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Abstract

To apply eyeshadow without a brush, should I use a cotton
swab or a toothpick? Questions requiring this kind of phys-
ical commonsense pose a challenge to today’s natural lan-
guage understanding systems. While recent pretrained mod-
els (such as BERT) have made progress on question answer-
ing over more abstract domains – such as news articles and
encyclopedia entries, where text is plentiful – in more physi-
cal domains, text is inherently limited due to reporting bias.
Can AI systems learn to reliably answer physical common-
sense questions without experiencing the physical world?

In this paper, we introduce the task of physical commonsense
reasoning and a corresponding benchmark dataset Physical

Interaction: Question Answering or PIQA . Though hu-
mans find the dataset easy (95% accuracy), large pretrained
models struggle (∼75%). We provide analysis about the di-
mensions of knowledge that existing models lack, which of-
fers significant opportunities for future research.

Introduction

Physical commonsense is a common understanding of the
physical properties and affordances of everyday objects.
Physical commonsense is an essential aspect of how we
move through and interact with the world, but as its is as-
sumed knowledge, it is rarely articulated and therefore ab-
sent from the abstract world of text inhabited by Natural
Language Processing (NLP).

Much of the recent progress in NLP has focused on build-
ing large-scale pretrained representations from unlabeled
text (Radford et al. 2018; Devlin et al. 2019; Liu et al. 2019).
These representations transfer well to core abstract tasks
and domains, such as answering questions given an encyclo-
pedia article (Rajpurkar et al. 2016) or recognizing named
entities (Tjong Kim Sang and De Meulder 2003).

However, there is a crucial disconnect between how deep
models – versus humans – learn language. While humans
continuously refine a rich model of the world through ex-
perience, today’s state-of-the-art NLP models are instead
spoon-fed mass quantities of text and attempt to reverse en-
gineer the real world. This leads to issues of reporting bias,
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a. Squeeze the water 

bottle and press it 

against the yolk. 

Release, which creates 

suction and lifts the yolk.

To separate egg whites from the yolk
using a water bottle, you should…

b. Place the water bottle 

and press it against the 

yolk. Keep pushing,

which creates suction 

and lifts the yolk.

???

a!

Figure 1: PIQA : Given a physical goal expressed in nat-
ural language, like ‘to separate egg whites...,’ a model must
choose the most sensible solution. Our dataset tests the abil-
ity of natural language understanding models to link text to
a robust intuitive-physics model of the world. Here, humans
easily pick answer a) because separating the egg requires
pulling the yolk out, while machines are easily fooled.

whereby everyday ‘low level’ physical details are commonly
ignored or misrepresented in text. While reporting bias is
often discussed colloquially in the context of physical or vi-
sual attributes (e.g. computers assuming all sheep are black),
the community lacks a large-scale resource for studying and
evaluating such physical knowledge.

To study this question and begin bridging the represen-
tational gap, we introduce Physical Interaction: Question
Answering, or PIQA to evaluate language representa-
tions on their knowledge of physical commonsense. We fo-
cus on everyday situations with a preference for atypical so-
lutions. Our dataset is inspired by instructables.com,
which provides users with instructions on how to build, craft,
bake, or manipulate objects using everyday materials. We
asked annotators to provide semantic perturbations or al-
ternative approaches which are otherwise syntactically and
topically similar to ensure physical knowledge is targeted.
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a. Shape, Material, and Purpose

[Goal] Make an outdoor pillow
[Sol1] Blow into a tin can and tie with rubber band ✘

[Sol2] Blow into a trash bag and tie with rubber band ✔

[Goal] To make a hard shelled taco,
[Sol1] put seasoned beef, cheese, and lettuce onto the hard

shell.
✘

[Sol2] put seasoned beef, cheese, and lettuce into the hard
shell.

✔

[Goal] How do I find something I lost on the carpet?
[Sol1] Put a solid seal on the end of your vacuum and turn it

on.
✘

[Sol2] Put a hair net on the end of your vacuum and turn it on. ✔

b. Commonsense Convenience

[Goal] How to make sure all the clocks in the house are set
accurately?

[Sol1] Get a solar clock for a reference and place it just outside
a window that gets lots of sun. Use a system of call and
response once a month, having one person stationed at
the solar clock who yells out the correct time and have
another person move to each of the indoor clocks to
check if they are showing the right time. Adjust as nec-
essary.

✘

[Sol2] Replace all wind-ups with digital clocks. That way, you
set them once, and that’s it. Check the batteries once a
year or if you notice anything looks a little off.

✔

Figure 2: PIQA covers a broad array of phenomena. Above are two categories of example QA pairs. Left are examples that
require knowledge of basic properties of the objects (flexibility, curvature, and being porous), while on the Right both answers
may be technically correct but one is more convenient and preferable.

The dataset is further cleaned of basic artifacts using the
AFLite algorithm introduced in (Sakaguchi et al. 2020;
Sap et al. 2019) which is an improvement on adversarial fil-
tering (Zellers et al. 2018; 2019b).

Throughout this work we first detail the construction of
our new benchmark for physical commonsense. Second, we
show that popular approaches to large-scale language pre-
training, while highly successful on many abstract tasks,
fail to perform well when a physical model of the world is
required. Finally, our goal is to elicit further research into
building language representations that capture details of the
real world. To these ends, we perform error and corpora
analyses to provide insights for future work.

Dataset

We introduce a new dataset, PIQA , for benchmarking
progress in physical commonsense understanding. The un-
derlying task is multiple choice question answering: given a
question q and two possible solutions s1, s2, a model or a
human must choose the most appropriate solution, of which
exactly one is correct. We collect data with how-to instruc-
tions as a scaffold, and use state-of-the-art approaches for
handling spurious biases, which we will discuss below.

Instructables as a source of physical commonsense

Our goal is to construct a resource that requires concrete
physical reasoning. To achieve this, we provide a prompt to
the annotators derived from instructables.com. The
instructables.com website is a crowdsourced collec-
tion of instructions for doing everything from cooking to car
repair. In most cases, users provide images or videos detail-
ing each step and a list of tools that will be required. Most
goals are simultaneously rare and unsurprising. While an an-
notator is unlikely to have built a UV-Flourescent steampunk
lamp or made a backpack out of duct tape, it is not surpris-
ing that someone interested in home crafting would create
these, nor will the tools and materials be unfamiliar to the
average person. Using these examples as the seed for their

annotation, helps remind annotators about the less prototyp-
ical uses of everyday objects.

Second, and equally important, is that instructions build
on one another. This means that any QA pair inspired by an
instructable will be more likely to explicitly state assump-
tions about what preconditions need to be met to start the
task and what postconditions define success.

Collecting data through goal-solution pairs

Unlike traditional QA tasks, we define our dataset in terms
of Goal and Solution pairs (see Figure 2 for example Goal-
Solution pairs and types of physical reasoning). The Goal in
most cases can be viewed as indicating a post-condition and
the solutions indicate the procedure for accomplishing this.
The more detailed the goal, the easier it is for annotators to
write both correct and incorrect solutions. As noted above,
the second component of our annotation design is reminding
people to think creatively. We initially experimented with
asking annotators for (task, tool) pairs via unconstrained
prompts, but found that reporting bias swamped the dataset.
In particular, when thinking about how to achieve a goal,
people most often are drawn to prototypical solutions and
look for tools in the kitchen (e.g. forks and knives) or the
garage (e.g. hammers and drills). They rarely considered the
literal hundreds of other everyday objects that might be in
their own homes (e.g. sidewalk chalk, shower curtains, etc).

To address this, and flatten the distribution of referenced
objects (see Figure 5), we prompt the annotations with
links to instructables. Specifically, annotators were asked to
glance at the instructions of an instructable and pull out or
have it inspire them to construct two component tasks. They
would then articulate the goal (often centered on atypical
materials) and how to achieve it. In addition, we asked them
to provide a permutation to their own solution which makes
it invalid, often subtly (Figure 3). To further assist diversity
we seed annotators with instructables drawn from six cate-
gories (costume, outside, craft, home, food, and workshop).
We asked that two examples be drawn per instructable to en-
courage one of them to come later in the process and require

7433



Figure 3: In the HIT design the instructable provides inspira-
tion to think out-of-the-box (1 Sock, 3 Products) and annota-
tors are asked for 1. a physical goal, 2. a valid solution, and
3. a trick. The trick should sound reasonable, but be wrong
often due to a subtle misunderstanding of preconditions or
physics. Additional HITs (not shown) were run for qualifi-
cation prior to this stage and validation afterwards.2

precise articulation of pre-conditions.

During validation, examples with low agreement were re-
moved from the data. This often meant that correct exam-
ples were removed that required expert level knowledge of
a domain (e.g. special woodworking terminology) which
should not fall under the umbrella of “commonsense.” Be-
cause, we focus on human generated tricks, annotators were
free to come up with clever ways to hide deception. Of-
ten, this meant making very subtle changes to the solution
to render it incorrect. In these cases, the two solutions may
differ by as little as one word. We found both simple lin-
guistic tricks (e.g. negation and numerical changes) in ad-
dition to swapping a key action or item for another that is
topically similar but not helpful for completing the given
goal. For this reason, our interface also includes a diff

button which highlights where the solutions differ. This im-
proved annotator accuracy and speed substantially. Annota-
tor pay averaged > 15$/hr according to both self-reporting
on turkerview.com and our timing calculations.

Statistics

In total our dataset is comprised of over 16,000 training QA
pairs with an additional ∼2K and ∼3k held out for devel-
opment and testing, respectively. Our goals, as tokenized by

2In addition to this design, we also include a qualification HIT
which contained well constructed and underspecified (goal, solu-
tion) pairs. Annotators had to successfully (>80%) identify which
were well formed to participate in the main HIT. Data was collected
in batches of several thousand triples and validated by other anno-
tators for correctness. Users will low agreement were de-qualed.

Figure 4: Sentence length distributions for both correct so-
lutions and tricks are nearly identical across the training set.

Spacy,3 average 7.8 words and both correct and incorrect
solutions average 21.3 words. In total, this leads to over 3.7
million lexical tokens in the training data.

Figure 4 shows a plot of the correct and incorrect se-
quence lengths (as tokenized by the GPT BPE tokenizer),
with the longest 1% of the data removed. While there are
minor differences, the two distributions are nearly identical.

We also analyzed the overlap in the vocabulary and find
that in all cases (noun, verb, adjective, and adverb) we see
at least an 85% overlap between words used in correct and
incorrect solutions. In total we have 6,881 unique nouns,
2,493 verbs, 2,263 adjectives, and 604 adverbs in the train-
ing data.. The top 75 most common of each are plotted in
Figure 5 alongside their cumulative distributions. Again, this
helps verify that the dataset revolves very heavily around
physical phenomena, properties, and manipulations. For ex-
ample, the top adjectives include state (dry, clean, hot) and
shape (small, sharp, flat); adverbs include temporal con-
ditions (then, when) and manner (quickly, carefully, com-
pletely). These properties often differentiate correct from in-
correct answers, as shown in examples throughout the paper.

Removing Annotation Artifacts

As noted previously, we use AFLite (Sakaguchi et al.
2020) to remove stylistic artifacts and trivial examples from
the data, which have been shown to artificially inflate model
performance on previous NLI benchmarks (Poliak et al.
2018; Gururangan et al. 2018). The AFLite algorithm per-
forms a systematic data bias reduction: it discards instances
whose given feature representations are collectively highly
indicative of the target label. In practice, we use 5,000 ex-
amples from the original dataset to fine-tune BERT-Large
for this task and compute the corresponding embeddings of
all remaining instances. AFLite uses an ensemble of lin-
ear classifiers trained on random subsets of the data to de-
termine whether these pre-computed embeddings are strong
indicators of the correct answer option. Instead of having to
specifically identify the possible sources of biases, this ap-
proach enables unsupervised data bias reduction by relying
on state-of-the-art methods to uncover undesirable annota-
tion artifacts. For more information about AFLite, please
refer to (Sakaguchi et al. 2020).

3https://spacy.io/
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Figure 5: Here we show the frequency distributions for the top seventy-five words tagged by Spacy as noun, verb, adverb or
adjective. We see that the vast majority of concepts focus on physical properties (e.g. small, hot, clean, smooth) and how objects
can be manipulated (e.g. soak, roll, fill, hang). Additionally, we see strongly zipfian behavior in all tags but the adverbs.

Experiments

In this section, we test the performance of state-of-the-
art natural language understanding models on our dataset,
PIQA. In particular, we consider the following three large-
scale transformer models:

a. GPT (Radford et al. 2018) is a model that processes text
left-to-right, and was pretrained using a language modeling
objective. We use the original 124M parameter GPT model.
b. BERT (Devlin et al. 2019) is a model that process
text bidirectionally, and thus was pretrained using a special
masked language modeling objective. We use BERT-Large,
with 340M parameters.
c. RoBERTa (Liu et al. 2019) is a version of the BERT
model that was made to be significantly more robust through
pretraining on more data and careful validation of the pre-
training hyperparameters. We use RoBERTa-Large, which
has 355M parameters.

We follow standard best practices in adapting these mod-
els for two-way classification. We consider the two solution
choices independently: for each choice, the model is pro-
vided the goal, the solution choice, and a special [CLS]
token. At the final layer of the transformer, we extract the

hidden states corresponding to the positions of each [CLS]
token. We apply a linear transformation to each hidden state
and apply a softmax over the two options: this approximates
the probability that the correct solution is option A or B.
During finetuning, we train the model using a cross-entropy
loss over the two options.4

Due to the inherent challenge of PIQA, we found that
finetuning was often unstable. With some hyperparameter
configurations, validation performance is around chance,
particularly for BERT. We follow best practices in using a
grid search over learning rates, batch sizes, and the num-
ber of training epochs for each model, and report the best-
scoring configuration as was found on the validation set. For
all models and experiments, we used the transformers
library and truncated examples at 150 tokens, which affects
1% of the data. Manual inspection of the development errors
show that some “mistakes” are actually correct but required
a web-search to verify.5 It is therefore, completely reason-

4Additionally, for GPT, we follow the original implementation
and add an additional language modeling loss, which we found to
improve training stability.

5Human performance was calculated by a majority vote. Anno-
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Accuracy (%)
Model Size Validation Test

Random Chance 50.0 50.0
Majority Class 50.5 50.4

OpenAI GPT 124M 70.9 69.2
Google BERT 340M 67.1 66.8
FAIR RoBERTa 355M 79.2 77.1

Human 94.9

Table 1: Results of state-of-the-art natural language under-
standing models on PIQA, compared with human perfor-
mance. The results show a significant gap between model
and human performance, of roughly 20 absolute points.

able that automated methods trained on large web crawls
may eventually surpass human performance here.

Note, human evaluation was performed on development
data, because once the train, development, and test folds
were automatically produced by AFLite, the test data was
placed on a blind leaderboard hidden from us and all users
and only automatically evaluated via docker upload. Addi-
tionally, model submissions are capped to one per week to
avoid fitting to the test data.

Results

We present our results in Table 1. As the dataset was con-
structed to be adversarial to BERT, it is not surprising that it
performs the worst of three models despite generally outper-
forming GPT on most other benchmarks. Comparing GPT
and RoBERTa we see that despite more training data, a
larger vocabulary, twice the number of parameters and care-
ful construction of robust training, there is only a 6pt perfor-
mance gain and RoBERTa still falls nearly a 20 points short
of human performance on this task. As noted throughout,
exploring this gap is precisely the purpose for PIQA exist-
ing and why RoBERTa is so summarily fooled is the focus
of the remainder of this paper.

Analysis

In this section, we unpack the results of state-of-the-art mod-
els on PIQA. In particular, we take a look at the errors made
by the top-performing model RoBERTa, as a view towards
the physical commonsense knowledge that can be learned
through language alone.

PIQA as a diagnostic for physical understanding

The setup of PIQA allows us to use it to probe the inner
workings of deep pretrained language models, and to deter-
mine the extent of their physical knowledge. In this way, our
dataset can augment prior work on studying to what extent
models such as BERT understand syntax (Goldberg 2019).
However, while syntax is a well studied problem within lin-
guistics, physical commonsense does not have as rich a lit-

tators were chosen to participate that achieved ≥90% on the quali-
fication HIT from before.

Figure 6: Breaking down PIQA by edit distance between
solution choices. Top: Cumulative histogram of examples in
the validation and training sets, in terms of minimum edit
distance d between the two solution choices. The majority
of the dataset consists of small tweaks between the two so-
lution pairs; nevertheless, this is enough to confuse state-of-
the-art NLP models. Bottom: RoBERTa accuracy over vali-
dation examples with a minimum edit distance of d. Dataset
difficulty increases somewhat as the two solution pairs are
allowed to drift further apart.

erature to borrow from, making its dimensions challenging
to pin down.

Simple concepts. Understanding the physical world re-
quires a deep understanding of simple concepts, such as
“water” or “ketchup,” and their affordances and interactions
with respect to other concepts. Though our dataset cov-
ers interactions between and with common objects, we can
analyze the space of concepts in the dataset by perform-
ing a string alignment between solution pairs. Two solution
choices that differ by editing a single phrase must by defini-
tion test the commonsense understanding of that phrase.

In Figure 6 we show the distribution of the edit distance
between solution choices.6 Most of the dataset covers simple
edits between the two solution choices: roughly 60% of the
dataset in both validation and training involves a 1-2 word

6We compute edit distance over tokenized and lowercased
strings with punctuation removed. We use a cost of 1 for edits,
insertions, and deletions.

7436



Figure 7: Common concepts as a window to RoBERTa’s un-
derstanding of the physical world. We consider validation
examples (q, s1, s2) wherein s1 and s2 differ from each
other by a given word w. Left, we show the validation ac-
curacy for common words w, while the number of dataset
examples are shown right. Though certain concepts such as
water occur quite frequently, RoBERTa nevertheless finds
those concepts difficult, with 75% accuracy. Additionally,
on common relations such as ‘cold’, ‘on’, ‘before’, and ‘af-
ter’ RoBERTa performs roughly at chance.

edit between solutions. In the bottom of Figure 6, we show
that the dataset complexity generally increases with the edit
distance between the solution pairs. Nevertheless, the head
of the distribution represents a space that is simple to study.

Single-word edits. In Figure 7, we plot the accuracy
of RoBERTa among dataset examples that differ by a sin-
gle word. More formally, we consider examples (q, s1, s2)
whereby moving from s1 to s2, or vice versa, requires edit-
ing a given word w.7 We show examples of words w that
occur frequently in both the training and validation splits of
the dataset, which allows RoBERTa to refine representations
of these concepts during training and gives us a large enough
sample size to reliably estimate model performance.

As shown, RoBERTa struggles to understand certain
highly flexible relations. In particular, Figure 7 highlights
the difficulty of correctly answering questions that differ by
the words ‘before,’ ‘after’, ‘top‘, and ‘bottom’: RoBERTa
performs nearly at chance when encountering these.

Interestingly, the concepts shown in Figure 7 suggest that
RoBERTa also struggles to understand many common, more
versatile, physical concepts. Though there are 300 training
examples wherein the solution choices s1, s2 differ by the
word ‘water.’ RoBERTa performs worse than average on
these replacements. On the other hand, RoBERTa does much
better at certain nouns, such as ‘spoon.’

7We additionally allow for an additional insertion; this helps
to capture simple phrases like going from ‘water’ to ‘olive oil.’
Nevertheless, these multiword expressions tend to be less common,
which is why we omit them in Figure 7.

Figure 8: The most common replacements for three selected
words: ‘water,’ ‘spoon,’ and ‘freeze.’ These cover several
key dimensions: ‘water’ is a broad noun with many proper-
ties and affordances, whereas ‘spoons’ are much narrower in
scope. Perhaps as a result, RoBERTa performs much butter
at examples where ‘spoon’ is the pivot word (90%) versus
‘water’ (75%). Freeze has an accuracy of 66% on the vali-
dation set, and shows that verbs are challenging as well.

Common replacements in PIQA. We dig into this
further in Figure 8, where we showcase the most com-
mon replacements for three examples: ‘water,’ ‘spoon,’ and
‘freeze.’ While ‘water’ is prevalent in the training set, it is
also highly versatile. One can try to substitute it with a vari-
ety of different household items, such as ‘milk’ or ‘alcohol,’
often to disastrous effects. However, ‘spoons’ have fewer
challenging properties. A spoon cannot generally be substi-
tuted with a utensil that is sharp or has prongs, such as a fork,
a knife, or a toothpick. RoBERTa obtains high accuracy on
‘spoon’ examples, which suggests that it might understand
this simple affordance, but does not capture the long tail of
affordances associated with ‘water.’

Qualitative results

Our analysis thus far has been on simple-to-analyze single
word expressions, where we have shown that state-of-the-
art language models (such as RoBERTa) struggle at a nu-
anced understanding of key commonsense concepts, such
as relations. To further probe the knowledge gap of these
strong models, we present qualitative examples in Figure 9.
The examples are broadly representative of larger patterns:
RoBERTa can recognize clearly ridiculous generations (Fig-
ure 9, top left) and understands differences between some
commonsense concepts (bottom left). It’s important to note,
that in both cases the correct answer is prototypical and
something we might expect the models to have seen before.
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Correct examples

[Goal] Best way to pierce ears.
[Sol1] It is best to go to a professional to get your ear pierced to

avoid medical problems later.

✔

[Sol2] The best way to pierce your ears would be to insert a nee-
dle half inch thick into the spot you want pierced.

✘

[Goal] How do you reduce wear and tear on the nonstick finish
of muffin pans?

[Sol1] Make sure you use paper liners to protect the nonstick

finish when baking muffins and cupcakes in muffin pans.

✔

[Sol2] Make sure you use grease and flour to protect the non-
stick finish when baking muffins and cupcakes in muffin
pans.

✘

Incorrect examples

[Goal] How can I quickly and easily remove strawberry stems?
[Sol1] Take a straw and from the top of the strawberry push the

straw through the center of the strawberry until the stem

pops off.

✘

[Sol2] Take a straw and from the bottom of the strawberry push
the straw through the center of the strawberry until the
stem pops off.

✔

[Goal] how to add feet to a coaster.
[Sol1] cut four slices from a glue stick, and attatch to the coaster

with glue.
✔

[Sol2] place a board under the coaster, and secure with zip ties

and a glue gun.

✘

Figure 9: Qualitative analysis of RoBERTa’s predictions with. Left: Two examples that RoBERTa gets right. Right: two exam-
ples that RoBERTa gets incorrect. Short phrases that differ between solution 1 and solution 2 are shown in bold and italics.

However, it struggles to tell the difference between sub-
tle relations such as top and bottom (top right of Figure 9).
Moreover, it struggles with identifying non-prototypical sit-
uations (bottom right). Though using a gluestick as feet for
a coaster is uncommon, to a human familiar with these con-
cepts we can visualize the action and its result to verify that
the goal has been achieved. Overall, these examples suggest
that physical understanding – particularly involving novel
combinations of common objects – challenges models that
were pretrained on text only.

Related Work

Physical understanding is broad domain that touches on ev-
erything from scientific knowledge (Schoenick et al. 2016)
to the interactive acquisition of knowledge by embodied
agents (Thomason et al. 2016). To this end, work related to
the goals of our benchmark span the NLP, Computer Vision
and Robotics communities.

Language. Within NLP, in addition to large scale mod-
els, there has also been progress on reasoning about cause
and effect effects/implications within these models (Bosse-
lut et al. 2019), extracting knowledge from them (Petroni
et al. 2019), and investigating where large scale language
models fail to capture knowledge of tools and elided proce-
dural knowledge in recipes (Bisk et al. 2019). The notion of
procedural knowledge and instruction following is a more
general related task within vision and robotics. From text
alone, work has shown that much can be understood about
the implied physical situations of verb usage (Forbes and
Choi 2017) and relative sizes of objects (Elazar et al. 2019).

Vision. Physical knowledge can be discovered and evalu-
ated within the visual world. Research has studied predicting
visual relationships in images (Krishna et al. 2016) and as
well as actions and their dependent objects (Yatskar, Zettle-
moyer, and Farhadi 2016). Relatedly, the recent HAKE
dataset (Liu et al. 2019) specifically annotates which
object/body-parts are essential to completing or defining an
action. Related to physical commonsense, research in visual
commonsense has studied intuitive physics (Wu et al. 2017),
cause-effect relationships (Mottaghi et al. 2016), and what
can be reasonably inferred beyond a single image (Zellers et

al. 2019a).
Robotics. Learning from interaction and intuitive physics

(Agrawal et al. 2016) can also be encoded as priors when
exploring the world (Byravan et al. 2018) and internal mod-
els of physics, shape, and material strength enable advances
in tool usage (Toussaint et al. 2018) or construction (Nair,
Balloch, and Chernova 2019). Key to our research aims in
this work is helping to build language tools which capture
enough physical knowledge to speed up the bootstrapping of
robotic-language applications. Language tools should pro-
vide strong initial priors for learning (Tellex et al. 2011;
Matuszek 2018) that are then refined through interaction and
dialogue (Gao et al. 2016).

Conclusion

We have evaluated against large-scale pretrained models as
they are in vogue as the de facto standard of progress within
NLP, but are primarily interested in their performance and
failings as a mechanism for advancing the position that
learning about the world from language alone, is limiting.
Future research, may “match” humans on our dataset by
finding a large source of in-domain data and fine-tuning
heavily, but this is very much not the point. Philosophi-
cally, knowledge should be learned from interaction with the
world to eventually be communicated with language.

In this work we introduce the Physical Interaction:
Question Answering or PIQA benchmark for evaluating
and studying physical commonsense understanding in natu-
ral language models. We find the best available pretrained
models lack an understanding of some of the most basic
physical properties of the world around us. Our goal with
PIQA is to provide insight and a benchmark for progress to-
wards language representations that capture knowledge tra-
ditionally only seen or experienced, to enable the construc-
tion of language models useful beyond the NLP community.

Acknowledgements

We thank the anonymous reviewers for their insightful sug-
gestions. This research was supported in part by NSF (IIS-
1524371, IIS-1714566), DARPA under the CwC program
through the ARO (W911NF-15-1-0543), DARPA under the

7438



MCS program through NIWC Pacific (N66001-19-2-4031),
and the NSF-GRFP No. DGE-1256082. Computations on
beaker.org were supported in part by Google Cloud.

References

Agrawal, P.; Nair, A.; Abbeel, P.; Malik, J.; and Levine, S.
2016. Learning to poke by poking: Experiential learning of
intuitive physics. In NeurIPS.

Bisk, Y.; Buys, J.; Pichotta, K.; and Choi, Y. 2019. Bench-
marking hierarchical script knowledge. In NAACL-HLT.

Bosselut, A.; Rashkin, H.; Sap, M.; Malaviya, C.; Celikyil-
maz, A.; and Choi, Y. 2019. COMET: Commonsense Trans-
formers for Automatic Knowledge Graph Construction. In
ACL.

Byravan, A.; Leeb, F.; Meier, F.; and Fox, D. 2018. Se3-
pose-nets: Structured deep dynamics models for visuomotor
planning and control. In ICRA.

Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. In NAACL-HLT.

Elazar, Y.; Mahabal, A.; Ramachandran, D.; Bedrax-Weiss,
T.; and Roth, D. 2019. How large are lions? inducing distri-
butions over quantitative attributes. In ACL.

Forbes, M., and Choi, Y. 2017. Verb physics: Relative phys-
ical knowledge of actions and objects. In ACL.

Gao, Q.; Doering, M.; Yang, S.; and Chai, J. 2016. Physical
causality of action verbs in grounded language understand-
ing. In ACL, 1814–1824.

Goldberg, Y. 2019. Assessing BERT’s Syntactic Abilities.
arXiv:1901.05287.

Gururangan, S.; Swayamdipta, S.; Levy, O.; Schwartz, R.;
Bowman, S.; and Smith, N. A. 2018. Annotation artifacts in
natural language inference data. In NAACL-HLT, 107–112.

Krishna, R.; Zhu, Y.; Groth, O.; Johnson, J.; Hata, K.;
Kravitz, J.; Chen, S.; Kalantidis, Y.; Li, L.-J.; Shamma,
D. A.; Bernstein, M.; and Fei-Fei, L. 2016. Visual genome:
Connecting language and vision using crowdsourced dense
image annotations. In arXiv:1602.07332.

Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy,
O.; Lewis, M.; Zettlemoyer, L.; and Stoyanov, V. 2019.
RoBERTa: A Robustly Optimized BERT Pretraining Ap-
proach. arXiv:1907.11692.

Matuszek, C. 2018. Grounded Language Learning: Where
Robotics and NLP Meet. In IJCAI, 5687 – 5691.

Mottaghi, R.; Rastegari, M.; Gupta, A.; and Farhadi, A.
2016. “what happens if...” learning to predict the effect
of forces in images. In Leibe, B.; Matas, J.; Sebe, N.; and
Welling, M., eds., ECCV, 269–285.

Nair, L.; Balloch, J.; and Chernova, S. 2019. Tool Mac-
gyvering: Tool Construction Using Geometric Reasoning. In
ICRA.
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