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PIPs and POPs' The Reduction of Complex Dynamical Systems Using 
Principal Interaction and Oscillation Patterns 

K. HASSELMANN 

Max-Planck-Institut fiir Meteorologie, Hamburg, Federal Republic of Germany 

A general method is described for constructing simple dynamical models to approximate complex 
dynamical systems with many degrees of freedom. The technique can be applied to interpret sets of 
observed time series or numerical simulations with high-resolution models, or to relate observation and 
simulations. The method is based on a projection of the complete system on to a smaller number of 
"principal interaction patterns" (PIPs). The coefficients of the PIP expansion are assumed to be governed 
by a dynamic model containing a small number of adjustable parameters. The optimization of the 
dynamical model, which in the general case can be both nonlinear and time-dependent, is carried out 
simultaneously with the construction of the optimal set of interaction patterns. In the linear case the 
PIPs reduce to the eigenoscilations of a first-order linear vector process with stochastic forcing (principal 
oscillation patterns, or POPs). POPs are linearly related to the "principal prediction patterns" used in 
linear forecasting applications. The POP analysis can also be applied as a diagnostic tool to compress 
the extensive information contained in the high-dimensional cross-spectral covariance matrix repre- 
senting the complete second-moment structure of the system. 

1. INTRODUCTION 

To gain insight into the behavior of complex dynamical 
systems with many degrees of freedom, a standard strategy is 
to devise simpler analog systems which contain only a few 
degrees of freedom but nevertheless succeed in capturing the 
principal dynamical properties of the full system. In the case of 
climate modeling, some form of system reduction is essential if 
one wishes to model the many interactions between the differ- 
ent climate subsystems which span many orders of magnitude 
of different time scales. A high-resolution model, such as a 
general circulation model (GCM), cannot be integrated long 
enough to cover more than a small fraction of the time scales 
occurring in natural climate variability, so that a trade-off 
must be found between the number of degrees of freedom of 
the model and the spectral bandwidth of the simulation. Apart 
from the need to remain within finite computational restraints, 
system reduction is also the standard approach to "under- 
standing" the system. Various reduced systems have been pro- 
posed, for example, to deduce the overall response character- 
istics of the global climate system or to explain particular 
phenomena, such as the E1 Nifio/Southern Oscillation or at- 
mospheric blocking. 

The simplest and most commonly used method of system 
reduction is scale truncation. The nonresolved components of 
the system beyond the cutoff scale are normally parameterized 
in the form of mean interaction terms and a residual sto- 

chastic forcing contribution. The latter can often be the domi- 
nant term responsible for the time variability of the reduced 
system [cf. Hasselrnann, 1976]. 

In this paper an alternative method of system reduction is 
considered, based on the observation that the dynamical be- 
havior of complex systems often appears to be dominated by 
interactions between only a few characteristic "patterns". A 
number of hypotheses which have been proposed to explain 
climate fluctuations in terms of internal feedback processes 
rather than short time scale stochastic forcing have been for- 
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mulated implicitly in terms of such interaction patterns. How- 
ever, the identification of the basic interaction structures in 
observed data or in the simulation data of high-resolution 
model runs has often proved elusive. 

In the following discussion a general method for construct- 
ing reduced dynamical models is introduced which addresses 
this problem. The models combine internal linear or nonlinear 
interactions within the reduced system with residual stochastic 
forcing, both of which can contribute to the natural variability 
of the system. The basic technique is straightforward: the re- 
duced dynamical model is constructed by finding the optimal 
model, within a given model class, which best fits the data in a 
generalized least squares sense. In defining the model class for 
the fitting procedure, the interaction patterns, parameter 
values of the dynamical model, and statistical structure of the 
stochastic forcing are not specified. The optimal model fit then 
yields the set of "principal interaction patterns" (PIPs), the 
model parameter values, and the (cross) spectra of the sto- 
chastic forcing. In the linear case the PIPs reduce to (damped) 
normal modes (principal oscillation patterns, or POPs). 

The approach may be regarded as a combination and ex- 
tension of standard methods of expanding statistical fields 
with many degrees of freedom in terms of empirical orthog- 
onal functions (EOFs) or "principal prediction patterns" 
(PPPs) and the autoregressive moving average (ARMA) tech- 
nique of constructing dynamical models for systems with a few 
degrees of freedom. 

EOFs yield an optimal representation of the covariance 
structure of fields at a given time, but they are not designed to 
reveal the structure of the time evolution or the internal dy- 
namics of the system. Principal prediction patterns provide an 
optimal representation of the linear prediction of one field in 
terms of another field [cf. Davis, 1976; Barnett and Preisendor- 
fer, 1987]. If the two fields represent the same physical field 
taken at different times, the prediction represents a forecast, 
and the principal prediction patterns therefore contain some 
time evolution information. However, this cannot normally be 
translated into an explicit dynamical model without further 
assumptions. Although EOFs and PPPs can be used, and 
occasionally have been used, to construct reduced dynamical 
models, they are not optimized for this purpose. 
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ARMA methods, on the other hand, have been developed 
specifically to construct dynamical models. In its standard 
form [cf. Box and Jenkins, 1976; Kashyap and Rao, 1976], the 
technique is basically linear and applies for systems with rela- 
tively few degrees of freedom. The method can be readily gen- 
eralized to nonlinear systems and to systems with time- 
dependent model parameters. For many climate modeling ap- 
plications, the nonlinearity and annual modulation of the 
system are indeed essential characteristics which need to be 
included at the outset in the formulation of the reduced dy- 
namical model. The main restriction of such a generalized 
ARMA approach, however, is still the limitation to a few de- 
grees of freedom. The ARMA technique as such contains no 
provision for projecting the full system onto a smaller set of 
dominant patterns. This aspect is addressed in the present 
study. 

Although the primary motivation for the paper is to con- 
struct reduced dynamical models, the POPs technique for the 
linear case may also be applied simply as a diagnostic tool 
Oust as the ARMA technique can be applied to estimate spec- 
tra using maximum entropy methods). A complete description 
of the space-time dependent covariance structure of a statis- 
tically stationary field requires the specification of the com- 
plete cross-spectral covariance matrix for each frequency band 
of the spectrum or, equivalently, the complete sets of complex 
EOFs for each frequency. The POPs essentially identify those 
regions of the spectrum which can be described by the same 
patterns for an extended frequency interval. They therefore 
provide a simultaneous optimization of the representation of 
the second moments of the field with respect to both the spa- 
tial and frequency dependence. 

Alternative techniques for combining spatial structure infor- 
mation with reduced time-dependence information have been 
proposed in which an extended EOF analysis is carried out 
for an enlarged set of time series, consisting of the original 
time series argumented by a finite number of time-lagged time 
series [cfi Weare and Nasstrom, 1982] or by the Hilbert trans- 
forms of the original time series [cfi Wallace and Dickinson, 
1972; Horel, 1984]. The main difference in the POP technique, 
compared with these methods, is that it ties the different pat- 
terns more closely into the structure of the spectrum (see also 
section 4). 

Another diagnostic application of the POP method is the 
determination of the perturbation eigenmodes of complex 
model systems, e.g., an ocean circulation model (E. Maier- 
Reimer et al., paper in preparation, 1988). If the model is 
driven by white noise stochastic forcing, a POP analysis of the 
response automatically extracts the system's normal modes. 

The general nonlinear PIP formalism is developed in sec- 
tion 2, while the simplifications resulting for POPs in the 
linear case are discussed in section 3. The relation between the 

complete cross-spectral matrix representation of the second 
moments of the field and the POPs expansion is considered in 
section 4. The conclusions are summarized in section 5. 

2. PRINCIPAL INTERACTION PATTERNS' 

THE GENERAL CASE 

Consider a system represented by the state vector 
(I) 2, -.., (I),), whose evolution is governed by a set of first-order 
equations 

dcP 
- F(•) (1) 

dt 

where F is some nonlinear, time-dependent function of (1) (the 
time dependence is suppressed in the notation). The dimension 
n of the system is assumed to be high' for numerical high- 
resolution models, n is typically of order 10•-106, while for 
observational data, n may be of order 10 2. 

attempt now to construct a simplified dynamical model 
approximating (1) which involves a significantly smaller 
number of degrees of freedom m, where m is perhaps of order 
2-10. The reduction is carried out in two steps. 

First, the dimension of the state vector is reduced by ap- 
proximating (1) as a superposition •) of m time-independent 
principal interaction patterns, 

q> = q> + p (2) 

where 

•) = • zv(t)p• (3) 

and p is the residual error. 
For this section and section 3, it is convenient to introduce 

a matrix notation in which, in an extension of Dirac's bra-ket 
notation, the structure of a matrix is depicted by left and right 
delimiters, indicating the dimensions of the left and right indi- 
ces of the matrix, respectively. A transposed matrix is repre- 
sented by a mirror image delimiter pair; a matrix multipli- 
cation contains two adjacent mirror image delimiters. Thus 
the state vector q) is represented as the one column matrix 
(I)ix = l c I)), the set of patterns p,, as the rectangular matrix 
Pi,, -= ]P), the set of coefficients z• as the one-column vector 
z,.x =_ (z) (or as the transposed row vector (z)), and the sym- 
metrical n x n matrix in (4) as Mij =lMI (see Table 1). Fol- 
lowing standard practice, we shall replace the delimiter pair 
represented by double verticals in matrix multiplications by a 
single vertical delimiter. 

The matrix form of (3) is then given by 

IO> = Ip)(z) (3') 

The coefficients %(0 for a given set of patterns p• are deter- 
mined, in the standard manner, by requiring that the square 
modulus (pIMIp) of the error p with respect to some suit- 
ably defined metric M is minimized. One obtains 

(z) = (dl MIr P) (4) 

where I d) is the set of adjoint patterns to I P), defined as the set 
of vectors within the space spanned by I P), which are ortho- 
normal (with respect to the matrix M) to the set I P), 

(dlMlp) = (I) ( = rsvp) (5) 

or explicitly, 

Id) = Ip)(N-•) (6) 

where 

(N) = (p l M I p) (7) 

In statistical applications, in which (I) is regarded as a par- 
ticular realization taken from a statistical ensemble of states, 
the metric M is usually chosen as the inverse of the covariance 
matrix of q). If q) is Gaussian and is defined such that its 

expectation value vanishes, surfaces of constant <•IMI•> in 
q) phase space then correspond to surfaces of constant prob- 
ability density. This choice of M has the property that it maxi- 
mizes the statistical significance of patterns extracted from q) 
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TABLE 1. Notation 

(Right) Delimiter Associated Dimension) 

1 

n, equal to the dimension of state vector ß 
m, equal to the number of patterns Pv, v = 1 .... rn 
dimension of predictand field W 

Column Vectors 

Vector Index Matrix Index 
Vector Notation Notation 

Bra-ket 

Notation Definition 

[• Pi Pil 

Z Z v Zvl 

C C v Cvl 

P Pi Pil 

q qi qil 

It I)) state vector 
It b) modeled state vector 
I p) error of modeled state vector 
(z) pattern expansion coefficients 
(c) pattern coefficients 
IV) predictand field 
I p) single expansion pattern 
I q) single projection pattern 

Index Bra-ket 

Matrix Notation Notation Definition 

M' M.t 3' IMI 
Pv Piv Ip) 
dv div 
N Nv• (N) 
D Dv,, (D) 
q•, qiv Iq) 
K Kai IKI 
C Cij ICl 

metric used for pattern expansion 
metric used for PIP model error minimization 
metric used for PPP model error minimization 

set of expansion patterns 
set of adjoint patterns: (d/M/p) = (I) 
(p/M/p) 
linear model matrix 

set of projection patterns: I q) = I d) (D r) 
predictand-predictor covariance matrix 
predictor covariance matrix 
IC-11KTIM' I 

which are associated with specific externally generated "sig- 
nals", as opposed to the internal background noise of the 
statistical ensemble of states ß [cf. Hasselmann, 1979]. 

In the second step of the reduction procedure, a set of m (in 
general nonlinear, time-dependent) evolution equations 

dz v 
- Gv(z; •, •2,'". Yv) + nv (8) dt 

is postulated for the coefficients %(0 of the expansion (4). The 
reduced model (8) is specified a priori only as a member of a 
model class: the evolution equations contain a number of free 
parameters cz•, cz 2, -.. czv, which still need to be determined. In 
addition to the deterministic evolution functions Gy, the evolu- 
tion equations contain an (unknown stochastic) forcing term 
n•,, representing the residual errors of the reduced dynamical 
system. The class of model G•, must be specified a priori in 
accordance with some preconceived notion or hypothesis re- 
garding the type of dynamical process governing the evolution 
of the system. 

The unknown model parameters % and PIPs p• are now 
determined simultaneously by minimizing the error 

e= {($ - 4)1 ]•15 - (lb)} (9) 
between the rate of .change 4) = dq)/dt of the true system and 
the rate of change •)= d•/dt of the approximate system, as 
determined from (3), (4), (6), and (8), but without inclusion of 
the unknown noise term %. The braces in (9) denote expecta- 
tion values (or, if the system cannot be regarded as a sto- 
chastic process, as the time integral over the period for which 
the reduced model is applied). 

The metric M of the scalar product in (9) may be defined 
differently from the scalar product (4). For example, it may be 
appropriate to choose the matrix M as the inverse of the 
covariance matrix of 4), rather than 

Substituting (8) into (3), we obtain 

e = {(G)(p1331p)(G) - 2(dOIMIp)(G) + (•blMl•b)} (10) 

Variation of e with respect to czj and po, respectively, then 
yields as the determining equations for our model 

1 De _ 0- (G)(p133rlp) DG _ (•1•31 •,D%/J (11) 2 D% 
1 De 

2 DIp) 
51p) = 0 - {[(G)(p I- ( 4)1] I • 15p)(G)} 

D(G) } + [(G)(pli•Ip)- (4)13•1p)] D'-•' cS(z) (12) 
where, according to (4), (6) 

•(z) - (N- x)(•p I M I I O) -- (N- x) 

ß [((•pImlp) + (plMISp)](N- X)(p I M I t I)) (13) 

Equations (11) and (12) are in general nonlinear and can be 
solved only by iterative techniques. In practice, the determi- 
nation of the optimal solution will be less forbidding than the 
structure of the equations appears to imply. For a prescribed 
set of patterns, the minimization with respect to % can be 
carried out using minimization routines available in standard 
libraries (the dimension of the parameter vector % is assumed 
to be small). Conversely, for given % the matrix equation (12) 
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for the determination of the optimal patterns can also be 
solved iteratively, for example, by considering small pertur- 
bations about a reference set of patterns and then applying 
linear techniques. For a linear model, (12) reduces to a 
straightforward matrix eigenvalue problem (compare section 
3). The full minimization problem can thus be solved by mini- 
mizing iteratively with respect to Pv and %. Alternatively, the 
full parameter set p,., czj can be determined simultaneously, 
using recently developed adjoint gradient techniques designed 
for optimizing systems with many degrees of freedom [cf. 
Nayon and Leglet, 1987]. 

It has been assumed that the class of models is formulated 

such that the optimal solution which minimizes e is uniquely 
determined. This will generally require some restriction in the 
form of the dynamical model. For example, an alternative 
representation equivalent to (3) can be obtained by any linear 
transformation of the set of patterns within the space spanned 
by the patterns. If the resulting linear transformation of the 
coefficient vector % yields a model which still belongs to the 
class of models defined by (8), the optimal model is clearly 
defined only to within an arbitrary linear transformation. In 
this particular case the solution can be made unique by re- 
quiring, for example, that the linear terms in the Taylor ex- 
pansion of the dynamical equations are diagonal. For the case 
of a linear system, the principal interaction patterns reduce 
then to principal oscillation patterns, which are defined as the 
normal modes of the system. Alternatively, the representation 
can be made unique by introducing the patterns successively, 
keeping the previously defined patterns fixed when the next 
pattern is determined. 

The general technique outlined in this section can clearly be 
modified in various respects. The set of adjoint vectors I d) 
need not be defined through (4) and (5), but can be determined 
simultaneously with the PIPs as part of the minimization con- 
dition on e. Furthermore, the model can be required to satisfy 
additional side conditions, either rigorously or approximately, 
which can be included with appropriate weighting in the defi- 
nition of the error function e. In most applications the model 
will be constructed for a particular time scale range. This can 
be taken into consideration by passing the original data 
through an appropriate filter. Alternatively, the minimizing 
function itself can be defined as a weighted integral over the 
frequency domain (this procedure lends itself most readily to 
linear models). 

3. PRINCIPAL OSCILLATION PATTERNS' 
THE LINEAR CASE 

The evolution equations (8) for the reduced dynamical 
system are given in the linear case by 

d(z) 
- (D)(z) + (n) (14) dt 

or, invoking (4), 

dt - I p)(D)(dIMleo) + residual forcing (15) 

where (D) = D[,, represents a constant matrix. The elements of 
(D) correspond to the parameters % in the general formulation 
of section 2. Since the square matrix (D) will normally be 
nonsymmetrical, the transpose matrix (D r) = D,v is indicated 
explicitly by an superscript T in the following discussion to 
avoid ambiguity in the delimiter notation. 

Through a (complex) linear transformation, the form (14) 
can normally be diagonalized (we shall ignore degenerate 
cases where this is not possible). We denote the linear pat- 
terns, Pt,, of the optimal model after diagonalization, which 
represent the eigenmodes of the linear system (14), as principal 
oscillation patterns. The POPs occur as complex conjugate 
pairs, if the eigenvalues are complex (damped oscillations), or 
as single real patterns for real eigenvalues (exponentially 
damped modes). 

Before considering the POPs further, it is helpful to relate 
the present approach to the alternative, but essentially equiva- 
lent, expansion in terms of principal prediction patterns 
(PPPs). For this purpose, we introduce a set of "projection 
patterns" [ q) = qiv, defined by 

I q) = I d)(O T) (16) 

where [d) is the set of adjoint patterns given by (6). 
Equation (15) then takes the form 

d 

I$) = Ip)(qlMl$) (17) dt 

Since, for a given set of patterns [p) (and nonsingular (D)), 
the patterns I q) are uniquely determined through (16) if (D) is 
given and vice versa, the model can be optimized with respect 
to the set of parameters[p), (D), as in the original formulation 
of the model or, alternatively, with respect to the pattern sets 
[p), [q). The latter approach corresponds to an expansion in 
terms of PPPs. 

PPPs are normally introduced in the more general context 
of deriving an optimal linear prediction of a predictand field 
? -- W• from a predictor field • -- qSi, using an expansion of 
only a finite number of predictand and predictor (projection) 
patterns [cf. Davis, 1976' Barnett and Preisendorfer, 1987]. The 
dimensions of W• and q5 i can be different. We denote the field 
W in matrix notation as [ W). In our particular case, however, 
W -- lb, so that the predictor and predictand fields have identi- 
cal dimension. 

In the general problem one seeks an optimal prediction 

I W(t)) = I p)(c(t)) (18) 

for the predictand field ? in terms of m constant patterns 
P,,-- P•,,-= I P), v = 1, ... m, where the coefficients %(0 -- (c) 
of the expansion are derived from the predictor field q) by a 
projection 

(c) - (qlMlO) (19) 

using rn projection patterns qv = qi,, = I q), v = 1, .... m 
Thus 

I q') = I P)(qIMleo) (20) 

The pattern sets [p) and [q) are determined by minimizing 
the mean square error 

e = {<'I' - ct'IM'I• - cI,)} = min (21) 

defined with respect to some metric I M'I -- M•'. (This will 
generally differ from the metric I•l-- •j in (9), introduced 
in section 2, since W• and •pi have different dimensions. How- 
ever, in our application we may set M' = l•). 

The condition (21) alone clearly does not specify the pattern 
sets I P), I q) uniquely, since (20) and (21) are invariant with 
respect to an arbitrary linear transformation IP')= ] p)(L), 
I q')--Iq)(L-l r). However, we may make the solution unique 
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by requiring that the pattern pairs Pv, qv are introduced in 
sequence (and, say, by suitably normalizing the patterns p,). In 
this case, we need consider only one pattern pair, p,, q, -= p, q, 
at a time and can thus drop the index v (i.e., we may replace 
I P) by I P). The predictand field ? is redefined at each step as 
the original field minus the field already predicted from the 
patterns introduced previously. 

The (local) minimization of e yields the relations 

2•lq) 

where 

and 

-<qIMl[-IKrl +lCIMIq)<Pl]lM'l =0 (22) 

--(plM'IE--IKI+ Ip)<qIMICl]lMl=O (23) 

(24) 

I CI • Cij = {(PilPj) (25) 

Multiplying (22) and (23) from the right with IM'l-•, and 
(I riM I)-x, respectively, one obtains two coupled eigenvalue 
equations for I P) and 

namely, 

where 

and 

I c j) = I MIq) (26) 

I Kiel) - X'Ip) = 0 (27) 

IK I P) -- 4"1 O) = 0 (28) 

4' = (Ol C I q) (29) 

4"= (pIM'lp) (30) 

IKI =lC -•IKrlM'I (31) 

Separation of I P) and led then yields the pair of eigenvalue 
equations 

I KIK I p) - 41p) = 0 (32) 

IK I KIcD - 4lc]) = 0 (33) 

with the same eigenvalues 

4 = 4'4" (34) 

for I P) and Ifil). The values 4', 4" follow from 4 after intro- 
duction of a suitable normalization for I P), say, for example, 
2"= 1 (equation (30)). 

The matrices I K I • I - [I K I c -• I Kr I] [I M I] and I/• I 
K[=[IC-•[] [IK rlM'lKI] in the eigenvalue equations 
(32) and (33) consist of quadratic products of symmetrical, 
positive definite matrices, indicated here by the square paren- 
theses. It follows that the eigenvalues are real and positive and 
that the eigenvectors are also real. The eigenvectors them- 
selves are in general not orthogonal but are related to an 
equivalent orthogonal set by a linear transformation. 

The absolute minimum of e is given by the eigenvector pair 
with the largest eigenvalue 4, and the sequence of predictor 
patterns is accordingly given by the ordered sequence of eigen- 
solutions of (32) and (33). 

To derive the POPs for a linear model, the most straightfor- 

ward procedure is accordingly the following' (1) determine the 
sequence of PPPs by solving (32) and (33)' (2) evaluate the 
linear model coefficient matrix D by inverting (16)' and (3) 
diagonalize (14) by transforming to the (complex) eigenoscilla- 
tions of the linear system (14). 

The inversion of (16) in the second step is readily carried 
out by making use of the orthogonality of the vector sets I P) 
and I d). One obtains, applying (5)-(7), 

(D) - (q I M I p) (35) 

Although this approach is presumably the simplest when 
dealing with purely linear systems, it may be more convenient 
to resort to the general nonlinear formalism when the linear 
model is to be investigated within a hierarchy of nonlinear 
models in which the linear model occurs as a limiting case. 
The dynamical model would then be formulated at the outset 
in terms of a model which is diagonalized in the first-order, 
linear approximation. 

In the diagonalized reference frame the POP expansion of 
the field (I) is given by 

ß = • A•,(t)p•(t) + complex conjugate (36) 

where the complex amplitudes Av satisfy the standard damped 
harmonic oscillator equation 

dA• 
•-- if•A• = N•(t) (37) 
dt 

fl•, =rov + ip• 

The residual forcing term N.(t), frequencies fl., and patterns 

p• = pv(•) + ip•(2) (38) 

are generally complex. For eigenmodes with zero frequency 
cot,, however, the complex conjugate pattern pair p•, p•* re- 
duces to a single, real pattern p•(•) representing an exponen- 
tially decaying mode --. exp (-- pvt). 

In general, both real and imaginary patterns p•(•), p•(2) will 
be continually excited by the residual complex stochastic forc- 
ing N•(t). Each excitation pulse gives rise to a damped oscil- 
lation, in which the originally excited pattern p•(•), say, is 
transformed into the pattern pv (2) after a quarter period n/2c%, 
returning back to the original pattern with opposite sign after 
another quarter period, and so on. Depending on the form of 
the patterns p•(•) p•(2), the oscillation can appear as a standing 
wave, a traveling wave, a local pulsation, or as various combi- 
nations of these. The general oscillation represents a damped 
amphodromic wave of the form considered extensively in the 
harmonic analysis of tides or in the eigenoscillation theory for 
ocean basins. 

In contrast to the nondynamical expansion in terms of 
EOFs, the amplitudes of different POPs are generally corre- 
lated. This applies also for the amplitudes of a PPP expansion, 
and it must be expected to hold generally for any expansion 
procedure based on dynamical models. Even when the differ- 
ent system components are dynamically decoupled by trans- 
forming to normal-mode coordinates, as in the POP repre- 
sentation, correlations between the different modes are intro- 
duced by the residual forcing N•(t) in (38), which cannot be 
assumed to be uncorrelated. 

A more detailed discussion of POPs, in the context of a 
meteorological application, is given by yon Storch et al. [this 
issue]. 
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4. RELATION BETWEEN POPs AND CROSS-SPECTRAL 

EOF ANALYSIS 

In applications to a multivariate, stationary, stochastic pro- 
cess (I)i(t), the POPs analysis is not only useful as method of 
constructing optimal linear dynamical models, but also pro- 
vides a simple diagnostic tool for compressing the extensive 
information required for a complete characterization of the 
second-moment statistics of the process into a manageable set 
of numbers and patterns. 

The second moments of a statistically stationary process 
ß i(t) can be characterized by the covariance function 

or equivalently, by its Fourier transform, the complex cross 
spectrum Fij(co ). 

The cross spectrum may also be formed directly from the 
Fourier representation of the process itself, 

(I)i(t) = • 4)i(60) exp (iwt) dw (39) 
through the relation 

{ ck ,*(co)ck ,4•co') } = F o4•w)rS(w - w') (40) 

where (pj*(c0) denotes the complex conjugate, and the reality 
of (I) i requires 

•bj*((d.))-- •bj( -- (_.o) (41) 

Fo•w) = Fj,(--w)= F•j*(--w) (42) 

At each frequency w, the cross spectrum Fij may be diago- 
nalized by transforming from &•(co) to the coefficients c•(co) of 
the expansion with respect to the complex EOFs, e•(co) [cf. 
Brillinger, 1981 ]: 

qbi(('0) -- E eiotc,.,(('ø) (43) 

where the EOFs satisfy the eigenvalue equation 

• Fifl.•o, = ;•o, eio, (44) 
J 

The set of variables c•(co) provides a completely orthog- 
onalized representation of (Ih(t), 

{ c•*(ro)c .(ro')} = 6•.6(ro - ro')•(ro) (45) 

Thus the spectrum 2•(w), together with the set of EOFs ei•(w), 
may be regarded as the most compact complete representation 
of the second-momentum structure of •it(t). However, the in- 
formation content is still formidable, as a different set of EOFs 
and eigenvalues is required for each frequency band. 

The POP analysis may be regarded as an attempt to inter- 
polate both the EOF pattern structure and the EOF energy 
levels across the frequency spectrum. Translating (37) into the 
frequency domain and again using lower-case symbols for the 
Fourier transforms, the POP amplitude cross spectrum for a 
given noise cross spectrum is given by 

{nt'(-w)nt'(w)} (46) {a•,(-w)a•(w)} = (f2,, + co)(f2•, -- co) 
(the quadratic products must be formed here using the nega- 
tive frequency amplitudes rather than complex conjugate am- 
plitudes, since (41) and the second part of (42) do not hold for 
the complex processes A.(t) and N(t)). 

Up to this point the second moments of the POP ampli- 

tudes have simply been expressed in terms of the second mo- 
ments of the forcing. If we require the same number of POPs 
to describe the process as spectral EOFs, and if the forcing 
cross spectrum is as complex as the response, clearly nothing 
has been gained. However, it is the basic premise of the pres- 
ent dynamic model expansion, as in the general ARMA ap- 
proach, that the dominant structures in the spectrum may be 
attributed to a relatively small number of dynamical processes 
represented explicitly in the model, rather than to the external 
stochastic forcing which is left as a residual after one has 
identified the dominant internal processes. Thus it is assumed 
that the residual forcing is white in the frequency domain, or 
is at least smoothly varying, exhibiting no marked resonances 
of the type represented by the denominator in (46). In this 
case, the structure of the cross spectrum can be characterized 
by the (relatively few) POP patterns, the positions of the 
quasi-resonance POP frequencies fit, in the complex frequency 
plane, and the strengths and cross correlations of the effective 
forcing at these frequencies. 

The advantage of the POP technique as a method of com- 
pressing the detailed information contained in the complete 
cross-spectral matrix clearly comes to bear only for relatively 
broad spectra containing many frequency bands. In the limit 
of a single-frequency, very narrow band spectrum, the set of 
POPs reduces to the set of complex EOFs at that frequency. 

An alternative technique for compressing the information 
content of a broadband cross spectrum is to apply a complex 
EOF analysis in the time domain to a set of time series con- 
sisting of the original time series and their Hilbert transforms 
[Brillinger, 1981; Hotel, 1984]. This is equivalent to treating 
the entire cross spectrum formally as a single-frequency band, 
i.e., to averaging over the (one-sided) cross spectrum. Both 
techniques yield similar sets of reduced patterns, but the POP 
analysis, in addition, provides information on the frequency 
structure of the spectrum by identifying the spectral peaks (the 
POP eigenfrequencies) and peak widths (the inverse damping 
time scales) associated with different patterns. In the limit of 
the single-frequency, narrow-band spectrum, the Hilbert trans- 
form method again becomes equivalent to the POP and the 
spectral EOF analysis techniques. 

5. CONCLUSIONS 

A general method has been described for constructing opti- 
mal reduced dynamical models for systems with many degrees 
of freedom. The technique combines the approach used in 
empirical orthogonal function or principal prediction pattern 
analyses, in which systems with a large number of degrees of 
freedom are reduced to a few dominant patterns, with ARMA 
methods for constructing simple dynamical models from data. 
Both methods have been generalized to nonlinear and time- 
dependent systems. 

The simultaneous determination of the optimal set of prin- 
cipal interaction patterns and the optimal dynamical model 
describing the evolution of the PIP amplitudes yields a cou- 
pled nonlinear eigenvalue problem for the PIPs and a stan- 
dard minimization problem for the dynamical model parame- 
ters. The full nonlinear problem can generally be solved nu- 
merically by a Newton method, i.e., by iterating a local linear 
minimization problem. 

In the linear case the PIPs reduce to principal oscillation 
patterns, which represent the eigenoscillations of the reduced 
linear dynamical system. 

As a diagnostic tool, the POPs provide a smoothed repre- 
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sentation of the cross-spectral covariance matrix of the full 
system in the frequency domain. The extensive information 
contained in the complete cross spectrum is reduced to a finite 
set of patterns characterized by a finite set of complex reso- 
nant frequencies. 

Examples and applications are given in the papers of yon 
Storch et al. [this issue] and E. Maier-Reimer et al. (manu- 
script in preparation, 1988). 
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