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Abstract. This paper reviews the first challenge on efficient perceptual
image enhancement with the focus on deploying deep learning models on
smartphones. The challenge consisted of two tracks. In the first one, par-
ticipants were solving the classical image super-resolution problem with a
bicubic downscaling factor of 4. The second track was aimed at real-world
photo enhancement, and the goal was to map low-quality photos from the
iPhone 3GS device to the same photos captured with a DSLR camera.
The target metric used in this challenge combined the runtime, PSNR
scores and solutions’ perceptual results measured in the user study. To
ensure the efficiency of the submitted models, we additionally measured
their runtime and memory requirements on Android smartphones. The
proposed solutions significantly improved baseline results defining the
state-of-the-art for image enhancement on smartphones.
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1 Introduction

The majority of the current challenges related to AI and deep learning for image
restoration and enhancement [32,35,3,4,6,28] are primarily targeting only one
goal — high quantitative results measured by mean square error (MSE), peak
signal-to-noise ratio (PSNR), structural similarity index (SSIM), mean opinion
score (MOS) and other similar metrics. As a result, the general recipe for achiev-
ing top results in these competitions is quite similar: more layers/filters, deeper
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Fig. 1: A low-res image (left) and the same image super-resolved by SRGAN (right).

architectures and longer training on dozens of GPUs. However, one question
that might arise here is whether often marginal improvements in these scores
are actually worth the tremendous computational complexity increase. Maybe
it is possible to achieve very similar perceptual results by using much smaller
and resource-efficient networks that can run on common portable hardware like
smartphones or tablets. This question becomes of special interest due to the
uprise of many machine learning and computer vision problems directly related
to these devices, such as image classification [31,10], image enhancement [13,14],
image super-resolution [8,34], object tracking [38,11], visual scene understand-
ing [21,7], face detection and recognition [20,26], etc. A detailed description of
the smartphones’ hardware acceleration resources that can be potentially used
for deep learning and mobile machine learning frameworks are given in [15].

The PIRM 2018 challenge on perceptual image enhancement on smartphones
is the first step towards benchmarking resource-efficient architectures for com-
puter vision and deep learning problems targeted at high perceptual results and
deployment on mobile devices. It considers two classical computer vision prob-
lems — image super-resolution and enhancement, and introduces specific target
performance metrics that are taking into account both networks’ runtime, their
quantitative and qualitative visual results. In the next sections we describe the
challenge and the corresponding datasets, present and discuss the results and
describe the proposed methods.

2 PIRM 2018 challenge

The PIRM 2018 challenge on perceptual image enhancement on smartphones
has the following phases:

i development: the participants get access to the data;
ii validation: the participants have the opportunity to validate their solutions

on the server and compare the results on the validation leaderboard;
iii test: the participants submit their final results, models, and factsheets.

The PIRM 2018 challenge on perceptual image enhancement on smartphones
consists of two different tracks described below.
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Fig. 2: The original iPhone 3GS photo (left) and the same image enhanced by the
DPED network [13] (right).

2.1 Track A: Image super-resolution

The first track is targeting a conventional super-resolution problem, where the
goal is to reconstruct the original image based on its bicubically downscaled
version. To make the task more practical, we consider a downscaling factor of
4, some sample results for which obtained with SRGAN network [19] are shown
in the figure 1. To train deep learning models, the participants used DIV2K
dataset [1] with 800 diverse high-resolution train images crawled from the Inter-
net.

2.2 Track B: Image enhancement

The goal of the second track is to automatically improve the quality of photos
captured with smartphones. In this task, we used DPED [13] dataset consisting
of several thousands of images captured simultaneously with three smartphones
and one high-end DSLR camera. Here we consider only a subtask of mapping
photos from a very old iPhone 3GS device into the photos from Canon 70D
DSLR. An example of the original and enhanced DPED test images are shown
in the figure 2.

3 Scoring and validation

The participants were required to submit their models as TensorFlow .pb files
that were later run on the test images and validated based on three metrics:

• Their speed on HD-resolution (1280×720 pixels) images measured compared
to the baseline SRCNN [8] network,

• PSNR metric measuring their fidelity score,

• MS-SSIM [37] metric measuring their perceptual score.
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Though MS-SSIM scores are known to correlate better with human image
quality perception than PSNR, they are still often not reflecting many aspects
of real image quality. Therefore, during the final test phase we conducted a user
study involving more than 2000 participants (using MTurk platform 1) that were
asked to rate the visual results of all submitted solutions, and the resulting Mean
Opinion Scores (MOS) then replaced MS-SSIM results. For Track B methods,
the participants in the user study were invited to select one of four quality levels
(probably worse, probably better, definitely better, excellent) for each method
result in comparison with the original input image. The expressed preferences
were averaged per each test image and then per each method to obtain the final
MOS.

The final score of each submission was calculated as a weighted sum of the
previous scores:

Total Score = α · (PSNRsolution − PSNR baseline )+

β · (MS-SSIM solution − MS-SSIM baseline )+

γ · min(4, Time baseline / Time solution ).

(1)

To cover a broader range of possible targets, we have additionally introduced
three validation tracks with different weight coefficients: the first one (score A)
was favoring solutions with high quantitative results, the second one (score B) —
with high perceptual results, and the third one (score C) was aimed at the best
balance between the speed, visual and quantitative scores. Below are the exact
coefficients for all tracks:

Image super-resolution:

• PSNR baseline = 26.5, SSIM baseline = 0.94,
• (α, β, γ): score A - (4, 100, 1), score B - (1, 400, 1), score C - (2, 200, 1.5).

Image enhancement:

• PSNR baseline = 21.0, SSIM baseline = 0.90,
• (α, β, γ): score A - (4, 100, 2), score B - (1, 400, 2), score C - (2, 200, 2.9).

The implementation of the scoring scripts, pre-trained baseline models and
submission requirements are also available in the challenge github repository 2.

4 Results

During the validation phase, we have obtained more than 100 submissions from
more than 20 different teams. 12 teams entered in the final test phase and sub-
mitted their models, codes and factsheets; tables 1 and 2 summarize their results.

1 https://www.mturk.com/
2 https://github.com/aiff22/ai-challenge

https://www.mturk.com/
https://github.com/aiff22/ai-challenge
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Team PSNR MS-SSIM CPU, GPU, Razer Phone, Huawei P20, RAM Score A Score B Score C
ms ms ms ms

TEAM ALEX 28.21 0.9636 701 48 936 1335 1.5GB 13.21 15.15 14.14

KAIST-VICLAB 28.14 0.9630 343 34 812 985 1.5GB 12.86 14.83 13.87
CARN CVL 28.19 0.9633 773 112 1101 1537 1.5GB 13.08 15.02 14.04
IV SR+ 28.13 0.9636 767 70 1198 1776 1.6GB 12.88 15.05 13.97
Rainbow 28.13 0.9632 654 56 1414 1749 1.5GB 12.84 14.92 13.91
Mt.Phoenix 28.14 0.9630 793 90 1492 1994 1.5GB 12.86 14.83 13.87
SuperSR 28.18 0.9629 969 98 1731 2408 1.5GB 12.35 14.17 12.94
BOE-SBG 27.79 0.9602 1231 88 1773 2420 1.5GB 9.79 11.98 10.55
SRCNN (Baseline) 27.21 0.9552 3239 205 7801 11566 2.6GB 5.33 7.77 5.93

Table 1: Track A (Image super-resolution), final challenge results.

4.1 Image Super-Resolution

First of all, we would like to note that all submitted solutions demonstrated high
efficiency: they were generally three to eight times faster than SRCNN, and at
the same time were providing radically better visual and quantitative results.
Another interesting aspect is that according to the results of the user study, its
participants were not able to distinguish between the visual results produced by
different solutions, and MOS scores in all cases except for the baseline SRCNN
model were almost identical. The reason for this is that neither of the submitted
models were trained with a strong adversarial loss component: they were mainly
optimizing Euclidean, MS-SSIM and VGG-based losses. In this track, however,
we still have two winners: the first one is the solution proposed by TEAM ALEX
that achieved the best scores in all three validation tracks, while the second
winning solution from KAIST-VICLAB has demonstrated the best runtime on
all platforms, including two Android smartphones (Razer Phone and Huawei
P20) on which it was able to process HD-resolution images under 1 second.

4.2 Image enhancement.

Similarly to the previous task, all submissions here were able to significantly im-
prove the runtime and PSNR scores of the baseline SRCNN [8,13] and DPED [13]
approaches. Regarding the perceptual quality, in this case there is no clear story,
mainly high PSNR scores did not guarantee the best visual results, and vice
versa. Also, MS-SSIM does not predict well the perceptual quality captured by
MOS. The winner of this track is Mt.Phoenix team that achieved top MOS
scores, as well as the best A, B and C scores and the fastest runtime on CPU
and GPU. On smartphones, this solution required around 1.5 and 2 seconds
for enhancing one HD-resolution photo on the Razer Phone and Huawei P20,
respectively.

4.3 Discussion

The PIRM 2018 challenge on perceptual image enhancement on smartphones
promotes the efficiency in terms of runtime and memory as a critical measure
for successful deployment of solutions on real applications and mobile devices.
For both considered tasks (super resolution and enhancement) a diversity of
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Team PSNR MS-SSIM MOS CPU, GPU, Razer Phone, Huawei P20, RAM Score A Score B Score C
ms ms ms ms

Mt.Phoenix 21.99 0.9125 2.6804 682 64 1472 2187 1.4GB 14.72 20.06 19.11

EdS 21.65 0.9048 2.6523 3241 253 5153 Out of memory 2.3GB 7.18 12.94 9.36
BOE-SBG 21.99 0.9079 2.6283 1620 111 1802 2321 1.6GB 10.39 14.61 12.62
MENet 22.22 0.9086 2.6108 1461 138 2279 3459 1.8GB 11.62 14.77 13.47
Rainbow 21.85 0.9067 2.5583 828 111 - - 1.6GB 13.19 16.31 16.93
KAIST-VICLAB 21.56 0.8948 2.5123 2153 181 3200 4701 2.3GB 6.84 9.84 8.65
SNPR 22.03 0.9042 2.4650 1448 81 1987 3061 1.6GB 9.86 10.43 11.05
DPED (Baseline) 21.38 0.9034 2.4411 20462 1517 37003 Out of memory 3.7GB 2.89 4.90 3.32
Geometry 21.79 0.9068 2.4324 833 83 1209 1843 1.6GB 12.0 12.59 14.95
IV SR+ 21.60 0.8957 2.4309 1375 125 1812 2508 1.6GB 8.13 9.26 10.05
SRCNN (Baseline) 21.31 0.8929 2.2950 3274 204 6890 11593 2.6GB 3.22 2.29 3.49
TEAM ALEX 21.87 0.9036 2.1196 781 70 962 1436 1.6GB 10.21 3.82 10.81

Table 2: Track B (Image enhancement), final results. The results are sorted according
to the MOS scores. CNN model from Rainbow team was using tf.image.adjust contrast

operation not yet available in TensorFlow Mobile and was not able to run on Android.

proposed solutions surpassed the provided baseline methods and demonstrated
a greatly improved efficiency compared to many conventional techniques [15].
We conclude that the challenge through the proposed solutions define the state-
of-the-art for image enhancement on smartphones.

5 Proposed methods

This section describes solutions submitted by all teams participating in the final
stage of the PIRM 2018 challenge on perceptual image enhancement on smart-
phones.

5.1 TEAM ALEX

For track A, TEAM ALEX proposed a residual neural network with 20 resid-
ual blocks [36], though all computations in this CNN were mainly done on the
images downscaled by a factor of 4 with two desubpixel blocks; in the last two
layers they were upscaled back to their original resolution with two subpixel
modules. The main idea of desubpixel downsampling is shown on the figure 3 —
this is a reversible downsampling done via rearranging the spatial features into

Fig. 3: Desubpixel block and the CNN architecture proposed by TEAM ALEX.
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several channels to reduce spatial dimensions without losing information. The
whole network was trained with a combination of MSE and VGG-based loses
on patches of size 196×196px (image super-resolution) and 100×100px (image
enhancement) for 2×105 and 2×106 iterations, respectively. The authors used
Adam optimizer with β1 set to 0.9 and a batch size of 8; training data was
additionally augmented with random flips and rotations. The learning rate was
initialized at 1e− 4 and halved when the network was 60 percent trained.

5.2 KAIST-VICLAB

Fig. 4: Solutions proposed by KAIST-VICLAB for tracks A (left) and B (right).

In track A, KAIST-VICLAB proposed a similar approach of using 4× image
downscaling and residual learning, however their CNN (fig. 4) consisted of only 8
convolutional layers. High visual and quantitative results were still obtained by
using a slightly different training scheme: the authors applied a small amount of
Gaussian blur to degrade the downscaled low-resolution training patches, while
they improved construct and sharpness of the target high-resolution images.
Furthermore, residual units, pixel shuffle [27], error feedback scheme [9] and xU-
nit [17] were integrated into network for faster learning and higher performance.
The authors used 2,800 additional images from the BSDS300, Flickr500 and
Flickr2K datasets for training, and augmented data with random flips and rota-
tions. The network was trained for 2000 epochs on 128×128px patches with L1
loss only; the batch size was set to 4, the learning rate was 1e− 4.

For track B, KAIST-VICLAB presented an encode-decoder based architec-
ture (fig. 4), where spatial sizes are reduced with a space-to-batch technique:
instead of using stride-2 convolutions, the feature maps obtained after each layer
are divided into 4 smaller feature maps that are then concatenated along the
batch dimension. The authors used an additional adversarial component, and
for the discriminator they proposed relativistic RGAN [16] with twice as many
parameters as in the generator. The network was trained similarly to track A,
but with a combination of color and adversarial losses defined in [13].

5.3 Mt.Phoenix

For image super-resolution, the Mt.Phoenix authors used a deep residual CNN
with two downsampling blocks performing image downscaling and two deconvo-
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Fig. 5: U-net architecture for image enhancement proposed by Mt.Phoenix.

lution blocks for its upscaling to the original size. Besides the standard resid-
ual blocks, additional skip connections between the input and middle layers
were added to improve the performance of the network. CNN was trained on
500×500px patches using Adam optimizer with an initial learning rate of 5e− 4
and a decay of 5e− 5. The network was trained with L1 loss, no data augmen-
tation was used.

In the second track, Mt.Phoenix proposed a U-net style architecture [25]
(fig. 5) and augmented it with global features calculated by applying average
pooling to features from its bottleneck layer. Additionally, a global transform
layer performing element-wise multiplication of the outputs from the second
and last convolutional layers was proposed. The network was trained with a
combination of L1, MS-SSIM, VGG, total variation and GAN losses using Adam
optimizer with a constant learning rate of 5e− 4.

5.4 CARN CVL

For image super-resolution, CARN CVL proposed the convolutional anchored re-
gression network (CARN) [22] (see Fig. 6) which has the capability to efficiently
trade-off between speed and accuracy. Inspired by A+ [34,33] and ARN [2],
CARN is formulated as a regression problem. The features are extracted from
input raw images by convolutional layers. The regressors map features from low
dimension to high dimension. Every regressor is uniquely associated with an an-
chor point so that by taking into account the similarity between the anchors and
the extracted features, CARN can assemble the different regression results to
form output features or the original image. In order to overcome the limitations

Fig. 6: CARN architecture and CARN Regression Block presented by CARN CVL.
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of patch-based SR, all of the regressions and similarity comparisons between
anchors and features are implemented by convolutional layers and encapsulated
by a regression block. Furthermore, by stacking the regression block, the perfor-
mance of the network increases steadily. CARN CVL starts with the basic as-
sumption of locally linear regression, derives the insights from it, and points out
how to convert the architecture to convolutional layers in the proposed CARN.

The challenge entry uses CARN with 5 regression blocks, 16 anchors / re-
gressors per block, and a number of feature layers reduced to 2. In the two
feature layers, the stride of the convolution operation is set to 2 because the
bicubic interpolated image contains no high frequency information compared to
the LR image but slows down the executation of the network. The number of
inner channels is set as 8 for the upscaling factor 4.

5.5 EdS
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Fig. 7: A variation of the original DPED architecture proposed by EdS team.

EdS proposed a modification [30] of the original DPED ResNet architecture
used for image enhancement (fig. 7). The main difference in their network was
the use of two 4×4 convolutional layers with stride 2 for going into lower dimen-
sional space, and additional skip connections for faster training. The network
was trained for 33K iterations using the same losses and setup as in [13].

5.6 IV SR+

The authors proposed a Fast Clique Convolutional Network (FCCN), which ar-
chitecture was inspired by CliuqueNet [39] and MobileNet [10]. The proposed
FCCN consists of feature extraction, fast clique block (FCB) and two deconvolu-
tion layers (fig. 8). For feature extraction, two convolutional layers with 32 and
20 kernels are utilized. Then, to accelerate the FCCN architecture, these features
are fed to FCB layers for extracting more informative convolutional features. The
FCB layer consists of one input convolutional layer and four bidirectional densely
connected convolutional layers with both depthwise and pointwise convolution.
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Fig. 8: FCCN and the corresponding Fast Clique Block (FCB) proposed by IV SR+.

The network was trained using Adam optimizer and a batch size of 16 for 3M
iterations with an initial learning rate of 1e− 4 halved after 2 million iterations.

5.7 BOE-SBG

Fig. 9: Neural networks for image super-resolution (top), image enhancement (bottom)
and the corresponding Denseblock (right) proposed by BOE-SBG team.

The architecture of the network used for image super-resolution is presented
in the figure 9 and is based on the Laplacian pyramid framework with a dense-
block inspired by [18]. The parameters of denseblocks, strided and transposed
convolutional layers are shared among different network levels to improve the
performance. For image enhancement problem, the authors proposed a different
architecture [23] (fig. 9). First of all, it featured several Mux and Demux layers
performing image up- and downscaling without information loss and that are
basically a variant of (de)subpixel layers used in other approaches. This network
was additionally trained with an extensive combination of various losses, includ-
ing L1 loss for each image color channel, contextual, VGG, color, total variation
and adversarial losses.
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Fig. 10: CNN architectures proposed by Rainbow for tracks A (left) and B (right).

5.8 Rainbow

The CNN architecture used in the first track is shown in the figure 10. The
network consists of two convolutional layers with stride 2, three convolutional
layers with stride 1, cascaded residual blocks and a subpixel layer. The network
was trained to minimize L1 and SSIM losses on 384×384px patches augmented
with random flips and rotations. The learning rate was set to 5e−4 and decreased
by a factor of 5 every 1000 epochs.

A different approach [12] was used for image enhancement: the authors first
trained a larger teacher generator and then used it to guide the training of the
smaller student network (see fig. 10). The latter was done by imposing additional
knowledge distillation loss calculated as Euclidian distance between the corre-
sponding normalized student’s and teacher’s feature maps. Besides this loss, the
networks were trained with a combination of SSIM, VGG, L1, context, color and
total variation losses using Adam optimizer with an initial learning rate of 5e−4
decreased by a factor 10 for every 104 iterations.

5.9 MENet

MENet team proposed a θ-inception Network depicted in the figure 11 for image
enhancement problem. This CNN has a θ-inception block where the image is
processed in parallel by convolutional and deconvolutional layers with strides 2
and 4 for multi-scale learning. Besides that, the size of the convolutional filters
is different too: 3 and 5 in the first and the second case, respectively. At the end
of this block, the corresponding two outputs are concatenated together with the
output from the first convolutional layer and are passed to the last CNN layer.
The network is trained using the same setup as in [13] with the following two
differences: 1) two additional texture loss functions (local contrast normalization
and gradient) are used and 2) after pre-training the network is additionally fine-
tuned on the same dataset with Adam minimizer and a learning rate of 1e− 4.
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Fig. 11: θ-inception Network (generator and discriminator) presented by MENet team.

5.10 SuperSR

Figure 12 presents the CNN architecture used for image super-resolution prob-
lem. The network consists of one space-to-depth 4× downsampling layer followed
by convolutional and residual layers with PReLU activation functions and one
deconvolutional layer for image upscaling. The model was trained on 192×192px
patches augmented with flips and rotations. Adam optimizer with a mini-batch
size of 32 and a learning rate of 1e−3 decayed by 10 every 1000 epochs was used
for CNN training. After the initial pre-training with L2 loss, the training process
was restarted with the same settings, while the loss function was replaced by a
mixture of Charbonnier [5] loss and MS-SSIM losses.

Fig. 12: Deep residual network proposed by SuperSR team.

5.11 SNPR

For image enhancement, SNPR derives three network architectures correspond-
ing to different operating points. The generator networks (G1, G2, and G3)
corresponding to the three different approaches and the common discriminator
network D are shown in Fig. 13. Conv(f, k, s) refers to a convolution layer with
f k × k filters performing convolution by a stride factor of s, ReLU is a Recti-
fied Linear Unit, BN refers to batch-normalization, and Pixel-Shuffler X2 refers
to the pixel shuffler layer [27] which increases resolution by a factor of 2. The
first three layers are meant to extract the features that are relevant for image
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Fig. 13: Neural networks proposed by SNPR (left) and Geometry (right) teams.

enhancement. Feature extraction at low-image-dimension has the advantages of
larger receptive field and much lower computational complexity [29]. To compen-
sate for detrimental effects of spatial dimension reduction in features, the input
image (which have full-resolution spatial features) is concatenated with the fea-
tures extracted at low-dimensional space and then combined by the succeeding
convolutional layers. Overall G3 achieves the best speed-up-ratio but with a
lower performance as compared to DPED baseline [13], whereas G1 achieves the
lowest speed-up-ratio while having comparable quality to that of DPED.

5.12 Geometry

The overall structure of the network [24] presented by Geometry team is shown
in the figure. 13. Each convolutional layer has 16 filters, and the network itself
produces two outputs: one based on the features from the middle CNN layer, and
one from the last layer. The intermediate output (Output OC) is used to compute
SSIM loss, while the final one (Output OE) is used to compute the loss function
consisting of adversarial, smooth, and style losses. During the training all losses
are summed, and the network is trained as a whole using Adam optimizer with
a learning rate of 5e− 4 decreased by a factor of 10 every 8000 iterations.
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