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ABSTRACT

Motivation: The next-generation high-throughput sequencing
technologies, especially from Illumina, have been widely used in
re-sequencing and de novo assembly studies. However, there is no
existing software that can simulate Illumina reads with real error and
quality distributions and coverage bias yet, which is very useful in
relevant software development and study designing of sequencing
projects.
Results: We provide a software package, pIRS (profile-based
Illumina pair-end reads simulator), which simulates Illumina reads
with empirical Base-Calling and GC%-depth profiles trained from
real re-sequencing data. The error and quality distributions as well
as coverage bias patterns of simulated reads using pIRS fit the
properties of real sequencing data better than existing simulators. In
addition, pIRS also comes with a tool to simulate the heterozygous
diploid genomes.
Availability: pIRS is written in C++ and Perl, and is freely available
at ftp://ftp.genomics.org.cn/pub/pIRS/.
Contact: fanweisz09@gmail.com
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
In recent years, the next-generation high-throughput sequencing
technologies (NGS) have been widely used for re-sequencing and
de novo assembly, such as the 1000 human genomes project
(http://www.1000genomes.org) and the 10 000 vertebrate genomes
project (http://genome10k.soe.ucsc.edu). According to information
from GenomeWeb (http://www.genomeweb.com), Illumina has
become dominant in the NGS market by the end of 2010.

It has been reported that the Illumina technology rarely contains
insertion and deletion errors, but it may produce systematic (Dohm
et al., 2008) and sequence-specific substitution errors (Nakamura
et al., 2011) and coverage bias problems (Aird et al., 2011) during
library construction and sequencing process. It is thus important
to be aware of these characteristics for method development.
Although, evaluating software performance on real sequencing data
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is preferred, not all evaluations can be conducted on real data due
to the lack of a ground truth. It is frequently more convenient to
test the software with simulated data from a known genome, which
helps us monitoring every step.

There are already some simulators that can produce Illumina
reads, such as MAQ (Li et al., 2008), wgsim from SAMTOOLS
(Li et al., 2009), MetaSim (Richter et al., 2008) and ART (Huang
et al., 2012). Of all the existing softwares, wgsim only simulates
reads with uniform substitution errors and dummy quality values;
MetaSim is designed for simulating metagenomic data, and it
supports empirical error profile to generate reads without quality
values; ART simulates Illumina reads with empirical quality profile,
which determines quality value first and then uses the quality-
derived error rate to randomly generate substitution error; MAQ
adopts a first-order Markov chain to model quality distribution of
each cycle, which generates quality values based on the transition
probabilities and then uses the quality-derived error rate to randomly
generate substitution error.

In this article, we present a new Illumina pair-end (PE) reads
simulator pIRS (profile-based Illumina pair-end reads simulator),
which adopts an empirical Base-Calling profile that is more like the
real Illumina data. Moreover, it can use a GC content-coverage depth
(GC%-depth) profile to simulate reads with coverage bias along the
genome. We also provide a tool to introduce changes (substitution,
insertion, deletion and other variations) to the genome, to facilitate
simulation of heterozygous data.

2 DESCRIPTION
The overall workflow of pIRS is shown in Figure 1. The empirical
Base-Calling profiles are generated by analyzing the alignment
results of SOAP2 (Li et al., 2009) or SAM/BAM files (Li and
Durbin, 2010) from re-sequencing data of known genomes. Only
the uniquely mapped reads with full length matches are used
to avoid the influence of mis-alignments. An SNP set can be
optimally provided to eliminate non-error substitutions caused by
true sequence variations. As the determination of a base-calling
(base and quality) is highly related with the current cycle number
and reference base on reads, we use a 4D distribution matrix (Dist
matrix) to store the overall distribution information. The dimensions
are read cycle, reference base, called base and called quality in
sequential.

In the Dist matrix, base-calling is only determined by information
from the current cycle. However, the called quality is often seriously
affected by the quality of previous cycle. To better simulates the real
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Fig. 1. The overall workflow of pIRS, which can be generally divided
into two parts: profile generation and reads simulation. Optional steps are
marked with *

data, we introduce a quality-transition (Qtrans) matrix based on the
first-order Markov Chain similar to MAQ, in which the distribution
of leading and following quality-pairs are recorded for each read
cycle. The Qtrans matrix can be co-used with the Dist matrix after
the first cycle, in which the called quality is determined first by the
Qtrans matrix, and then the called base is determined from a subset
of the Dist matrix with specified called quality. The combination of
Dist and Qtrans matrics forms our Base-Calling profile.

The relationship between GC content and coverage depth is
analyzed using tiling windows along the whole genome. In each
window, the GC content and average base depth are calculated,
respectively, then the average base depth values are grouped by
GC content intervals (1%), and finally the mean depth value is
calculated for each GC content interval. This is defined as the
GC%-depth profile in this article, which reflects the mean coverage
depth in sequence regions with similar GC content. The GC%-depth
profile can then be chosen to simulate reads with coverage bias, in
which the sampling probability of a read with specific GC content
is proportional to the mean coverage depth within that CG content
interval.

To simulate InDel errors, we provide a practical empirical
InDel profile, which consists of three dimensions: read cycle, type
(insertion and deletion) and length of continuous bases (1–3 bp). Our
InDel profile is more comprehensive than that of other simulators,
which generally use the simple uniform distributions of single-
base InDel errors. Considering the fact that InDel error is quite
rare in Illumina, this function is often negligible in many real
applications.

Our reads simulator pIRS generates pair-end (PE) reads in the
FASTQ format. For each read pair, the insert size is randomly drawn
from the normal distribution with given mean and SD values. The
Dist and Qtrans matrics are used to generate the called base and
quality, the Indel profile is used to generate InDel errors and the
GC%-depth profile is used to generate coverage bias. Note that the
Qtrans, InDel and GC%-depth profiles can be optionally chosen
from the pIRS parameter settings.

Since heterozygosity is an important factor for many applications,
such as variation detection and de novo assembly, we provide a
tool to randomly introduce variations including single-nucleotide
polymorphism (SNP), small insertion and deletion (InDel) and

structural variation (large insertion, deletion and inversion) into the
given reference genome, and output the resulting haploid genome in
the FASTA format. The combination of two haploid genomes form a
heterozygous diploid genome and our simulator can take these two
genome files together to simulate heterozygous reads data.

With pIRS, we have generated a set of empirical Base-Calling,
GC%-depth and InDel profiles from our testing data, and common
users can use these profiles directly to simulate Illumina reads.
Only those users with special purpose need to generate profiles
with new sequencing data by themselves. Note that the amount of
training data should be enough to capture all the properties of real
sequencing data. We suggest using ∼30 G bases that is equivalent
to 10 × human data.

The core programs in pIRS is written in C++ language and
optimized for efficiency. The reference genomes are parsed one
chromosome at a time to save memory. Both compressed (gzip) input
and output files are supported to save disk space. Other programs
are organized into perl pipelines to facilitate usage. The detailed
methods and results for profile generation, heterozygous genome
generation, reads simulation, as well as performance comparison to
other existing simulators and the testing results of simulated reads
in SNP calling are shown in the Supplementary Material.

3 DISCUSSION
Illumina has introduced EAMSS filtering in its CASAVA package,
which masks low-quality G-rich regions at the end of each read with
fixed quality value ‘B’. It is mainly designed for easier data trimming
in general re-sequencing analyses, but this will slightly influence
our profile generation. We suggest all quality-aware analysis to run
CASAVA with ‘--no-eamss’ to disable the EAMSS filtering. The
current Base-Calling and InDel profiles in pIRS focus on the per-
read-cycle properties but do not take the sequence-structure-specific
errors into consideration. In Illumina sequencing, coverage bias is
a complex problem and GC-content is a well-studied one of all the
influencing factors. We will introduce more types of coverage biases
once they are well-studied.

4 CONCLUSION
We designed and implemented an effective Illumina reads simulator
pIRS using empirical profiles, to reproduce reads that are more
like real Illumina data compared with existing simulators, which
is likely to be very helpful for development of NGS software such
as de novo assembly, SNP calling and structural variation detection.
The independent profile generating module in pIRS grants great
freedom to users, who can generate new profiles with their own
sequencing data when machine or reagent updates. Moreover, the
additional tool for simulating heterozygous genome is especially
useful for applications that need heterozygous data.
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