying on cylinders
whose axis directions are “well separated” in a certain sense.

In order to bound the overhead term, the third step introduces a key notion of “‘divergent
pairs” of cylinders, relative to some direction u, where the angle between the axes of
such a pair is not much smaller than the angles that the axes form with u. We show the
existence of a direction u so that many vertices v € V have the following property: all
three pairs of the cylinders that are incident upon v are divergent with respect to .
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In the fourth step we partition R® into a carefully chosen infinite grid of square prisms
whose infinite axes are in the direction u, and count the number of vertices within each
prism. We show that there are only O(1) prisms Q that can be crossed by a fixed pair a, b
of divergent cylinders so that the projections of a N @ and b N Q on a line in direction
u overlap.

In the fifth step we show that, within a prism Q, we can bound the number of vertices
of U by regarding them as vertices of a “sandwich” region enclosed between an upper
envelope of a collection of portions of the given cylinders and a lower envelope of another
such collection. Using the results of [3] on the complexity of such a sandwich region, we
get a near-quadratic bound for the number of vertices of U within a prism. We interpret
this bound as counting the number of pairs of cylinders that cross the same prism.

Finally, in the sixth step, we sharpen the bound obtained in the fifth step so that it is
proportional to the number of pairs of divergent cylinders that have “nearby” crossings
with Q, in the sense of step 4. Hence, when we sum these improved bounds over all prisms
we still get an overall near-quadratic bound. This is accomplished (a) by improving the
bound of [3], and (b) by using a divide-and-conquer method that effectively decomposes
a prism into a tree of boxes and counts the number of vertices within each box separately.

We now describe each step in detail.

2.1.  Choosing the z-Direction

Let S? denote the unit sphere of directions in R3. Foreach ¢ € C, letn, € S? denote a unit
vector in the direction of the axis of ¢ that points into the upper halfspace; if the axis of ¢
is parallel to the xy-plane, we set n. to be any of the two unit vectors in the direction of
the axis of ¢. There is a technical problem (e.g., in Lemma 2.7 below) with the definition
of the directions n,, for ¢ € C, which depend on the choice of the z-direction. Informally,
we may have a pair a, b of cylinders whose directions n,, n, are almost antipodal. In
the foregoing analysis we treat this pair as having a large angle (close to w) between
their axes, whereas the “real” angle between the axes is close to zero. We circumvent
this problem by choosing a random point on S? and by regarding it as the direction of
the (+2)-axis. The following claim holds.

Lemma 2.3. Ler By be the acute angle satisfying cos By = %. Let v be avertexin V (C)
incident upon three cylinders a, b, c € C. The probability that all three acute angles
berween the z-direction and the axes of a, b, ¢ are at most By is at least %

Proof. Indeed, for the acute angle between the z-axis and the axis of, say, a to be
greater than By, the z-direction has to lie in the spherical band consisting of all directions
at spherical distance at most /2 — By from the great circle orthogonal to the axis of a.
The area of this band is 47 cos By. Hence the probability that at least one of the above
three acute angles is larger than By is at most

127 cos By 1
4 T2
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(a) (b)

Fig. 3. (a) A set of relevant directions, and (b) their projection on h.

We thus obtain the following:

Lemma 2.4. We can choose a subset C'  C and a direction uy € S? so that the axes
of all cylinders in C’ form acute angles at most By = cos’l(%) with wg and |V (C")| >
IV(O)I/2.

We rotate the coordinate system so that ug becomes the (+4z)-axis and remove from
C all the cylinders whose axes have an acute angle larger than B, with the (4z)-axis. At
least half of the vertices of V(C) still show up in the new union. Abusing the notation
slightly, we use C to denote the set of remaining cylinders.

Let S be the spherical cap consisting of all points in S? that form an angle of at most
Bo with the (4z)-axis; see Fig. 3(a). We project S onto the horizontal plane h : z = 1
using the central projection. The resulting projection is a disk D of radius tan 8y = +/35
centered at (0,0, 1). For a point u € S?, we denote its projection on i by u*. For a
cylinder a, we refer to n}, as its direction image. For a vertex v € V (C), incident on three
cylinders a, b, ¢ € C, we associate with v the triple A, = {n}, nj, n}}. A, is referred to
as the set of direction images of v.

2.2. Deriving the Main Recurrence

Let ¥(n) = max|V (C)|, where the maximum is taken over all sets C of n cylinders of
radius 1 whose axes make acute angles of at most By with the z-axis. Fix a constant
integer parameter £ > 2 whose value depends on ¢ and will be specified later. Partition
the plane 4 into a collection W = {W), ..., W;} of & horizontal strips by lines parallel
to the x-axis, so that each strip contains direction images of at most n/£ cylinders. See
Fig. 3(b). For each pair of strips W;, W; € W, let C;; denote the set of cylinders whose
direction images lie in W; U W;. By definition,

2n
§

Next, we partition the plane into a collection H = {H;, ..., H;} of £ vertical strips by
lines paralle] to the y-axis, so that each strip contains at most n/£& direction images.
For each pair Hy, H, € H, we also bound by y(2n/£) the number of vertices in the
union of cylinders whose direction images lie in H U H;. These 2(2) < £2 subproblems

|V(Cij)|5¢( ) for 1<i<j<é.
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have accounted for all those vertices v of V(C) whose direction images A, lie in at
most two horizontal or two vertical strips, and the number of these vertices is at most
£2y(2n/£). We thus have to count the number of vertices for which A, lies in three
different horizontal strips and in three different vertical strips.

The strips in H and W divide the plane h intoaset R = {Ry, ..., Rg2} of §? rectangles.
For a rectangle R; € R let C; be the set of cylinders whose direction images lie in R;.
For a triple i, j, k, let V; j« = V(C;,C;,C) € V(C) denote the set of vertices v of
U(C; UC; U Cy) lying onthreecylindersa, b, csuchthata € C;,b € Cj,andc € Cx.Then
Y(C) = Zis <k 1Vi,jk|. In view of the preceding discussion, it suffices to bound V; ; «
for each triple i # j # k for which the rectangles R;, R;, Ry lie in different horizontal
and vertical strips, i.e., their x- and y-projections are pairwise disjoint. We show below
in Lemma 2.5 that for such a triple of rectangles |V; ;| = O(]C; UC; U Gl - n®) =
O (n**¢ /%), for any & > 0. Since there are O (&%) such triples of rectangles, we obtain
the following recurrence:

y(n) <&y (zg—n> + O(n**gY).

For any &’ > ¢, by choosing £ = &(¢’) a sufficiently large constant, one can prove that
the solution to the above recurrence is ¥ (n) = O (n>**') (see, e.g., [23]), thereby proving
Theorem 2.1.

2.3. Bounding |V\ 33| and Divergent Pairs

Let Ry, Ra, R3 be three rectangles in R whose x- and y-projections are pairwise disjoint;
see Fig. 4. Let C}, (5, C3 be the corresponding subsets of cylinders, as above. We want
to bound the size of V) 53 = V(Cy, C2, C3). We will prove the following:

Lemma 2.5. Let Ry, Ry, Rs be three rectangles as defined above, and let ¢ > 0 be an
arbitrarily small constant. Then

IVizal = O(IC; UC UGS - n®).
Definition 2.6. We call a pair of cylinders a,b € C A-divergent with respect to a
direction u (assumed to lie in S) if
min{|n}u*|, [nju*|} < A|n}nj|.
Roughly speaking, two cylinders a and b being divergent with respect to a direction
u means that the slopes of the projections of the axes of @ and b on a plane normal to

u are not “very close” o each other. The significance of divergent pairs is illustrated in
Lemma 2.8.

Lemma 2.7. There exist a direction u and three pairwise-disjoint subsets C; € Cy,
C) € Cy, C; C C3 50 that

@) V(€. G, C)L = |1 V1231/2, and
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(a) (b)

Fig.4. The two cases in the proof of Lemma 2.7: (a) the R;’s form a monotone sequence; (b) the R;’s do not
form a monotone sequence.

(i1) all pairs of cylinders in C} x Cy, C| x C3, and C, x C; are ~/17-divergent relative
tou.

Proof. Fori = 1,2, we assume that the x-projection of R; lies to the left of the x-
projection of R;.;. We say that a point p separates R; and R; if its x-coordinate separates
the x-projections of R; and R;, and its y-coordinate separates the y-projection of R; and
R;. There are two basic cases to consider (other cases can be reduced to them by reversing
the direction of the (4+y) and/or the (4-x)-axis).

Case (a): The y-projection of R; lies below that of Ri+1,fori = 1,2. SeeFig. 4(a). Let
w € D be a point that separates R) and R, and let z € D be a point that separates R, and
Rj3. The perpendicular bisector of w and z splits R; into two subpolygons (one of which
might be empty). Denote the one nearer to w by R} and the one nearer to z by R;. With
no loss of generality, we may assume that at least half of the vertices in V) 3 3 have one of
their direction images in R;. We set C; = C;, C; = C3, and C; to be the set of cylinders
whose direction images lie in R}. By construction, |V (C}, C;, C3)| = |V1,2,3]/2. We take
the direction u € S? to be the pre-image of w, i.e., the intersection point of ow with S2.

Property (ii) is proved as follows. Let a, b be cylinders such thatn}, € R; andnj € Rj.
Then clearly

injn}| > max{injw|, Inyw|},

implying that (a, b) are 1-divergent with respect to u. An identical argument implies
that all pairs in Cy x Cy are also 1-divergent. Let b, c be cylinders such thatn} € R} and
n; € Rs. Then

Injn7| > [njz| > injwi,
implying that (b, ¢) are also 1-divergent with respect to u. Hence the lemma holds for

this case.

Case (b): The y-projection of R, lies above the y-projections of Ry, which lies above the
y-projection of R3. See Fig. 4(b). Let w € D be a point that separates R, and R», and
let z € D be a point that separates R, and Rs. Let Ry be the axis-parallel rectangle whose
opposite vertices are w and z. Let d; and d, denote the lengths of the horizontal and
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vertical edges of Ry, respectively. Assume, without loss of generality, that d; > d,. If
dy > d,, then we reverse the roles of R and R; in the following analysis. Let s denote
the third vertex of Ry whose x-coordinate is that of z and whose y-coordinate is that
of w.

The perpendicular bisector of w, which is parallel to the y-axis, and s splits R; into
two subrectangles (one of which might be empty). Denote the one nearer to w by R} and
the one nearer to s by Rj. Clearly, one of the following two situations arise:

Case (b.i): At least half of the vertices in V) 3 have a direction image in R}. In this
case we take V'’ to be this subset of vertices; the direction u is the pre-image of w. The
set C] (resp. Cy, C3) consists of those cylinders whose direction images lie in R; (resp.
in Ré, R3).

Property (i) is obvious. Arguing as in case (a), all pairs of cylinders in C; x C; are
1-divergent. Let a, ¢ be cylinders such that n} € R; and n} € R3. Then

[njn?| > |njz| > |njw|,

where the last inequality follows from the easy observation that the perpendicular bisector
of wz does not intersect R;, which in turn is a consequence of the assumption d; > d,.
Hence, the pair (a, ¢) are 1-divergent with respect to w. Similarly, let b, ¢ be cylinders
such that n} € R and n} € R3. Then

jnpn}| > Ings| > injwj,

implying that (b, ¢) are also 1-divergent. Hence, the lemma holds for this subcase too.

Case (b.ii): At least half of the vertices have one of their direction images in R} . In this
case we set C; = Cy, Cj = (3, and C; to be the set of cylinders whose direction images
lie in R, and set u to be the pre-image of z. Again, property (i) is obvious. Arguing as
above, all pairs of cylinders in C; x C; and in C; x C3 are 1-divergent with respect to u.
Let a, b be cylinders such that n} € Ry and n; € Rj. Let Ry denote the reflection of Ry
about its edge ws. Suppose first that nj, lies outside Ry. Then

|nin;| > [njw| > In}s|.
On the other hand,
2inps| > Ings| + Isz| > Injz],

implying that (a, b) are 2-divergent with respect to . _
Suppose next that n} lies in Ro. Let 7 denote the midpoint of the edge of Ro opposite
to ws. Then

In’n}| > [njw| > ?"
On the other hand,

In}z] < ftz| = |[4d? + —d} <

17
@,

B
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Hence, we have |n;zj < +/17|n}n;|, implying that (a, b) are +/17-divergent with respect
tou.

This completes the proof of the lemma. O

In view of Lemma 2.7, it suffices to bound the size of V' = V(C[,(;, C3). Set
C’' = C; UC, UC;5. All the vertices of V' appear on the boundary of U (C’).

2.4. Subdivision into Prisms and the Importance of Being Divergent

Let C’ be the set of cylinders as above, and let u be a direction such that all pairs of
cylinders in C’ are +/17-divergent with respect to u. We place in R? a grid Q of infinite
square prisms whose axes are parallel to the direction u; see Fig. 5. For simplicity of
presentation, we rotate the coordinate system to make u the positive z-direction. The
prisms are thus of the form Q;; = [¢i, 1 (i + D] x [tj, 1 (j + D] x R, fori, j € Z, where
t is a sufficiently small constant. We bound the size of Vo = V' N Q foreach Q € Q
separately and then sum these quantities. Let Cyp € C’ be the set of cylinders in C’ that
intersect Q. We call a pair of cylinders a, b € Cy near inside Q if the z-projections of
aM Q@ and bN Q overlap. Let 1 be the number of pairs of cylinders in Cyp x Cy that are
V/17-divergent with respect to u and are near inside Q. We show below in Lemma 2.15
that |Vl = O(ug - nf), for any ¢ > 0. Hence,

V| = Z|VQ|=0(n‘ Zug). @1

QeQ QeQ

Lemma 2.8. If a and b are a pair of A-divergent cylinders with respect to w (which
is assumed to be the same as the z-axis), then (a, b) is near inside at most O()\2/t?)
prisms of Q.

Fig. 5. A system of prisms in direction u.
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Fig. 6. lustration of the proof of Lemma 2.8

Proof. Suppose to the contrary that there are more than ¢ 2A2 /12 prisms with the property
inthe lemma, where ¢ is a sufficiently large constant that will be specified later. Then there
are two prisms, Q and Q’, whose vertical center lines are at distanced > (CA/t)-t = A
apart and the pair (a, b) is near in both Q and Q’. Consequently, there exist four points
P.€anNQ,p,canQ,p, € bNQ,and p, € bN Q’, such that p, and p, have the
same z-coordinate, say 0, and p/, and p,, also have the same z-coordinate, say # > 0; see
Fig. 6.

We first claim that the angle § = Z(n,, np) is small. Indeed, draw two balls B, B’
of radius r = 1 + r+/2/2 about the intersection of the center line of Q with z = 0 and
about the intersection of the center line of Q' with z = h. Then the axes of @ and b cross
both balls. Translate b so that its axis touches the axis of a at some point P € B, and so
that it moves laterally no more than 2r.

The distance between any point in B and any point in B’ is at least

Vd24+h2—2r>d—2r > ) -2r.

We obtain a triangle P Z R, where Z lies on the axis of a inside B’ and R lies on the axis of
b at distance at most 3r from the center of B’. Hence we have |PZ| > d —2r > (A —2r
and |ZR| < 4r. Hence, by the sine theorem,

sin 8 _ sinZPRZ < 1
|IZRl ~  |PZ| ~|PZ|

or

|ZR| 4r 4r
< <

. ‘
M= pzISd=2 S a—2r

which can be made as small as we wish by choosing ¢ large enough.
Next we estimate |n}nj|. Using the sine theorem once again, we have

In;nj|  |nj|
sin 8 sin@’
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where 0 is the angle opposite to n;, in the triangle formed by n} and nj. By the properties
of D, we have |n}| < 6and /2 — fy < 6 < n/2+ fo. Hence sin6 > cos By = §. Thus

144r 144r
<

*n| < 36sin6 < .
ol < 368ind < G S

Since the pair (a, b) are A-divergent with respect to u, we have, without loss of generality,

144ra 144rA
n‘u*| < Ajn*n}| < < ,
el = Amaml < G S Ty

which again can be made arbitrarily small if ¢ is sufficiently large. This is easily seen to
imply that the angle y = Z(n,, u) is also small. Specifically, using the sine theorem yet
another time, we have

*aak| o1
In}u*|sin g < nw'] < 144rA’
[n| ? d—2r

siny =

where ¢ is the angle opposite to i}, in the triangle formed by n, and u*; we use here the
fact that |n}| > 1.

On the other hand, we have tany = H/V, where H (resp. V) is the horizontal
(resp. vertical) distance between P and Z. We have H > tA —2rand V < h 4 2r, so
that, for sufficiently small y (that is, for sufficiently large ¢),

. LA =2r
2 t > .
siny >tany > W or

Note that since y is small, # must be large, in fact much larger than A, say.
Combining the last two inequalities, we obtain

LA—=2r < 288rA < 288ri
h+2r —d—=2r " h=2r

which is a contradiction if { is sufficiently large. O

Hence, a pair of cylinders in C’ that are +/17-divergent with respect to u are near
inside only O(1) prisms. Putting Lemmas 2.7 and 2.8 together and using (2.1), we
obtain that

[Vias| 2|V = 0% - Z # prisms in which (a, b) is a near pair = O(|C'|? - n®).
a,beC’

This completes the proof of Lemma 2.5.

2.5. A Weaker Bound on |Vp|

Let Q = Q,; be one of the prisms in Q, and put, as above, Vo = V' N Q. The next
stretches of the analysis culminate in Lemma 2.15, which shows that |Vy| = O (i -n®),
where p ¢ is, as above, the number of pairs of cylinders in C’ x C’ that are +/17-divergent
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with respect to u and are near in Q. (Recall that we rotated the coordinate axis so
that the orientation of the (+z)-axis is u.) This is achieved in two stages. First, in this
subsection, we establish a weaker bound on | V| that does not exploit the nearness and
divergence of cylinders. Then we sharpen the analysis to obtain the above improved
bound.

The main idea in this subsection is to reduce the analysis to the problem of estimating
the complexity of a region enclosed between a lower envelope of a collection of surfaces
and an upper envelope of another collection, and then to apply the results of [3] that
yield a near-quadratic bound on the complexity of such a region.

Let M be a sufficiently large constant, whose value will be chosen below. We partition
each of the cylindrical surfaces in C into M canonical strips (parallel to the axis of the
cylinder), each having an angular span of 27w /M (in the cylindrical coordinate frame
induced by the cylinder). We say that a direction p is a good direction for a strip 7 if the
following two conditions hold:

(CH) Z(p,u) > /M, and
(C2) each line tangent to (the relative interior of) v forms an angle of at least n/M
with p.

We say that p € S? is a good direction for a vertex v incident upon three canonical
strips 7,, Tp, and 7 if it is a good direction for all three strips; see Fig. 7. Recalling that
u is the positive z-direction, it is easily checked that the set B, of bad directions for a
fixed strip 7, contained in a cylindrical surface ¢ € C, is the union B; U B;, where we
have:

e B is the union of the two caps about the north and south poles of S? of opening
angles w /M. The area of By is 4w (1 — cos(zw/M)).

e Letn; and n, be the normals to the planes tangent to ¢ at the two lines delimiting
the boundary of t. By construction, the angle between n; and n; is at most 2 /M.
The (thinner) spherical double wedge defined by the two great circles normal to
n; and n; is the set of directions of the lines tangent to 7. B, is the set of all points
on $? that lie at spherical distance at most 77 /M from this double wedge. Thus B,
is contained in a spherical band consisting of all points lying at spherical distance
at most 27/ M from a great circle on S? (namely, from the circle “bisecting” the
double wedge). The area of B; is 4 sin(2n/M).

Ta

U

Te

"/

Fig. 7. A vertex of the union incident upon three strips 7,, 1, and ., along with a good direction p.
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Fig. 8. The set of bad directions for a vertex is contained in the union of two caps and three spherical bands.

It follows that the area of B, is at most

T 2
47 | 1 — cos — in—}.
n( (o M+smM)

This implies that the set of good directions for v contains the complement of the union of
two caps with opening angles /M and of three “great bands,” as above, each of width
47/ M (see Fig. 8). Hence, the area of this set is at least

2
4 [1—(1—cos%)—3sin—1§].

By choosing M sufficiently large, the area of the set of good directions can be made
close to the area of the entire sphere. Moreover, it is easy to verify that this set contains
a spherical cap of some constant opening angle, say, 8, if M is sufficiently large (see
Fig. 8).

Let Z be a set of O(1/82) points on S?, with the property that any cap on S? of
opening angle 8 contains at least one of these points. For each p € Z and a prism Q, we
define Vp(p) to be the subset of all vertices in Vg for which p is a good direction. The
preceding analysis implies that each vertex of V has at least one good direction in Z.

Lemma 2.9. Suppose the horizontal side-length t of a prism Q is less than
V2sinX(w/M). Let p € Z, and let v be any vertex in Vo, incident upon strips tg, Tp, T,
for which p is a good direction. Then any line parallel to p intersects 1, in at most one
point. Moreover, if we go from any point w € 1, N\ Q inside the cylinder a bounded by
1, in the direction parallel 1o p, we reach 3 Q before exiting a. Similar properties hold
Jor t, and 7.

Proof. If 1, were not monotone in the above sense, it would have to contain a point v
so that a line parallel to p is tangent to 1, at v, which is impossible by the definition of a
good direction. As to the second assertion, let w be a point in 7, N Q, and let w’ be the
other intersection between 8a and the line passing through w and parallel to p. It is easily
verified that |ww’| is minimized (relative to the constraints on good directions) when
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ww' is orthogonal to the axis of a and forms an angle /M with the tangent plane to a
at w. In this case Jww’| = 2 sin(sr/M). On the other hand, since ww’ forms an angle of
at least w /M with the z-direction (that is, with u), it follows that the horizontal distance
between w and w’ is at least jww'| sin(r/M) > 2sin®(r/M). If ¢, the horizontal side
length of prisms in Q, is chosen such that ¢ < V2 sin? (w/M), then w' does not lie in Q,
which completes the proof of the lemma. O

Remark 2.10.

(i) Thesecond part of the lemma crucially uses the fact that the cylinders are infinitely
long. Otherwise we may exit a (through its base) before leaving the prism Q. See
also Remark 2.16 below.

(ii) The proof also uses the fact that the radius of the cylinder is 1. It, however,
works as long as one can argue that the length of the segment ww’ is bounded
from below by a constant. For example, the lemma holds even if the radii of the
cylinders are different but vary between « and 1, where @ < 1 is a constant; or if
each cylinder is obtained by sweeping a smooth convex planar shape of diameter
1 and of bounded curvature normal to a line in R>.

For a prism Q € Q and a direction p € Z, let Tp(p) denote the set of canonical
strips T that cross Q and contain at least one vertex in Vg (p). In particular, p is a good
direction for any T € Tp(p). Let ng(p) = [Tp(p)|. We clip each strip in Ty (p) within
Q. We partition Tp(p) into two subsets Ta' (p) and T, (p) as follows. A (clipped) strip
T contained in a cylinder ¢ belongs to Ta‘ (p) (resp. T, (p)) if for any point w € t, the
point w + ap lies in the exterior (resp. interior) of ¢ for sufficiently small positive values
of «. We define the p-upper envelope of TQ+ (p) to be the set of points w on the strips in
Tg (p) so that a ray from w in the (+p)-direction does not intersect any other clipped
strip in Ta’ (p). Similarly, we define the p-lower envelope of T, (p).

Let 7 be a strip in Ta' (p). Lemma 2.9 implies that any line parallel to p that passes
through a point in T N @ meets the interior of the cylinder ¢ in an interval whose other
endpoint lies outside Q; the same property applies when t € T, (p). Let v be a vertex
in Vp(p). The preceding analysis implies that v is a vertex of the region Ry enclosed
between the p-upper envelope of the surfaces in TQ+ (p) and the p-lower envelope of
the surfaces in T, (p). By the result of Agarwal et al. [3], the number of vertices in Rg
is O(ng(p)?*®), for any & > 0, with the constant of proportionality depending on &.
Repeating this step for all directions p € Z, we obtain the following result.

Lemma 2.11. Let Q be a prism, and let Cy be any set of cylinders intersecting Q.
Then the number of vertices of the union of (the interiors of the cylinders in) Cp lying
inside Q is O(|Cp|***), forany e > 0.

In what follows we will need the following stronger version of the above lemma.

Lemma 2.12. Let Q be a prism, let A be any set of cylinders intersecting Q, and let
By be a subset of Ay of size b. Then the number of vertices of the union of (the interiors
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of the cylinders in) A that lie inside Q and that are incident upon at least two surfaces
of Bg is O(a - b'*%), forany ¢ > 0.

Proof. Partition Ap into £ = [a/b] subsets Ay, ..., Ag, each of size at most b. Each
vertex of the union of A that lies in Q and is incident upon two surfaces of By is a
vertex of the union of Bp U A;, for some 1 < i < £. By Lemma 2.11, the number of
vertices in the union of By U A; is O (b**%). Hence, the total number of such vertices is
O((a/b) - b***) = O(ab'**), forany ¢ > 0. a

Remark 2.13. The technique used in the proof of the above lemma applies to the
general setup in {3}, which yields the following enhancement of the analysis of that
paper: Let F and G be two sets of n bivariate functions, satisfying the assumptions stated
in [3], let M be the “sandwich” region lying between the upper envelope of F and the
lower envelope of G, and let H € FUG be a subset of size m. Then the number of vertices
of M that are incident upon the graphs of at least two functions in H is O (nm!*+®), for
any ¢ > 0.

2.6. A Stronger Bound on |Vg|

One might interpret Lemma 2.11 as bounding the size of Vg by O (i - n®), where jig
is the number of pairs of cylinders in C’ that both intersect Q. Unfortunately, fip is too
large, and ), fip may be infinite. There are two “weaknesses” in using fio: it does
not take into account divergence and nearness of pairs of cylinders. Both properties are
essential for our analysis, as suggested by Lemma 2.8. The purpose of this subsection
is to obtain an improved bound on |Vp| using these properties. This is achieved by
combining Lemma 2.12 with a recursive divide-and-conquer analysis that allows us to
consider only near (and divergent) pairs of cylinders. Recall that we are assuming that u
is the z-axis and that Q = Q;;.

For a cylinder a € Cp, let Z, denote the z-projection of a N Q. Set Zp ={Z, | a €
Cp}. Ateach recursive step we have abox IT = [#i, ¢ (i + 1)1 x [¢j, t (j + D] x [z1, 22],
for some z;, z2 € R (a “slice” of Q). Let Cnp € Cy be the set of cylinders that intersect
I1. A cylinder a € Cyy is called long in I if a intersects both the top and bottom faces of
I (i.e., [z1, 22] € Z,), otherwise it is called shortin [1. Let L, Sp € Cpy denote the sets
of long and short cylinders in 1, respectively. Let Ep be the set of those endpoints of
intervals in £, which lie in the open interval (z;, z»). By the general position assumption
and by shifting slightly the grid of prisms, we may assume that all endpoints in Ep are
distinct. We have |Spi < |Enl < 2|8n|. Let V(Ln, Sn) € Vp denote the subset of
vertices of V that lie in IT and that are incident upon at least two (short) cylinders of
Sp. Initially, 1 = Q, Lo =8, Sp = Cp, V(Lp, Sp) = Vp. The recursive process will
bound the sizes of the subsets V (L, Sn).

If Sp =3, |V(Ln, Sp)| = 0. Otherwise, we partition IT into two subprisms IT,, T,
by a horizontal plane so that the relative interior of the z-projections of each of the two
subprisms contains at most half of the endpoints of En. Set Ly = Lp,, Ly = Ln,, $1 =
Sn,»and S, = Sp,. Fori = 1,2, let §; € L; be the set of cylinders that are long in
I1; but short in I1. Note that S; U S/ is the set of all cylinders of Sy that meet I1;. Let
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v € V(Ln, Sn) be a vertex lying in I1;. If v is incident upon at least two cylinders of
S1, then v € V(Ly, ;). Otherwise, it is incident upon at most one cylinder of S, at
most one cylinder of L,\S], and at least one cylinder of Si. Let V| denote the set of
such vertices; V; is defined analogously for IT5. It suffices to bound the sizes of V|, V.
We define £ € En x Cpy to be a set of pairs as follows. A pair (p, b) € Zp, where
p is an endpoint of an interval Z, € Z, if the cylinders a and b satisfy the following
conditions: (i) a, b € Cpy, (ii) they are «/ﬁ-divergent relative to u, and (iii) they are near
in Q. Set o = |Zp|. Since each +/17-divergent pair of cylinders that is near inside Q
contributes at most two pairs to L, we have op < 2up, where g is, as above, the
number of +/17-divergent pairs in Cp that are near in Q.

Lemma 2.14. |V|| 4+ |V,] = O(orn - n°).

Proof. Letv € V] be a vertex lying on the boundary of three cylinders a, b, c. By
definition, up to a permutation of {a, b, c}, wehavea € L}, b € Sj,andc € S; U S]. On
the other hand, by definition of V,p, some permutation of {a, b, c} appears in C] x C; x C;
(where Cj, C;, and C; are as in Lemma 2.7). For specificity, we bound the size of
VX1, X2, X3)N Vll, where X; = L, ﬂC;, X, = S; ﬂCé, and X3 = (5 US;) ﬂCé The
other vertices of V| can be counted in a similar manner.

Suppose, without loss of generality, that |X;| > |X,| > |X3|. Then, applying
Lemma 2.12 with Ay = X, U X, U X3 and Bp = X, U X3, we obtain that the number of
vertices of V (X, X,, X3) that lie in IT, is at most O(n®|X;| - |X|). Hence, in general,
the number of such vertices is at most O(n® - Z,.# 1X;11X;|). Leta € X;,b € X;, for
i # j. Then, by Lemma 2.7, (a, b) is +/17-divergent pair. We charge (a, b) to a pair in
2. By examining all possible combinations, it suffices to consider only two cases: (i)
a € L)\Sjandb € S{US;; (ii)a € S| and b € §]US,. In case (i), one of the endpoints p
of Z, liesin (21, 22) and p € Z, (since a is long in 1), so (a, b) is a «/ﬁ-divergem pair
that is near in Q. In case (ii), since a is long in Iy, Z, N Z; # &. Moreover, a and b are
both shortin I, so at least one of the endpoints, say p, of Z,NZ, liesin (23, z2).If pisan
endpoint of Z,, then (p, b) € Tp; otherwise, (p, a) € . Hence, in both cases (a, b)
can be charged to a unique pair of Xy, thereby implying that 3, £ [X;]]1X;l = O(on).
This completes the proof of Lemma 2.14. O

Let ¢(m, 0) = max|V (Ln, Sn)|, where the maximum is taken over all pairs Ly, Sp
such that |En| = m and on = 0. Then we obtain the following recurrence:

_ 0 if 6=0,
P =\pom/2,00) + 0m/2, 00 + 0on) i o > 0.

Since En, N En, =9, 61 + 02 < o. The solution to the above recurrence is
p(m,o0) = O(ologm-n®) = O(o . nf)
for any ¢’ > &. Hence, we obtain the following.

Lemma 2.15. Let Q be a prism in Q. If there are wg pairs of cylinders in Cg that are
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v/ 17-divergent with respect to u and are near inside Q, then |Vp| = O(ug - n®), for
anye > 0.

This completes the proof of Theorem 2.1.

Remark 2.16.

(i) The only place where we need the fact that the cylinders are infinitely long is in
Lemma 2.9. The rest of the proof works for bounded cylinders as well. However,
if we take a set of n bounded cylinders, each of radius 1 and of sufficiently small
height, the complexity of their union can be $2(n3).

(i1) The current proof does not extend to cylinders with different radii because, as
noted in Remark 2.10, Lemma 2.9 uses the fact that the radius of each of the
cylinders is 1. However, the above proof, combined with the limited flexibility of
Lemma 2.9 (as noted in Remark 2.10) gives an O (n***) bound on the complexity
of the union of n cylinders if the ratio of the largest to the smallest radii is bounded
by a constant. See also Section 5.

3. The Case of Cigars

We now extend Theorem 2.1 to the case of segments. Let § = {s;, ..., 5,} now denote
a set of n segments in R3. For each i, put K; = K, ; each K; is referred to as a cigar;
see Fig. 9. Let ¢; denote the cylindrical portion of 9K;, and let ori+, o;” denote the
two hemispherical portions of 9K;; the whole boundary is thus ¢; U or,.+ Uo; . Let
K ={K,...,Ky,}and U = |Ji_, K;. Let C = {cy, ..., cn} denote the collection of
the 9K;’s, let T = {01+ ,07 ,...,0;,0,} denote the collection of the corresponding
hemispherical portions, and let B denote the set of 2n balls whose boundaries contain
the hemispheres in .

Again let V denote the set of vertices of U, namely, intersection points of triples of
boundaries of regions in K that lie on U . We assume general position of the segments in

Fig. 9. The union of cigars, the Minkowski sums of line segments and a ball.
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(a) (b) {c) ()

Fig. 10. Different types of vertices: (a) ccc-vertex, (b) ccs-vertex, (c) css-vertex, and (d) sss-vertex.

S, which now means that every pair of them is skew, that no two K;’s are tangent to each
other, that no curve of intersection of the boundaries of any two K;’s is tangent to a third
one, that no triple intersection of the boundaries of the K;’s lie on any circle separating
the cylindrical and spherical portions of one of them, and that no four boundaries meet
at a point. Each vertex of V is an intersection point of three cylindrical surfaces, of two
cylindrical surfaces and one spherical surface, of a cylindrical surface and two spherical
surfaces, or of three spherical surfaces; see Fig. 10. We denote these vertices mnemon-
ically as ccc-, ccs-, css-, and sss-vertices, respectively. We denote the corresponding
subsets of V as Ve, Vees, Vess, and Vi, We bound each of them separately.

3.1. Handling Easy Cases

Any sss-vertex v of the union is also a vertex of the union of the 2n balls in B. It is well
known that the complexity of the union of m balls in R* is O (m?) (this follows trivially
from [20]), so the number of sss-vertices of U is O (n?).

Lemma 3.1. The number of css-vertices of U is O(n**%), for any & > 0.

Proof. We place in R? the same grid Q of infinite square prisms, as in the previous
section, whose axes are parallel to the z-axis. That is,

Q={ti,t(+DIx[tj,t(G+DIx R, jeZ),

where ¢ is a sufficiently small constant, as above. For Q € Q,letCyp € C,Zy € T bethe
set of cylindrical and spherical surfaces that intersect Q. Putmgy = |Zplandng = |Cp|.
Let M be the same constant as in Section 2. We partition each of the cylindrical surfaces
in Cp into M canonical strips as before, and we cover each sphere in £y by O(M?)
spherical caps, each of opening angles at most 7 /M, so that no point lies in more than
a constant number of caps. We define a good direction for a spherical cap in the same
manner as we did for a strip (see (C1) and (C2) in Section 2.5). The set of bad directions
for such a spherical cap t is again the union of B; U B, where B is the same as earlier,
and B, is defined as follows. Let B, be the great circle on S? parallel to the tangent plane
of the cap t at its center. We define B; to be the spherical band consisting of all points
at spherical distance at most 2w /M from B;.
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Following the same argument as in Section 2.5, we can again choose a set Z of O(1)
directions so that at least one direction in Z is good for every vertex of Vo = V., N Q.
It is now easy to check that both Lemmas 2.9 and 2.11 continue to hold in the extended
case. That is, we can decompose the set of cylindrical strips and spherical caps into
u = O(1) pairs of subsets (A4, By), ..., (A,, B,), where each A;, B; is a subset of strips
and/or caps, so that each vertex of V appears in the sandwich region lying between
the upper envelope of A; and the lower envelope of B;, for some i < wu. This implies
that |Vp| = O((mg + nQ)2+5). However, we want to count the number of css-vertices.
The argument in the proof of Lemma 2.12 implies that the number of css-vertices in
Qis O(m IQ“ (mg + ng)). Summing over all prisms, the total number of css-vertices

is Yo O(mb”(mg + ng)). Since each hemisphere in T intersects O(1/¢%) = O(1)
prisms, the total number of css-vertices is O(m!*¢(m 4 n)) = 0(n**®), as claimed. O

It thus suffices to bound the number of ccc- and ccs-vertices of U. Using the same
argument as in Lemma 2.3, we can again prove that we can choose a subset ' C C
and a direction py so that the axes of cylinders in C’ form an acute angle of at most
Bo = cos™! (%) with pp and the number of ccc- and ccs-vertices in the union of C' U X is
at least half of the number of such vertices in U. We rotate the coordinate system so that
po becomes the (+z)-axis and remove from C all the cylinders whose axes have an acute
angle larger than B, with the (4-z)-axis. When such a cylinder C; is removed, we retain
the two corresponding balls o;*, 0;”. We use C to denote the remaining set of cylindrical
surfaces.

As mentioned in Remark 2.16, only Lemma 2.9 uses the fact that the cylinders in C
are unbounded. Nevertheless, the lemma still holds because of the half-balls attached at
the endpoints of the segments in S. In other words, a line parallel to a good direction, as
in the proof of Lemma 2.9, will exit the whole cigar after exiting Q. Hence, the number
of ccc-vertices in U is O(n**®), for any £ > 0.

3.2. Bounding the Number of ccs-Vertices

We next prove that the number of ccs-vertices is also O (n>**). The proof is very similar
to the one described in the previous section, but is considerably simpler, so we mainly
focus on the modifications needed to make the proof work for this case.

Let C be a set of n bounded cylinders of unit radius and let £ be a set of m unit-radius
spheres such that the axes of C make an acute angle of at most B, with the z-axis and the
unit spheres centered at the endpoints of the axis of any cylinder in C are contained in Z.
Let V = V(C, T) denote the set of ccs-vertices on the boundary of the union of C U Z.
Set ¢(n, m) = max|V (C, ¥)|, where the maximum is taken over all sets of n bounded
cylinders and over all sets of m spheres that satisfy the axes and containment conditions.
We will derive a recurrence for ¢(n, m) similar to the one in the previous section.

Fix a constant integer parameter £ > 2, whose value depends on £ and will be specified
later. Partition the plane h into a collection W = {Wi, ..., W;} of £ horizontal strips
by lines parallel to the x-axis so that each strip contains direction images of at most
n/€ cylinders. For each strip W; € W, let C; denote the set of cylinders whose direction
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images lie in W;. By construction, |V (C;, )| < ¢(n/&, m). Next, we partition the plane
into a collection H = {H), ..., H;} of § vertical strips by lines parallel to the y-axis, so
that each strip contains at most n/¢ direction images. For each strip H, € H, we also
bound by ¢(n/&, m) the number of ccs-vertices v so that the direction images of the two
cylindrical surfaces containing v lie in H;. These 2£ subproblems account for all those
vertices v of V(C, ) that lie on two cylinders whose direction images lie in at most
one horizontal or one vertical strip. Let R be the set of £2 rectangles induced by H and
W. For a rectangle R; € R, let C; be the set of cylinders whose direction images lie in
R;.Forapairi # j,let V;; = V((;,C;, X) C V(C, ) denote the set of vertices v of
U(Ci UC; U ) lying on two cylinders a, b such thata € C; and b € C;.

Lemma 3.2. Let Ry, R; be two rectangles in R whose x- and y-projections are disjoint,
then |Vi2| = O((n/€)'**m).

Before proving this lemma, we bound the number of the ccs-vertices in U using
the lemma. Since there are O (&%) such pairs of rectangles, we obtain the following
recurrence:

p(n,m) <29 <§ m) + 0" E3m).

Forany ¢’ > ¢, by choosing & = £(¢’) a sufficiently large constant, one can prove that the
solution to the above recurrence is ¢(n, m) = O (n'+¢'m) (see, e.g., [23]). This implies
that the number of ccs-vertices in U is O (n?*¢).

We now prove Lemma 3.2. Let w € h be a point whose x- and y-coordinates separate,
respectively, the x-ranges and the y-ranges of R; and R, and let u be the pre-image of
w. Then, arguing as in Case (a) of the proof of Lemma 2.7, it follows that all pairs of
cylinders in C; x C, are 1-divergent with respect to u.

In order to bound the size of V(C;, Cs, L), we place in R* the grid Q of infinite
square prisms, as defined above. We bound the size of Vp = V(C;, C2, ) N Q for each
QO € Q separately and then sum these quantities over all prisms Q. Let 0 € Q be
fixed, and let CS ) c G, C(Qz) C (s, be the subsets of these sets of cylinders that intersect
0, and let £y € X be the set of spheres that intersect Q; set np = IC(QI) U Cg)l and
mg = |Zp|. Let vp be the number of pairs of cylinders in C(Ql) X Cg) that are near
inside Q, where nearness is defined as in Section 2 (all these pairs are also 1-divergent
with respect to u). The proof of Lemma 2.11 implies that |Vg| = O((ng + mQ)Z”)
for any ¢ > 0. Since we are counting only the number of ccs-vertices, Lemma 2.12
imples that |Vp| = O(n IQ“ (no + mg)). Finally, using the same recursive argument as
in Section 2.6, we can show that |Vp| = O((vp +ngmg) - "22)’ for any £ > 0. Hence,

Vial < > Vol = ) O((vg + npmg) - ny).
QeQ 0

By Lemma 2.8, 3, vg = O((n/)***). Since a sphere in X intersects only o =
O(1) prisms, we have ZQ"’Q = O(m). Finally, m > n > n/§, therefore |V, | =
O((n/€)'**m). This completes the proof of Lemma 3.2.
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Putting everything together we conclude the following.

Theorem 3.3. Let S be a set of n segments in R? and let B be a ball. The complexity of
the union of the Minkowski sums of B and the segments in S is O (n**¢), for any € > 0.

A result by Clarkson and Shor [14] implies the following corollary which will be
useful in the analysis of the next section.

Corollary 3.4. Let S be a set of n segments inR> and let Bbeaball. Set K = {s ® B |
s € S}. The number of vertices of the arrangement of K that lie in the interior of ar most
k regions of K is O (n***k!~®).

4. The Case of Kreplach

Armed with the bound in Theorem 3.3, we now turn to the general case in which S consists
of n pairwise disjoint triangles. Foreach s € S, let K; = s @ By. Let K = {K; | s € S}
and U = |J,c5 K. We also define K© = {K, | eis an edge of a triangle in S). Let T
denote the set of triangular faces of the kreplach in X, let C be the set of cylindrical
surfaces of cigars in K., and let B be the set of balls bounding the spherical surfaces
of K.. A point lying in k regions of K lies in at most 3k regions of K©, Let A(K)
(resp. A(K®)) be the arrangement defined by the boundary surfaces of the regions of
K (resp. K©), and define the level of a point p in R? in either arrangement to be the
number of regions K of the arrangement that contain p in their interior. The closure
of the complement of U is the set of points of level 0 in .4(K). The main result of this
section is the following.

Theorem 4.1. Let S be a set of n pairwise disjoint triangles in R3, and let B be a ball.
The combinatorial complexity of the union of the Minkowski sums of B with the triangles
of § is O(n**®), forany & > 0.

As in the previous sections, it suffices to bound the number of vertices of U. Moreover,
we can assume general position of the triangles in S, which now means that no pair
of triangles in § are parallel or intersect; that no two edges of distinct triangles in §
are parallel or coplanar; that no two K;’s are tangent to each other; that no curve of
intersection of the boundaries of any two K;’s is tangent to a third one; that no triple
intersection of the boundaries of the K;’s lie on any circle or segment separating the
triangular, cylindrical and spherical portions of one of them; and that no four boundaries
meet at a point. Using a standard argument based on a slight perturbation of the triangles
(as in [24]), one can show that this assumption involves no loss of generality.

4.1. Preliminaries and Overview

We use the shorthand notation of referring to a triangular, cylindrical, or spherical surface
as az-surface, c-surface, and s-surface, respectively. We also use the notation n-surface to
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refer to a (“nontriangle”) surface that is either a cylinder or a sphere. As in the preceding
section, we call a vertex of A(K) an xyz-vertex, for x, y, z € {¢, ¢, 5, n}, if it is incident
upon an x-surface, a y-surface, and a z-surface.

Our analysis relies crucially on the following two lemmas. The first lemma, known
as the pseudosphere property, is an extension of a two-dimensional result by Kedem et
al. [20].

Lemma 4.2 (Pseudosphere Property). Let Ay, Ay be two disjoint compact, convex
bodies in R, and let B be another compact, convex body with nonempty interior.
Let K, = A, ® B, K, = A, ® B be the Minkowski sums of A; and A, with B.
Then the intersection 8K, N d K3 is connected.

This lemma was originally obtained by Janos Pach in the early 1980s. Since this result
has never been published, we present in an appendix the proof for the special case in
which A, and A; are triangles and B is a ball (i.e., K; and K, are kreplach). Recently,
another proof, for the polyhedral case, has been given by Hernandez-Barrera et al. [19].

Next, we prove a simple property of kreplach that is used repeatedly in our analysis.
We note that this is the only place where the disjointness of the triangles of § is used in
the analysis.

Lemmad4.3. Let s be a triangle in S, and let a, a’ be the two triangular portions of
0K;. Let t be another triangle in S, and let y be an arc along 0K, that is contained in
K, and connects a point v € a to a point V' € a'. Then y must intersect a cylinder or a
sphere induced by an edge or a vertex of s; in other words, the distance of y from ds is
smaller than 1. (See Fig. 11.)

Proof. (We are indebted to Boris Aronov for the following simplification of an earlier
more complicated proof.) Suppose to the contrary that this is not the case. For simplicity,
assume that s lies in the xy-plane, and that a, @’ lie in the planes z = 1 and z = —1,
respectively. For each point u € y, let Y (4) denote the point in ¢ closest to u (obviously,
lu — ¥(u)|| = 1). It is easily seen that y is continuous. Let § = {Y(u) |u € y} C ¢

(a) (b) (c)

Fig. 11. Ilustration to the proof of Lemma 4.3: (a) triangles s and ¢ and the image & of y on z; (b) K; and
the path y lying on 3 K/; and (c) the cylindrical and spherical surfaces corresponding to the edges and vertices
of s and an intersection of y with a cylindrical surface of K.
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denote the (connected) image of y; see Fig. 11(a). Put w = ¥ (v) and w’ = ¥ (V).
Clearly, w lies in the halfspace z > 0 and w’ in the halfspace z < 0. Since w, w’ € 8
and § is connected, 8 must intersect the plane z = 0. Hence, there exists # € y such
that p = ¢ (u) € t N {z = 0}. Since s and ¢ are disjoint, p ¢ s. Let g be the vertical
projection of u on the plane z = 0. If ¢ ¢ s, i.e., u does not lie vertically above s, then u
lies inside K., for one of the edges e € s, which implies that the path y{v, 1] intersects
dK,, as claimed. So assume that g € int(s). Then pg must cross the boundary of s at
some point b. Since |ug| < 1 and |up| = 1, it follows that jub| < 1, which establishes
the lemma. O

Remark 4.4. The above proof relies on the fact that s is planar, but it does not use the
fact that s is polygonal. The proof works as long as § is a family of pairwise-disjoint
convex planar objects, e.g., a family of pairwise-disjoint disks.

We derive a recurrence similar to the ones used in the analysis of the complexity of
lower envelopes and other substructures in arrangements (see, e.g., [24] for details), but
we use a simple enhancement of it, as follows. Let x denote the (constant) maximum
possible number of intersections between any three boundary surfaces of regions in X,
For three triangles a, b, ¢ € S, let v be a vertex incident upon the boundaries of three
regions K,, K, K. Let N denote the network formed by the vertices and edges (i.e.,
1-skeleton) of K. = K, N K N K. By Lemma 4.2, any pair of boundaries 9K, and
3K, intersect in a connected curve, which implies that  is connected. Letm < x be the
number of vertices in N. Let N, be the set of vertices in N, including v, that do not lie
in the interior of any krepl and that can be reached from v along the edges of N without
intersecting any other krepl. We define the index of v, denoted ind(v), to be m — |N,|.
ind(v) = m is equivalent to v ¢ 3U; ind(v) = m — 1 is equivalent to v € 9U but
each of the three edges of K, adjacent to v is intersected by at least one other region;
ind(v) = 0is equivalent to the entire network N not being intersected by any other krepl.
For 0 < j < m, we call a vertex v of index j a frontier vertex if an edge of N adjacent
to v crosses the boundary of a krepl; by definition, if v is a vertex of index 0 < j < m,
then N, contains at least one frontier vertex. If we remove some of the triangles from
S, excluding the three whose expansion boundaries are incident upon v, the index of v
can only decrease or remain unchanged. Note that the notion of an index used here is
different from the one used in the previous works (as presented in {24]).

Let FY(S) denote the number of vertices of .4 of index at most j that lie on U, and
let

F(j)(n) — g‘ﬁx F(j)(S).

Let F(S) = F&X=D(S) denote the overall number of vertices of U ; set

Fn)= lrgllg F(S).

We now derive the recurrence for F’(n), for j > 0. For j = 0 we need a special
analysis of the structure of the sets K., Which lies at the heart of our proof.

We choose some threshold parameter § = &; that we will fix later. Let v be a vertex of
index j > 0, lying on the boundaries of K,, K;, and K. If v is not a frontier vertex, we
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charge v to a frontier vertex of N, ; each frontier vertex is charged at most x times. If visa
frontier vertex, then let e be an edge of K. adjacent to v that is crossed by the boundary
of another krepl K. If e is crossed by at least & other boundary surfaces, we charge
v (and the nonfrontier vertices charged to v) to the first & vertices of .A encountered
along e. These vertices are at level at most £ in A(K) and each can be charged this way
only O(1) times. Hence, applying the Clarkson—Shor probabilistic analysis technique
[14] and arguing as in earlier proofs (see [24]), the number of vertices v at level at most
£ is O(£2F(n/£)). Otherwise, if we remove the at most £ triangles whose expansion
boundaries meet e (but retain a, b, and ¢), then the index of v decreases by at least one.
Hence, applying again the Clarkson—Shor technique, the number of vertices v of this
kind is O (E3FYU=D(n/¢)).
We thus obtain the following recurrences, for j = 1,..., x — 1:

o(or(E)esr (@) e

We next derive a recurrence for F©@(n).

Lemma 4.5. Let F"(n) be the maximum number of tnn-vertices of index 0 on the
union, maximized over all sets of n pairwise-disjoint triangles. Then, for any parameters
&o, o, and € > 0, we have

F(O)(n) — O(Sg—sn2+5) +0 (Egp (i) + ESF(tnn) (f_)) ,
&o o

4.2)
F(rnn)(n) = 0({3—sn2+e) +0 (C(?F ({i)) )
0

Following an argument similar to the one in [23], one can show that the combined
solution of the recurrences (4.1) and (4.2) satisfies F(n) = O(n?>*?), for any ¢ > 0. In
the remainder of the section we prove the above lemma.

4.2. Bounding F©(n)

Let v be a vertex of index O lying on three kreplach K,, K3, K. Then all vertices of K .
lie on 0U and none of the edges of K, meets any other kreplach. We refer to such a
vertex v as a free vertex and to such a K, as a free triple intersection. We charge all free
vertices of K5 to some specific representative vertex on K5, and count the number of
representative vertices. This counting is done in several stages, depending on the type of
representative vertices. The overall analysis will lead to the recurrences (4.2).

Handling Easy Cases. The definition of a free triple intersection K, only implies
that its edges do not intersect the other kreplach, but it still allows the 2-faces of K .
to meet other regions. If a 2-face f of K, lying, say, on 3K, intersects another krepl
K, but no edge of K, intersects K, then a whole connected component y of the
intersection curve 0K, N 9K, lies entirely in f. Lemma 4.2 implies that 3K, N 3K,
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is connected, therefore y = 8K, N 0K,;. We charge f to y. Hence, the number of
free triple intersections that intersect other kreplach is only O(n?). We can thus as-
sume that the entire K ;. does not intersect any krepl. (It is easily seen that no K,
can be fully contained in the interior of K,p..) If any of the edges of K, has a tran-
sition point, namely, a point on a seam of a -, ¢- or s-surface of a krepl, then we
can charge K, to that transition point. Since there are only O (n?) transition points,
the number of such free triple intersections is also O (n?). This also implies that there
are O(n?) free triple intersections K, that contain rfz-vertices. Indeed, let v be a
trt-vertex incident upon three triangular faces of K. Since v is the only intersec-
tion point of the corresponding three triangles, at least one of the edges of K. adja-
cent to v contains a transition point, thereby implying that there are O(n?) such triple
intersections.

Next, if K ;5 has an nnn-vertex v (a vertex that does not lie on any displaced triangle),
we choose v as its representative vertex; v is also a vertex of the union of K©. By
Theorem 3.3, the number of such vertices is O (n?*®), for any ¢ > 0. Suppose next
that K. has a tss-vertex. Let @’ be a triangular face of K,. Since every tss-vertex of
U lying on a’ is a vertex of the union of a set of at most 3n disks, within the plane
containing a’, the number of such vertices is O(n) [20]. Hence, there are O (n?*¢) free
triple intersections that contain an nnn- or a tss-vertex.

In view of the above discussion, we can thus assume that each vertex of K, lies on
at least one triangular face, that K, has no #1¢- or rss-vertex, that K,y is disjoint from
any other krepl, and that none of the edges of K. contains a transition point. Then all
vertices of K, are tcn- or trn-vertices. We call such triple intersections interesting. We
call a vertex interesting if it is a vertex of an interesting triple intersection.

The rest of the proof, which bounds the number of interesting free triple intersections,
consists of two parts. The first part bounds the number of interesting triple intersections
that contain at least one tcn-vertex. We show that the number of interesting rcs-vertices is
proportional to the number of certain degree-2 faces, called bubbles, in the arrangement
of K and K©, Following an approach similar to the one used in [17], we obtain a
recurrence that bounds the number of these bubbles. The same recurrence can be derived
to bound the number of interesting zcc-vertices. The second part of the proof bounds
the number of interesting triple intersections that contain only r¢n-vertices. Roughly
speaking, we choose a parameter & and charge each rzn-vertex either to & £n-vertices
of level at most £ or to one 7cn-vertex of level at most £.

4.3. Bounding the Number of Interesting tcn-Vertices

We derive a recurrence for the number of interesting ¢cs-vertices. Let v be a zcs-vertex
lying on some K. Suppose v lies on the r-surface of the triangle a, and let e and
p be the original edge (say of b) and vertex (of c) whose expanded cylinder and ball,
respectively, contain v on their boundaries. We replace b by e and ¢ by p and consider the
triple intersection K. This set is contained in Kp but is otherwise free of intersections
with any other region K, (because K, avoids all these regions). We call v a regular
tcs-vertex if all vertices of K,,, lie on one of the triangular faces a’ of K, and on the
cylindrical surface of K. Otherwise, it is called irregular.



672 P. K. Agarwal and M. Sharir

Lemma 4.6. There are O(n***) irregular vertices on interesting triple intersections.

Proof. Ifaninteresting K., contains an irregular vertex, then either it contains an nnn-
vertex, or one of the edges of K., contains a transition point, or the vertices of K., lie
on two distinct triangular faces of one of the kreplach. By the previous discussion, there
are O (n®**) triple intersections of the first two types.

Suppose there exist two vertices of K., that lie on two distinct triangular faces of
K,. Since y = 8K, N 3K, is connected (as already noted, this is a consequence of
Lemma 4.2, but can also be verified explicitly), it follows that there is a portion of y
that lies on 8 K., and connects between two points that lie in the two displaced copies
of a. By Lemma 4.3, this portion of y must intersect one of the expanded edges K, of
a, at a ccs- or css-vertex that lies on the union of K@, The number of such vertices is
O (n?*¢). Hence, there are O (n?*®) irregular vertices. O

It thus suffices to bound the number of regular ¢cs-vertices.

Bounding the Number of Regular tcs-Vertices. Let v be a regular vertex on K,
i.e., all vertices of K,,, lie on a displaced copy a’ of a, on the cylindrical surface C,
of K., and on the sphere 3K,. As we follow the boundary of R = @’ N C, N 3K,
from v, we encounter only those vertices at which the intersection ellipse of @’ and
the cylindrical surface C, crosses the intersection circle of @’ and 3K, implying that
R has either two or four vertices. Since all vertices of K,,, lie on @', it follows that
K,.p has only two or four vertices. We first consider the case in which K, has exactly
four vertices, all lying on the triangle a’. We consider 8K, as a spherical map, and
apply to it Euler’s formula, as follows. The map has V = 4 vertices and each vertex
is of degree 3. Moreover, as is easily seen, each face of the map has even degree,
namely, either 2 or 4. Suppose there are E edges, F> faces of degree 2, and Fy faces
of degree 4. Since each vertex has degree 3, we have E = 6. Then Euler’s formula
yields

VA F+F,=E+2 or F,+F;=4.

We also have 2E = 2F, +4F,, or F; +2F, = 6, thereby implying that F, = F3 = 2.1t
is easily verified that K, contributes to 3K, one face of degree 4 (on a’), that another
surface contributes another face of degree 4, and that the third surface contributes two
faces of degree 2. See Fig. 12. On the other hand, if V = 2,then E = 3,and F, + F4 = 3.
Moreover, 2F; + 4F, = 6, which implies that F; = 0 and F, = 3. That is, each of a’,
K., and K, contributes a 2-face to K.

Fig. 12. An example of a regular tcs-vertex.



Pipes, Cigars, and Kreplach 673

Lemma 4.7. For any parameter £ > 1, there are O(§*F (n/€) + £3°n?*®) regular
tcs-vertices v on free interesting Kg,,’s, such that

(i) either K., has two vertices, or
(1) Kgep has four vertices and its two degree-2 faces lie on 0 K,.

Proof. As defined earlier, let C be the set of cylindrical surfaces of the 3K, s, where e
is an edge of a triangle in S. We bound the number of desired vertices that lie on each
surface C € C and sum these bounds up over all surfaces in C. Assume that the axis of
C is parallel to the z-axis. Let K¢ = {K, N C | a € S} and ng)) ={K,NC| K; €
KO} Let A = A(Kc), AQ = AKD), Uec = UK, and UL = UKL Clearly,
Uéo) C Uc. Let vc denote the combinatorial complexity of Uéo) . By Theorem 3.3, we
have } - vc = O(n**¢), where the sum ranges over all surfaces in C. The level of a
point g € C with respect to A (resp. A®) is the number of regions in K¢ (resp. KO)
that contain ¢ in their interior. The closure of the complement of U¢ (resp. U((:O)) is the
set of points at level 0 with respect to A (resp. A©),

The intersection of C with a triangular face a’ of K, fora € §, is an elliptic arc. Any
pair C Na’, C N &’ of these elliptic arcs intersect in at most two points because a’ N b’
is a line segment and it intersects C in at most two points. Moreover, any generator
line on C, a line parallel to its axis, intersects any of these elliptic arcs in at most one
point, which is the intersection of the generator with the respective displaced triangle.
Finally, an endpoint of any elliptic arc is a transition point that lies on the boundary of the
corresponding displaced triangle a’. Let v be a regular tcs-vertex of one of the degree-2
faces induced on C by K,,, (i.e., a vertex of K,.,). Note that v lies on an elliptic arc y (a
portion of the intersection of a’ with C) and on a portion of a sphere-cylinder intersection
curve 8. Since K, is free, by definition, the degree-2 faces of 3K,,., on C appear as
faces (which we refer to as bubbles) of the arrangement 4. Moreover, y and é appear
in a fixed vertical order along C outside these bubbles (i.e., any generator that crosses
both curves crosses them in the same order); see Fig. 13. We call the bubble upward if
the elliptic arc y is the top edge of the bubble; otherwise we call it downward. If y and 6
form upward bubbles, then & lies above y outside these bubbles. We bound the number
of upward bubbles that do not lie inside any region of K¢ By reversing the direction, we

Fig. 13. Bubbles of .A and quasi-regular vertices on C.



674 P. K. Agarwal and M. Sharir

obtain a similar bound on the number of downward *“free” bubbles. Together, this yields
a bound on the overall number of desired vertices.

Let & be a parameter. Let Q(CE) denote the closure of the points on C whose level
is at most £ with respect to IC(CO). We take the 8-extremal points w (in the cylindrical
coordinate system attached to C) of every edge of A® that lies inside Qg)
through w a maximal vertical segment contained in Q(CE) and crossing at most £ arcs

of A® on either side of w. The edges of A and these segments decompose Q%
into “pseudotrapezoidal” cells, and we denote the collection of these cells by V. Using
the Clarkson—-Shor analysis technique, the total number of vertices of A within Qg),
summed over all cylinders C, is O (§3(n/£)**°) = O(£'~°n?**). Hence the total number
of cells and edges in the decompositions V, summed over all cylinders C, is O (§ Z—epltey,
forany ¢ > 0.

Note that the new vertical segments may split some of the “bubbles” into two faces,
but the number of such bubbles, summed over all cylinders, is only O(£%~¢n?**%) since
each vertical segment splits at most £ bubbles. We thus count only those upward bubbles
whose vertices both lie on the same edge of a cell of V.

For each edge 6 in V whose level is 0 with respect to K9, we count the number of
upward bubbles formed by & that were not split by the vertical segments and sum this
quantity over all such edges. Let &5 be the set of elliptic arcs that form upward bubbles
with §; set ms = |&;|. Each arc in & intersects § in either two or four points and all these
intersection points are the vertices of the bubbles; otherwise the corresponding bubble is
not a face of a regular triple intersection. If ms < £, the number of upward bubbles that
lie on § is at most 2£. We charge them to §. The total number of such bubbles charged
to arcs of V, summed over all cylinders C, is O (£3~¢n2*%).

Suppose next that ms > £. Let y be an elliptic arc that forms a bubble f with . Let
vL, vr be the left and right vertices of f. First assume that y intersects § at two points.
We trace y from vy, (resp. vg) leftward (resp. rightward) until we reach a point wy, (resp.
wg) for which one of the following conditions holds:

and draw

(C1) we have reached an endpoint of y;
(C2) we have encountered & vertices of A;
(C3) we have reached a point that lies below an endpoint of 8.

By construction, y[wy, vi] and y [vg, wr] lie below é.

Claim 4.8. The relative interiors of the traced arcs y[wy, vL] and y[vR, wr] do not
contain a vertex of an upward bubble.

Proof. Let wy be the point on § lying vertically above wy, and let pr. be the region
bounded by the arcs §[wy, v_], y[wy, v_] and the vertical segment wy w; (e.g., the left
shaded region in Fig. 14). Similarly we define the region pg lying between y[vg, wr]
and 8. Suppose the relative interior of y[wy, v_] contains a vertex v’ € 8’ Ny of an
upward bubble formed by some curve 8’ and y. We assume that v’ is the rightmost such
vertex. We claim that the right endpoint of &’ lies in p. First, we observe that the bubble
B containing v’ lies to the left of v’. Indeed, if v’ were the left vertex of B, then the right
vertex of B would have to lie to the right of v because y (v’, v.) does not contain the
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Fig. 14. Tracing an elliptic arc y.

vertex of any upward bubble. But then § contains the arc §[v,, vg], implying that 8 is
not a face of A, a contradiction. Hence v’ is the right vertex of 8. Since B lies to the left
of v/, the arc &’ lies above y to the right of v'. All intersection points of y and 8’ are
vertices of the upward bubbles formed by them, so 8’ cannot intersect y [v’, v_]. Since §
is an edge of V, &' does not intersect . This implies that the right endpoint of 8’ has to
lie in the region pr, as claimed above.

Let o be the rightmost endpoint of an arc in ICg)) that lies inside p, and let o’ € & be
the point lying vertically above o. Any arc of ICEP ) intersecting the segment oo’ has to
intersect y [wy, vp ] because it can neither intersect & nor end inside o . Since y[wy, v1]
contains at most & vertices of .4, the vertical segment oo’ intersects at most & arcs of
ICg) ). However, then the vertical segment erected through o would have to intersect &,
thereby implying that o’ is the left endpoint of 8, a contradiction. Hence, v’ does not
exist. The same argument applies to pg. O

Actually, the preceding argument shows that no arc in IC?) (or in KC-) has an endpoint
inside pp. or pg.

If wy or wy is an endpoint of the elliptic arc y, we charge f to y. Since no other
upward bubble can be charged to the same endpoint of y, each elliptic arc is charged at
most twice. Hence, the total number of such bubbles over all cylindrical surfaces in C
is O (n?). If the traced portion of y (i.e., y[wy, v.] U ¥ [vr, wr]) contains £ vertices of
A, we charge f to & of these vertices whose levels are at most £. Each such intersection
point is charged by O (1) upward bubbles, over all cylinders C.

If we are not able to charge f to an endpoint of ¥ or to the vertices of A, then wy
lies below the left endpoint of § and wy, lies below the right endpoint of 8. Since pp. and
pr do not contain the endpoints of any elliptic arc ¥’ € & and y’ does not intersect
y[vL, vr], ¥’ has to intersect the traced portion of y. Repeating this argument for all arcs
of & and recalling that we have assumed ms > m, we conclude that the traced portion of
y contains at least £ vertices of A, a contradiction. Hence, we are always able to charge
an upward bubble.

Next, if y and é form two upward bubbles (as in Fig. 13), thenlat vy = vy, v2, v3, v4 =
vr be the four intersection points of § and y, sorted from left to right. We trace y from
vy and vy as earlier and stop as soon as one of conditions (C1)—(C3) holds. In addition,
we also trace y from v, rightward until we either collect & vertices of A or we reach
vs. If y[v,, v3] contains less than & vertices of A, the above argument implies that the
region formed by y[v2, v3] and 8[v,, v3] does not contain the endpoints of any arc in
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&s. Hence, even in this case each arc of &; intersects the traced portion of y and we can
charge both upward bubbles to £ vertices of .4 whose levels are at most &.

Repeating the same argument for downward bubbles and summing over all arcs 8
of level 0 in V and over all cylinders C, we conclude that the number of quasi-regular
vertices incident upon upward or downward bubbles formed by those edges of V (of
level 0) for which ms > & is O(n? + F<¢(n)/€), where F<¢ (n) is the number of vertices
of level at most £ in an arrangement of n kreplach. By a result of Clarkson and Shor [14],
Fee(n) = O 3F(n/&)). Adding the number of bubbles that lie on edges 8 of V for
whichm; < &, we conclude that the total number of bubbles is O (£2 F (n/&)+&£3-¢n2t¢),
This completes the proof of the lemma. O

Next, the case in which the degree-2 faces of K,,, lie on the sphere 9K, can be
handled in a similar manner. We take d K, and draw on it the arrangements .4, formed
by its intersections with the regions K, € X, and .A®, formed by its intersection with
the regions K, € K©. The degree-2 faces of a regular triple intersection Kg.p appear
as two faces of .4. We draw a (6, ¢)-coordinate system of longitudes and latitudes on
3K, and regard the longitudes of 9K, as the generator lines. If a circular arc y is not
6-monotone, then we split y at the points that are tangent to longitudes. We now proceed
exactly as in the previous case. A similar argument shows that the overall number of
regular scs-vertices that lie on free interesting K.,’s in which the two degree-2 faces lie
on 8K, is also O(E2F (n/€) + £3~n*%). We leave it to the reader to verify the details.

To conclude, we have shown the following.

Lemma 4.9. The number of free triple intersections K ,p, that contain a regular tcs-

vertex is at most
0 (53'%2“ +E2F (g)) . 4.3)

Bounding the Number of tcc-Vertices. Next suppose that K, has no zss-vertex and
no zcs-vertex but has a rcc-vertex v. The analysis of this case is very similar to that of a
tcs-vertex, with the following modification. In full analogy, we consider the intersection
Keer, Where e and e’ are edges of b and c, respectively, on whose expanded cylinders v
lies. We may assume that K. does not have a tcs-vertex, ¢ss-vertex, nnn-vertex, or a
transition point on any intersection curve because then we can apply the same analysis
as above to conclude that (4.3) bounds the number of such free triple intersections. We
define y = a'N0K,, 8§ =a’N3K,,and R = @' N K, N K. Arguing as above, the
preceding assumptions imply that all vertices of K, lie on E N E’, where E and E’
are the elliptic intersection curves of a’ with the cylindrical portions of 3K, and 4K,
respectively; in particular, there are only two or four such vertices. The rest of the analysis
proceeds exactly as above, and implies that the overall number of free triple intersections
Kape of the above type is bounded by the bound in (4.3).

4.4. Bounding the Number of ttn-Vertices

We now bound the number of interesting triple intersections that contain only ¢£n-vertices
(Fig. 15). Let K45 be such a triple intersection. The preceding analysis implies that all
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Fig. 15. An example of a ttn-vertex.

vertices of K, lie on a single displaced copy a’ of a and on a single displaced copy b’
of b. However, then all vertices lie on the line segment @’ N ¥, and the convexity of K.
implies that it has only two vertices v, v’

We first assume that one of them, say v, is a t#c-vertex, lying on the cylindrical portion
C of 9K,, for some edge e of c. Since we assume the edges of K, ;. do not contain any
transition point, the edges adjacent to v and lying on K, lie fully in C. Therefore v’ also
lies on C and 9 K, has three (free) edges, one of which is the straight segment vv’ and
the other two are elliptic arcs contained in @’ N C and &' N C, respectively. We only study
this case; the case in which v is a t¢s-vertex is treated in essentially the same manner,
replacing C by an appropriate sphere and the elliptic arcs by circular arcs along that
sphere.

As in the proof of Lemma 4.7, we assume that the axis of C is vertical, and we form
two arrangements on C. Let K¢, K9, A, A, U¢, U((:O), and v be the same as defined
in that proof; recall that A, A® are the arrangements of K¢ and KO, respectively. Let
£ be the set of at most 2n elliptic arcs in K¢, formed by the intersection of C with
the triangular faces of kreplach in XC. We take the complement of Uéo) within C and
decompose it into pseudotrapezoidal cells, by extending a vertical segment from each
vertex or #-extreme point on BUéO) until it hits this boundary again. The total number of
cells, over all cylindrical surfaces in C, is O(n*%). Let V denote the resulting vertical
decomposition.

Fix a cell T of this vertical decomposition, and consider the set £; C £ of all elliptic
arcs that cross T and that contain at least one tzc-vertex; set m, = |&;|. Any ttc-vertex v
that lies in t is an intersection of two elliptic arcs in £;. Since each endpoint of an elliptic
arc lies on the boundary of a region in IC(O), none of the arcs in £; can have an endpoint
inside t. Let E € £, be an elliptic arc and let £ be a generator line on C that intersects
E. If we follow £ from E N £ (recall that there is a unique such point) into the region K,
bounded by E and apply Lemma 4.3, we conclude that we will meet some cylindrical
surface in C or some sphere in B before exiting K, and therefore we will exit 7 before
exiting K,. Let £ (resp. £;7) be the set of elliptic arcs E € &; sd that a ray emanating
from a point on the arc (within 7) in the (+z)-direction (resp. (—z)-direction) enters the
corresponding K,.

It follows that any tfc-vertex v under consideration is a vertex of the region lying
between the lower envelope of £ and the upper envelope of £ Since any pair of arcs in
£. intersect in at most two points, it follows that the complexity of this sandwich region,
and thus also the number of zz¢-vertices under consideration within t, is O (m;). It thus
suffices to bound the value of 3 ¢ Y ey M-
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Fig. 16. Counting the number of arcs in £;.

We fix a threshold parameter £ > 0. The overall number of ¢fc-vertices under con-
sideration that lie in cells T with m; < &, over all cylinders C, is 0(§n2+5), SO assume
that m, > .

Since each arc E € £, intersects the boundary of 7, let wg be any such intersection
point; see Fig. 16. If the level of wg with respect to A is at most &, we charge E to wg.
There are at most & such intersection points lying on each of the vertical edges of 7.
Summed over all cells in V¢ and over all cylindrical surfaces in C, the number of such
intersection points is O (£n2**). If wg lies on the top or bottom boundary of 7, wg is
a tcc- or a tes-vertex of A, Using the Clarkson—Shor analysis technique, we conclude
that the number of fcc- or tcs-vertices at level at most € in A, summed over all cells
T € Ug)) and over all cylindrical surfaces C, is O(§3F“"" (n/§)), where FU" (m) is
the maximum possible number of free tnn-vertices on the boundary of the union of the
expansions K, for s in a set of at most m pairwise-disjoint triangles.

Next, suppose that the level of wg with respect to .4 is greater than £. This means
that as we walk from a free t1c-vertex vg on E within t to wg along E, we visit at least
£ vertices of A, each of which has level at most £. We charge E to these £ vertices of
A. Since each such vertex is charged only O (1) times in this manner (because we only
want to count m,), the total number of such elliptic arcs E is O(E2F(n/g)).

We have thus proved that the number of rzc-vertices that appear on interesting free

triple intersections is
(s @eer()

A similar analysis proves the same bound on the number of ¢£s-vertices that appear on
interesting free triple intersections. We thus conclude the following.

Lemma 4.10. For any parameter £ > 1 and any € > 0,

0 248 4 £3 plinm) (2) 2p (ﬁ))
(‘g‘n +£ £ +& E

ttn-vertices appear on free interesting triple intersections.
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Wrapping Up. Putting Lemmas 4.6, 4.7, and 4.10 together, we obtain the following
recurrence, which is the same as in (4.2):

F(O)(n) =0 <53—5n2+s + EZF (g) 53F(mn) (g)) , 4.5
F"™ () = 0 (53-%2“ +E°F (g)) : (4.6)

As argued above, this completes the proof of Theorem 4.1.

5. [Extensions

In this section we extend Theorem 2.1 to prove a near-quadratic bound on the complexity
of the union of objects with bounded curvature in R? and on the number of combinatorial
changes in the union of moving congruent disks in the plane. We also discuss algorithms
for computing the union of cylinders.

5.1. Objects with Bounded Curvature

Let K = {K}, ..., K,} be a collection of n compact convex objects in R satisfying the
following properties:

(i) The objects in K have constant description complexity, meaning that each object
is a semialgebraic set defined by a constant number of polynomial equalities and
inequalities of constant maximum degree.

(i1) The objects in K are of roughly the same size, meaning that the ratio between
the diameters of any pair of objects is at most some fixed constant o.

(iii) The objects in K are C2-continuous and the mean curvature of any object at all
points is at most some fixed constant .

In this case we have the following:

Theorem 5.1. The complexity of the union of a collection K as above is O(n***), for
any e > 0, where the constant of proportionality depends on &, a, x , and on the maximum
algebraic complexity of an object in K.

Proof (Sketch). 'We assume that the diameter of each object K; is between 1 and «. Let
V be the set of vertices on the union of K. Choose a sufficiently small constant § whose
value will be specified later. We partition R3 into a grid C of cubes, each of size § (see
Fig. 17), i.e.,

C = {[i8, G + 18] x [j8, (j + 1)8] x [kS, (k + 1)8] | i, j, k € Z}.

For each cube C € C,let X C K be the set of objects that intersect C. Each K; intersects
O (®/83) cubes of C, so Y c K¢ = O(n).Itiseasily seen thatonly O (n?) vertices appear
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Fig. 17. Partitioning R? into a grid of cubes.

on the boundary of any cube in C, therefore it suffices to bound the number of vertices
that lie in the interior of a cube.

Fix acube C € C. Let Vo C V be the set of vertices that lie in the interior of C. Let
Xc ={oy, ..., 0.}, where u = O(n), be the set of connected components of (6K;)NC,
fori = 1,...,n;each o; is a two-dimensional surface patch lying in the interior of C.
Every vertex of V¢ lies on three surface patches. Since each o; is C?-continuous and its
curvature is bounded by «, the normals of o; vary continuously and their directions lie
inside a spherical cap of S? of radius c« 8, for some constant ¢ > 0.

We say that a direction p € S? is good for o; if each tangent line to o; makes an angle
of at least S« § with p, for some constant 8 > 0; p is bad for a vertex v € Vi if it is bad
for any of the three surfaces containing v. Since the normals of o; lie inside a spherical
cap of radius cé«, the bad directions for o; lie inside a spherical band consisting of all
points in S? that lie within distance (8 + c)« 8 from a great circle. Hence, if we choose &
such that k8 < 1, then we can show, as in Section 2.5, that there exists a set Z € S? of
O(1) points with the property that, for any vertex v € V¢, there exists a direction p € Z
that is good for v.

Let w, w’ be two points on 8K;. Since K; is convex and its mean curvature is at
most «, it follows that the sphere B,, of radius 1/« and tangent to K; at w from the

inside is contained in K;. If the direction EE" is good for o;, then ww’ makes an angle
of at least B8 with any line tangent to B, at w. Since w’ does not lie in the interior
of B, lww’'| > (2/k)sin(Bbk/2) > B5/2, assuming that § is a sufficiently small. If
lww’| > /38, then both w and w’ cannot lie in the same cube of C. By choosing
B > 2+/3 we can guarantee that, for any point w € C N K;, the other intersection of
the ray in a good direction from w does not lie in C. Now, following the same argument
as in Section 2.5, one can reduce the problem of bounding | V¢| to that of counting the
number of vertices in the region lying between the p-upper and the p-lower envelopes
of two respective subsets of £¢, summed over all p € Z. Hence, |V¢| = O (n?*%). This
completes the proof of the theorem. a

Remark 5.2. We can relax condition (iii) on C>-continuity. What we really need
is that each object in K intersects O(1) cubes of C and that, for each pair C € C,
K; € K, the normals of C N K; lie in a sufficiently small cap of S*. For example, we
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can obtain a quadratic bound on the union of convex polytopes that satisfy these two
conditions.

5.2.  Union of Moving Disks

LetD = {Dy, ..., D,} be a set of n unit-radius disks in the plane, each moving with a
fixed velocity. That s, the position of the center ¢; of D; is alinear function ¢; (t) = a;+rb;
of the time ¢, for some pair a;, b; € RZ LetU(r) = \U; Di(r) denote the union D at time
¢. We want to bound the number of changes in the combinatorial structure of U(¢) as ¢
varies from —o0 to 4-00.

For each 1 < i < n, let K; denote the slanted cylinder

Ki={(x,1) | x e R? and d(x,¢;(1)) < 1}.

(See Fig. 18.) The intersection of K; with a plane normal to the axis of X;, i.e., normal
to the line (a; + tb;, ) is an ellipse E; whose major and minor semiaxes are 1 and
1/4/1 + |ib; ||%, respectively. Set U = U;’=1 K;. U (1) is the cross section of U at the plane
z = t. The number of changes in the combinatorial structure of U (¢) is proportional to
the combinatorial complexity of U.

Note that U(¢) is the cross section of the Euclidean Voronoi diagram of the point
set {¢;(#) | 1 < i < n} in the sense discussed in the Introduction. Hence, the number
of changes in U(r) bounds the number of changes in the combinatorial structure of a
cross section of the Voronoi diagram as the points move. The best known bound on the
number of changes in the entire Voronoi diagram of a set of n points, each moving with
fixed velocity, is near-cubic [6], [18], [24]. De Berg et al. [11] showed that if each K is a
convex polygonal pseudodisk (i.e., each K; is a convex polygon such that the boundaries
of any pair always intersect in at most two points) moving with a fixed velocity, then the
number of changes in their union is O (n*a(n)).

Without loss of generality, we can assume that the speed of all disks is at most 1. Then
the minor semiaxis of each ellipse E; is at least 1/ ﬁ, and therefore the diameter and
curvature of E; are at most 2. By Remark 2.10, we can extend the proof of Theorem 2.1
to show that the combinatorial complexity of U is O (n***). Hence, we can conclude the
following.

Fig. 18. The “space—time” tracing of a set of moving disks.
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Theorem 5.3. Let D be a set of n congruent disks in the plane, each moving with a
fixed velocity. Then the number of combinatorial changes in their union is O (n**¢), for
any g > 0.

5.3.  Computing the Union

Let S be a set of n triangles in R? with pairwise-disjoint interiors, and let B be a ball.
The vertices, edges, and two-dimensional faces of the union of {s @ B | s € S} can be
computed using the randomized incremental algorithm described by Agarwal et al. [1].
Basically, for each krepl K;, their algorithm will compute the vertices, edges, and faces
of U that lie on 9K, by a straightforward incremental construction that inserts all the
other K;’s in a random order. Omitting all the details, which can be found in [1] (see
also [2]), we conclude the following.

Theorem 5.4. Let S be a set of n triangles in R? with pairwise-disjoint interiors, and
let B be a ball. The boundary of the union of the Minkowski sums {s ® B | s € S}, can
be computed in randomized expected O (n**¢) time, for any & > 0.

As mentioned in the Introduction, once the boundary 3U is available, we can also
compute the boundary of the free configuration space F of B. We can then add artificial
edges and vertices into F so that all connected components of the boundary of any
connected component of F are connected. This can be done, using, for example, the
technique by Sifrony and Sharir [25]. This step adds O (n) additional vertices and edges.
Then, given any two free placements Z,, Z, of B, we can compute in O(n) time, the
placements W), W, that lie on 3U immediately below (in the z-direction) Z, and Z,,
respectively; here we are assuming that all connected components of F are bounded. By
locating W, and W, in the appropriate faces of 8F, we can then determine whether Z,;
and Z; lie in the same connected component of . That is, we can determine in O (n)
time whether B can be moved from Z, to Z, without intersecting any obstacle. If Z, and
Z, lie in the same connected component, we can also compute a path from Z, to Z that
lies within F. We do not know whether such a motion-planning query can be answered
more efficiently, e.g., in polylogarithmic time.

6. Conclusion

In this paper we proved near-optimal (i.e., near-quadratic) bounds on the complexity of
the free configuration space F of a ball moving amid a set of polyhedral obstacles in R3,
We conclude by mentioning a few open combinatorial problems in this area. In each case
the best known bound is cubic, and we conjecture the right bound to be near-quadratic.

(1) What is the complexity of the Euclidean Voronoi diagram of a set of pairwise-
disjoint polyhedral sites in R3? Even the case of line sites is still open.
(i) What is the complexity of the union of n cylinders of different radii?
(iii) What is the complexity of the union of n congruent cubes in R*>? What about n
arbitrary cubes?
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(iv) What is the complexity of the union of n donuts, each being the Minkowski sum
of a fixed ball with a circle, where the disks bounding the circles are assumed
to be pairwise disjoint? (This problem was raised by Emo Welzl.)

(v) In general, what is the complexity of the union of the Minkowski sums of a
compact convex set B with n pairwise-disjoint compact convex sets Ay, ..., A,,
under the assumption that the sets Ay, ..., A,, B all have “constant description
complexity” (as defined, e.g., in [24])?

(vi) What is the complexity of the dynamic Voronoi diagram of » moving points in
the plane, where each point is moving at some fixed velocity?

(vii) What is the complexity of the union of n “fat” tetrahedra? A tetrahedron is fat
if the maximum aspect ratio of a face is a constant and the minimum dihedral
angle is a constant.
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Appendix. Proof of Lemma 4.2

We prove the lemma for the special case in which A; and A, are triangles and B is a
ball. We assume that A, and A, are in general position as described in the beginning of
Section 4.

Pick arbitrary points p; and p; in the relative interiors of triangles A; and A», respec-
tively, and assume, without loss of generality, that the center of B lies at the origin. For
a parameter ¢ € [0, 1], put

Ay =tA + A —-Dp, Ax(t) =tA+ (1 —B)pa, B(t) =B,
and
Ki(t) = A1) ® B(1), Kx(1) = A2 (1) @ B(2).

Note that K;(¢) and K,(¢) are smooth for each ¢ > 0.

We vary ¢ from 0 to 1, and watch for topological changes in C () = 9 K;(t) N3 K»(t).
Initially, C(¢) = C(0) is empty. C(¢) changes continuously as we vary ¢, so the number
of connected components of C(¢) can change only when K () and K>(¢) are tangent
to each other at some point. When this happens, either some component of C(t) is a
singleton point (when a new component has just appeared or an old component is about to
vanish), or some component of C(¢) is not a simple closed curve (when two components
of C(t) are about to split or have just merged). It can be checked that if a component of
C(¢) is not a singleton, then it is a simple closed curve. Therefore a connected component
of C(t) cannot split, or two components cannot merge. Hence, only a new component
may appear or an existing component may disappear, as ¢ varies.
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Since C(0) is empty, let #p be the minimum value of 7 at which C(¢) becomes a
singleton. As is easily checked, K (#;) and K (p) lie on the opposite sides of the (unique)
plane supporting them at C(#;), and thus they have disjoint interiors. For any ¢ > ty, the
interiors of K;(¢) and K;() intersect. Suppose that C(¢"), for some t’ > f;, has a new
singleton component, call this point w. Let & be the common tangent plane to K;(¢’)
and K,(¢') at w. Without loss of generality, assume that » is parallel to the xy-plane.
Since the interiors of K;(¢/) and K, (¢') intersect, both of them lie on the same side of 7,
say below 7. Then we can write w as

w=ta+0—=1t)p +1'b,

where a, is a point on A; with the maximum z-coordinate, and b is the unique point on
B with the maximum z-coordinate, and also as

w=ta+(1—-1)p,+1b,
where a; is a point on A; with the maximum z-coordinate. We thus obtain
taj+ (1 —t)py=ta+ 1 -1)ps.

This however is impossible since t'a; + (1 — ") p; lies in A; and t'a; + (1 — t') p; lies
in A, and they are disjoint. This contradiction completes the proof of the lemma.
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