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Pisot and Salem Numbers in Intervals of the Real Line*

By David W. Boyd

Abstract.   Based on the work of Dufresnoy and Pisot, we develop an algorithm for de-

termining all the Pisot numbers in an interval of the real line, provided this number is

finite.  We apply the algorithm to the problem of determining small Salem numbers by
Salem's construction, and to the proof that certain Pisot sequences satisfy no linear re-
currence relation.

Introduction.   A real algebraic integer 0 > 1 is a Pisot (or Pisot-Vijayaraghavan)
number if all its other conjugates lie strictly within the unit circle.  The set of such
numbers, S, is known to be closed m the real Une [12], and has a known minimum
strictly greater than 1 [14].  In [7], Dufresnoy and Pisot introduced a powerful meth-
od for investigating S and used it to determine all numbers in S n [1, t + e], where
t = (1 + 51 /2)/2 and 0 < e < 0.0004. They showed that r is the smallest limit point
of S and is an isolated point of S'. Subsequently, their method has been used to investi-
gate the successive derived sets of 5 [1], [5], [8], [10].

The set T of Salem numbers consists of those algebraic integers a > 1 for which all
other conjugates lie within or on the unit circle, with at least one conjugate on the circle.
As a consequence, o satisfies a reciprocal equation with all but two of its roots (namely
a and a-1) on the unit circle [13].  In contrast to S, very little is known about T, al-
though it has been conjectured that inf T > 1 and even that S U T is a closed set [3],

[41.
By a construction due to Salem [13], given 6 E S, two infinite sequences 0m and

0~ of points of T are produced. We showed in [4] that this construction in fact gives
all members of T. Furthermore, if m > 2 then 9m —► °° as 6 —► °°. In this paper, we
shall show how the methods of [7] can give more precise results of this type.

As a byproduct of the various computations described in this paper, we have dis-
covered four new Salem numbers in the interval [1, 1.3] to add to the list of 39 given
in [4].

A related motivation for this paper comes from the study of Pisot sequences (£"-
sequences).  The Pisot sequence Eia0, ax) is the sequence of positive integers defined
by an = Nia2l_x/an_2) in > 2), where Nix) = [x + 1/2] is the function which rounds
x to the "nearest" integer.  These sequences are intimately related to the sets S and T
since if {an} satisfies a linear recurrence relation then the defining equation has a mem-
ber of S or T as its only root in \z\ > 1.  We showed in [3] that there are many
¿■-sequences which are nonrecurrent.  However, specific examples were difficult to give
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PISOT AND SALEM NUMBERS 1245

because of a lack of detailed knowledge of S for 0 > r. The algorithms developed here
allow us to prove that a number of ¿-sequences with a0 = 7, 8, 9, 10 are nonrecurrent,
verifying some of the conjectures in Galyean's thesis [9].

The paper is organized as follows:   Section 1 recalls some notation from [4] and
lists the additions to the list of small Salem numbers in [4].  Section 2 describes the
basic algorithm for generating S as adapted from [7].  In Section 3, given an interval
[a, ß], we modify the algorithm to deal with S n [a, ß].  If this set is finite, the algo-
rithm detects this and determines all points in the set.  Even if this set should contain
a limit point 6 E S', we show that it is possible to find all the points in the set provid-
ed the "width" of 0 (see [5] ) is sufficiently small. We describe a few items of interest
from our catalogue of S O [1,1.932], which includes the first six limit points of 5. This
list is complete except for a small interval around the limit point a3 = 1.8667 ... , but
it is too long to reproduce here.  In Section 4 we indicate how three of the new small
Salem numbers were found.

In Section 5, we turn to the detailed study of Salem's construction.  Given an in-
terval [a, ß] in the complement of S U { 1}, we show how all 0m in [a, j3] can be de-
termined provided m > 2.  As an application we treat m = 2 and [a, ß] = [1.125,1.3],
finding 41 Salem numbers. Only one of these had not been found previously.  The
fact that two of the 43 known Salem numbers in this interval are not of the form 92
shows that some members of Tcan only be represented in the form 0 j.  This shows
that there can be no easy proof that inf T > 1 by using the representation of T as
{0m: 6ES,m>l}.

Section 6 describes a brief survey of 0 in 5 which have norm ±uo and lie in [u0,
u0 + ô] for small 5. A result communicated to me by C. J. Smyth [15] suggests that
this may be an interesting way to find new small Salem numbers.

In Section 7, we give the application to Pisot sequences mentioned above.  This
requires investigating S n [a, ß] for certain very small intervals [a, ß].  Finally, in Sec-
tion 8, we describe one of the many large finite families of S and T numbers discovered
in the course of this investigation.

1.  Notation.  The set of minimal polynomials for elements of S, T is denoted S,
T, respectively.  For polynomials of large degree we will often abbreviate

<V*+«,**-» +---+ak=a0ax •••«*.
We shall write Fm for the cyclotomic polynomial whose roots are the primitive mth
roots of unity.

The Salem numbers < 1.3 found in [4] will be denoted ax, ... , o39 and their
minimal polynomials Tx, ... , T39.  (There is a misprint in [4, p. 326] :   a37 should
be 1.2920391060, not 1.2920391602.)  In addition to these, we have subsequently
found

1.2767796740, degree 22,
1.2964213652, degree 22,
1.2968213737, degree 28,
1.2997448695, degree 26,

a2i.s =
a4o =
°41 =

a42 =
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1246 DAVID W. BOYD

with
7,2i.5 = 1_1_1 100000-1010-1000001-1-1 1,

r40 = 1-1000-100000100000-1000-11,
T4X =1000-1-1-1-1-10001 1 1 1 1000-1-1-1-1-1000 1,
7*42 =1-1-1020-2-122-2-2030-2-222-1-202 0-1-1 1.

2.  The Basic Algorithm.   Given 0 £ S, let P be its minimal polynomial of degree
s, and let ß(z) = zsPi¿~x).  Then Q has ß(0) = 1, integer coefficients and exactly one
zero in \z\ < 1, namely 0~l.  If /l(z) is a polynomial with integer coefficients, not iden-
tical with Q, having ,4(0) > 0 and [4(z)| < |ß(z)| for \z\ = 1, then/= ,4/ß is a ration-
al function said to be associated with 0.   For ,4, one can take A = (sgn Pi0))P, unless
ß(z) = 1 - qz + z2, in which case Aif) = 1 is a suitable choice.  Denote the set of
such/ by C.  Then C is characterized by the following properties [7], [13] :

(i) / is holomorphic in \z\ < 1 except for a simple pole at 0_1 < 1,
(Ü)   |/(z)|<l on |z|= 1,

(in) f(z) = uQ + uxz + • • •    for \z\ < 0_1, where the u¡ are integers, and «0 > 1.
The set C can be given the topology of convergence on compact subsets of the

sphere, and then the subset of C corresponding to a bounded set of 0 is compact.
In [7], Dufresnoy and Pisot showed that the coefficient sequence {«„} of a

member of C  is characterized by the following recursive system of inequalities:

Ku0,
(1) u20-l<ux,

wn(u0, ..., un_x) < un < w*(u0, ..., un_x),       for n > 2.

The inequalities wn < un < w* (n > 2) restrict un to a finite interval except in one
case:   if u0 = 1, then w* = °°.

To determine wn and w* one proceeds as follows.   Let Dn be a polynomial of
the form Dn = - z" + dxzn~x + • • • + dn and let En(z) = - z"£)„(z-1), so En(0) = 1.
Then dx, ... , dn can be determined so that the first n coefficients «0, ... , w„_j of
the expansion of Dn/En match those off, and then

(2) Dn(z)/En(z) = «„+•••+ t/^z"-1 + wn(u0, ..., un_x)z" + ■ • ■ .

Simüarly, let D*(z) = z" + d^z"-1 + • • • + d* and £-*(z) = znD*(z'1), where £?*,...,
d* are determined so that

(3) D*(z)/E*(z) = u0 + • • • + un_xz"-' + w>0, ... , un_x)z" +■■■.

The polynomials are conveniently determined from the relations

(4) Dn + X(z) = (1 + z)Dn(z) - (un - w„) («„_, - wn_xT*zDn_xiz),

(5) /J„*+1(z) = (1 + z)D*iz) - iw* - «„) K_, - «„^r'z/J^jiz).

EquaHty holds in wn < w„ only if / = Dn/En, and then the wm = wm for m > n + 1
are simply the coefficients of Dn/En.   Similarly, un = w* only if/= D*/E*.   Note
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that Dn,D*, in general, have rational coefficients only, not necessarily integer coeffi-
cients.

The sequences of integers {«„} satisfying (1) form an infinite tree, as described
in [4].  A slight modification of that tree will be used here.  The nodes of the tree at
height n are certain finite sequences (u0, ... , un):   there is a node at height -1 cor-
responding to the empty sequence; its successors, the nodes at height 0 are (m0), for
all integers u0 > 1 ; if («0, ... , un) is a node at height n and wn <un < w*, then its
successors are the nodes (h0, ... ,un, un+ x) for wn+ x < un+ x < w*+ x (if any such
un+x exist), while if un = wn or un = w*, then («0, ... , un) has no successors. A
node without successors is called a terminal node.  These are of three types:   (i) wn <
un <w*, but there are no integers in [wn+,, w*+ x], (if) un = wn (or w*), but Dn
(or D*) does not have integer coefficients, (iii) un = wn (or w*), and Dn (or D*) has
integer coefficients.  The third type of terminal node is in one-one correspondence with
the points of 5, excluding the reciprocal quadratics iq + iq2 - 4)i/2)/2, for q > 3.

Note that, for n > 2, the valence of the node («0, ... , un) is finite.  A path to
infinity in this tree corresponds to an infinite sequence {un} which satisfies wn < un
< w* for all n, and hence to an/= A/Q with \Aiz)\ < |ß(z)| except at a finite num-
ber of points on \z\ = 1 [7].  Such/ are in the derived set C' and correspond to
points OES'.

In our computer implementation of the above, we do not use Dn,D* but rather

(6) Fniz)=fn,0Z" +-"+/B.„,

(7) F*niz)=fn*0Z" +-+/„%.'

where /„ 0, ...,/„„ are integers with no common divisor, and where Dn = ~Fn/fn 0,
and similarly for F*. Then wn = Wn/fn0 and w* = W*//n*o- Tne recursion for Fn,
F* and formulas for Wn, W* are easily derived from (2)-(5).

Since the sequence {un} grows exponentially, multiprecision arithmetic is essen-
tial. We made use of a quadruple precision decimal integer package supplied by the
University of British Columbia Computing Centre.  The use of fixed precision limits
the height of the nodes which can be represented, but other factors prove to be critical
in most cases.

It should be pointed out that it is not strictly necessary to calculate both Fn and
F* at each stage since one may use

(8) K+i ~wn + l= 4K - "«)("» - wn)i< - wnT*

as in [7].  However, we do want to know F* whenever /* 0 = 1, so it was found
more convenient to compute both Fn and F* and to determine wn, w* directly from
(2) and (3).

An interesting point is that in (4) and (5) only the differences un - wn and w*
- un arise, not un itself.  Thus, we really only need  to be able to calculate Wn (mod
/„ 0) and w* - wn, both of which are relatively small (though fn 0 can grow exponen-
tially at a slower rate than un).  However, a calculation of Wn (mod/n 0) seems to re-
quire a knowledge of u0, ... , un_x (mod fn 0), and the least time-consuming way of
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determining these seems to be to have already computed u0, ... , un_x.  Otherwise,
the advantage of the tree structure is lost.

Of course, we cannot traverse an infinite tree.  In succeeding sections, we investi-
gate conditions under which it suffices to search a finite subtree of the tree just de-
scribed.

3. Pisot Numbers in an Interval. Let [a, ß] C [1, oo), and consider those/ in C
for which 0 E [a, ß]. We shall see that, in addition to (1), [un] must satisfy addition-
al bounds

(9) vn(a;ii0, ... ,un_i)<u„ <v*(ß;u0,... ,un_x).

By [7] ,Dn,D* have roots t„, t* , such that r„ < Tn+1 < 0 < r* + 1 < t*.
If 0 < ß and 0 ¥= Tn + X, then Dn_x(ß), Dn(ß) and Dn + X(ß) are all < 0, and by (4), this
is equivalent to

(10) un < wn +  (un_x - wn_x)(l + ß)ß-1Dn(ß)/Dn_x(ß) = v*(ß).

By using (4) again, we can obtain a recursion for v* similar to (8).   For, (4) gives

(l+ß)ß-1Dn + x(ß)/Dn(ß)

= (1 + tfß-1 - (un - wn)(un_x - wn_xT\l + ß)Dn_xiß)/Dn(ß).

Using the definition of v* from (10) and simplifying, we have

(12) v*n+x -wn+x=(l+ ß)2ß~l(v* - u„)iun - wn)/iv* - wn).

Similarly, if 0 > a, we use D* and (5) to obtain

(13) "„ > K - «-i - «n_i)0 + á)<x-lD*iá)/D*_x(á) = u„(o).

And, as with v* we obtain

(14) <„ - »» + ,  = O  + tt)2«"1« - «„)(«„ - Ujiw* - Vj.

The recurrence relations (12) and (14) must be supplemented with values for v*, - w0
and Wq - u0. Also, when «0 = 1, we have w* = °° so a value for u2(a) must be cal-
culated from the condition D3iu0, ux, v2i<x); a) = 0.

Note that u„(l) = wn and u*(l) = w*, so that (12) and (14) reduce to (8) if ex =

0= 1.
There is some difficulty in putting these formulas to immediate use since one

cannot perform the indicated calculations exactly for arbitrary a and ß.  Even with a
and j3 rational it is not practical to use the required high precision arithmetic in order
to perform the computations exactly.  Our solution was to compute bounds Vni<x) and
V^iß) satisfying F„(a) < u„(a) and v*(ß) < V*(ß).  Here Vn, V* are rationals with a

fixed denominator d (= 107 in most of our calculations).   Vn and V* are computed
by the correctly rounded versions of (12) and (14).  At a certain point n = n0, the
quadruple precision representation becomes inadequate ; and then we shift to the sim-
pler, but less precise, bounds described next.
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From Parseval's relation applied to (1 - 9z)f(z) (cf. [14]), we have

(15) "o + ("i ""o0)2 +•■•<! +02;
and hence, certainly

(16) ("„-"„-i0)2<02,
so

(17) («„_,- 1)0 <un<(un_x + 1)0.
Thus, if a < 0 < ß, we must have

(18) ("„_! - 1)« <M„ < («„_, + 1)0.
The tree that we should search is defined by

(19) max (w„, u») < un < min (w*. v*iß)),

with the conventions of Section 2 in case of equality. The tree that we in fact seek
is defined by

(20) Un(cx)<un<U*(ß),

where

!max(K„(a), w„), if n<n0,

max((«„_, - l)a, wn),       ifn> nß;

(min(V*(ß),w*), if n<n0,
(22) U*(ß)=   1

{ min ((«„_, +1)0, w*),       if n>n0.

Now, suppose that S n [a, ß] is finite, hence contains no points of S'.  Then the
tree defined by (19) has no paths to infinity, and each node has finite valence, hence
the tree is finite by König's lemma [11, p. 381].  Thus, a search of this tree can be ac-
complished by any standard tree traversing algorithm; see [11, p. 334].  It is important
to observe that the tree defined by (20) is also finite.  For, if not, there would be an
infinite sequence un satisfying (20) for all n.   However, un/un_x —► 0, so un ~> Un(a)
> (un_x - l)a implies 0 > a.   Similarly, 0 < 0.  But this infinite sequence   {«„} cor-
responds to a limit point of S, which is a two-sided limit point, hence S n [a, ß] is in-
finite, contrary to assumption.

We shall discuss computations using (20) at the end of this section.  First, we
consider what can be done if [a, 0] contains a limit point of S.   Suppose 0 E S', so it
corresponds to one or more / in C'.  Using (8), it can be shown [7] that as n —*■<*>,
w* - wn decreases to a limit 2w(f), where w(/) is called the width of f [5].  It can

also be shown that w* - un —► w(f) and un - wn —* w(f). In [5], we obtained the
formula

w(f) = e2 expier1   j2° log(l - \f(e")\2)dt\,
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and calculated w(f) for all / in C' corresponding to 0 < 2, which had been deter-
mined by Amara [1].  In most of these cases w(f) = 1.  However, for /= g3 n =
(1 -z)(l +z")/(l -2z +z" -z" + 1), for n > 3, we have 1.755 ... = w(g33)<
wig3,n) < w(^3,s) = L987 ••• and lim w(£3„) = 1.908 ....  Thus, with w(0) defined
as the maximum of w(/) over / having a pole at 0_1, we have w(an) > 1.755 ... for
n > 3, where an > 1 solves zn + l - 2z" + z - 1 = 0.

If / is in C', then w(/) > 1, while if / is not in C', eventually w* - wn = 0 so
in this case we define w(/) = 0.

The significance of w(/) can be seen from the following result:
Lemma 1. Suppose that fE C' and that w(/) < (1 + (17)1/2)/4 = 1.2803... .

Then a sufficiently small neighbourhood of / = A/Q contains only functions of the
form g = Pm/Qm, where Qmiz) = Qiz) ± zmAiz) and Pm(z) = ±zsQmiz~x), s being
the degree of Qm.

Proof.    Regarding / as the sequence   {«„}, a neighbourhood of/ consists of
g(z) = v0 + UjZ + ... for which vn = un for n = 0, 1, ... , N for a suitable choice of
N.  Let then g be such a function, with vN+x = uN+x + a, where a ¥= 0.  Since vv(/)
< 2, we may assume N is so large that w*¿+x - uN+x < 2 and uN+x - wN+x < 2, so
that \a\ = 1.  Let wn, w* correspond to the sequence {«„} and w'n, w*' correspond to
{vn}.  Then (8) implies that

(23) iwN+i - wN+0' = 4(wjv ~ UN - a)iuN + a - wn)Hwn - wn)-

Since w%f - uN —► w(/) and «^y- - vv^y- —► vv(/), the right member of (23) tends
to 2(w(/)2 - l)/wif) < 1 since m>(/) < (1 + (17)'/2)/4.  Thus, for sufficiently large
N, the interval [vvA,+ 1, w^'+1] is of length less than 1.  Because w*' - w'n is decreas-
ing, the interval [w'n, w*'] will be of length less than 1 for n ~> N + 1 ; and hence,
there is at most one g E C with expansion beginning u0, u x, ... , uN, vN+x.  However,
Pm/Qm is such an expansion for suitable m, the ambiguity in sign corresponding to the
choicest = ± 1.

Lemma 1, together with the previous discussion, shows that one can determine
all of 5 n [a, |3], even if [a, j3] contains a limit point 0 of S, provided w(6) < 1.2803....
This explains how Dufresnoy and Pisot were able to go beyond the limit point r = ax,
since w(t) = 1.

To obtain an effective method, we need an estimate of N in the proof of Lemma
1. We shall indicate such an estimate only if w(f) < 9/8 = 1.125.  In practice this is
sufficient since, for all the known examples, either w(f) = 1 or w(f) > 0O =
1.7548... where 0O = min S.   If a conjecture of Lehmer is correct, then formula (25)
of [5] for w(f) shows that either w(f) < 1 or w(f) > a\ = 1.3836... where ax is
the conjectured minimum of T.

Lemma 2. Let fE C' have expansion u0 + uxz + ... . Suppose that w^ - wn <
9/4 for some N.   Then, for any n> N, there are exactly two gE C with expansions
beginning u0, ... , u„_p vn, with vn ¥= un.

Proof.   As in Lemma 1, let g = u0 + • • • + un_xzn~1 + vnz" + ... with vn ¥=
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un; let w'n+x, w*'+x be as in that lemma.  If n > N, then w* - wn < 9/4,  so vn =
u„ ± 1 are the only possibilities.  Let an = u„ - wn and b„ = w* - un.   Then an > 1,
bn > 1, since the choices vn= un± 1 are both possible. We claim that, for n>N,
and e = ±1,

(24) 4ian-e)ibn+e)<a„+bn.

For, if e = 1, then (24) is equivalent to

(25) bni4an - 5) + (3aH - 4) < 0

which certainly holds if an < 5/4.  However, an = (w* -w„)-b„ < 9/4 - 1 if n >
N.   Similarly, for e = -1.  Together, (24) and (8) imply that (w*+1 - wn+1)' < 1 and,
hence, that there is exactly one expansion which begins u0,ux, ... ,un,un + e for
e = ± 1, as in the proof of Lemma 1.

Results. The first seven limit points of S, according to Amara [1], are

ax = 0, < a2 < 02 < a3 < 02 < ß3 < a4,

where a„ solves z"+1 - 2z" + z - 1 = 0 and 0„ solves zn + l - z"-z - 1 = 0,
while 02 solves z4 - z3 - 2z2 + 1=0.  Numerically, these are roughly

1.618 < 1.755 < 1.839 < 1.867 < 1.905 < 1.928 < 1.933.
Only two of these have width exceeding 1,' namely w(a3) = 1.7548... and w(a4) =
1.9635....  Thus, it is possible by our methods to determine all points in S n [1, a3
- e] and in S n [a3 + e, a4 - e] for any e > 0.  In fact, we used the algorithm to
list all 0 es D ([1, 1.86675] U [1.868, 1.932]) together with the correspondingPE
S.  The output is roughly the size of a small telephone directory so we shall only make
a few remarks about it here. Dufresnoy and Pisot found that in the interval [1, 01S]
= [1, 1.61836 ... ], all but two of the points of S are solutions of one of the equa-
tions zniz2 - z - 1) ± (z2 - 1) = 0 or z"iz2 - z - 1) ± 1 = 0 corresponding to the
two expansions 1/(1 - z - z2) and (1 - z2)/(l - z - z2) in C'.  In addition there is
the limit point r which solves z2 - z - 1 = 0, and one other 0 which solves z6 - 2zs
+ z4-z2+z-l=0 which is best written in the form z3iz3 - 2z2 + z - 1) +
(z - l)(z2 + 1) = 0, and thus corresponds to one of the expansions associated with a2.
From our list, the next polynomial which is not in one of the two infinite sequences
above, is

P= 1-2 2-3 2-2 1 0 0 1-1 2-2 2-2 1-1,

which has 0 = 1.6216584885, and was mentioned in [4] (we had found it by an ear-
lier floating-point version of the algorithm described here).  This is the only polynomial
with 0 in [1,1.753] which has any coefficient whose absolute value exceeds 2.  In gen-
eral, the coefficients of the polynomials for 0 £ [1,1.932] were smaller than 4 in ab-
solute value with only two polynomials having coefficients equal to 5.  One of these is

P = 1-2 2-4 3-5 4-5 5-5 5-4 4-3 3-2 2-1 1,

with0 = 1.9055327245.
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The neighbourhood of 02 = 1.839... produced some interesting results.  Here
there are two fEC' with pole at 02 !, namely

(l-z3)/(l-z-z2-z3)= 1 1 23 6 11 ...
and

(1 + z)/(l - z - z2 - z3) = 1 2 3 6 11 20 ... ,

both of width 1 ; and hence by Lemma 1, a sufficiently small neighbourhood of ß2 con-
tains only solutions of znP(z) ± A(z) = 0, where P(z) = z3 - z2 - z - 1 and ^4(z) =
z3 - 1 or z + 1.  However, even in the small neighbourhood (1.839, 1.8396) there
were 21 numbers not of this form.  Among these were the roots of

z"(z3 - z2 - z - 1) - 1      for n = 12, 13, 15, 16, 18, 21, 24 and 27
and

z"(z3 -z2 -z - 1) + 1    forn = 11, 12, 14, 17, 20 and 23.

Since 1/(1 - z - z2 - z3) exceeds 1 in absolute value on \z\= 1, there can only be a
finite number of such occurrences and our computation detects them all.  Since

1/(1 - z - z2 - z3) = 1 1 2 4 7 13 24 44 ... ,
it is tempting to regard this phenomenon as being somehow due to the presence of the
nearby g3 3 with w(g3 3) > 1, since

g3>3 = 1 1 24 7 13 24 45 ... .
As an example of the computational time involved, the determination   of

the 165 Pisot numbers in [1.755, 1.839] took 20.4 seconds of CPU time on the IBM
370/165 here, examining 2355 nodes of the appropriate tree.

4.  Some New Small Salem Numbers.  If P E S has degree k, with root 0 > 1,
then Salem [13] showed that, for e = ±1,

(26) Pem (z) = zmP(z) + ezkP(z-1 ) = 0

has a root dem > 1 which is a Salem number for all sufficiently large m, provided P is
not a reciprocal quadratic.  In fact, d^ET for all m, while 0~ E T if and only if m >
k - 2P(1)/P(1). We showed in [4] that all Salem numbers arise in this way.

It is easily seen that dem < 0 if e = sgn P(0) so we will always make this choice
of e and write 9em = dm for simplicity.  Then (26) can be rewritten in the form

(27) 1 + zmf(z) = 0,
where

(28) f(z) =sgnP (0yP(z)/zkP(z~1 ),

so fE C.  The equation (27) has at most one root in \z\ < 1, namely 9ml.  This holds
true for any fEC even when / is not of the form (28).  If / is not of the form (28),
then/S C'; and if 9m > 1, then 0m E S.   If (27) has no root in |z|< 1, we define
9m = 1.  It should be observed that 6m depends on /and not simply on the pole 0_1
off.

In the computations described in Section 3, along with 0 E S and P E S, we cal-
culated the smallest corresponding 0m > 1.  From the 0 < 1.932, we found exactly
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one new 9m < 1.3, namely a41 which is 0^ for the degree 28 0 = 1.8388762951 with

P= 1-2 1-1-1 1-1 101001-10 0-1000001-1 10-1 1-1.

Infact,iP7(z) = (z-l)r41(z).
By inspection, T4x(z)(z8 + 1) = z29Q(z) + z7Q(z"1), where ß = 1 0 0 0- 1

-1-1-1. The polynomial ß has 3 roots in \z\ > 1, one at 0 = 1.296466239 and a
pair a, ä with |a| —  1.052, so the method of [4] may be applied to find Salem num-
bers among the roots of Qm(z).  In fact, Q31 = FXF2F4FX 1FX6T40, and this is the
way o40 was first discovered.

The Salem number o2 x 5 was found in a similar way.  We observe that (z + 1)7^8
= ß+0 for the degree 11 ß = 1 - 1 0 0- 1 1 - 1 1 0- 1 1 - 1. This ß has five roots
in |z| > 1 at 0 = 1.2816970361 and a, ä, 0, 0 with |a| ^ 1.035 and |0| » 1.034. We
find that Q79 = FXF2F3F4FJ2X5.

5.   Salem Numbers in Intervals.  We now investigate Salem's construction in more
detail.  For each m > 1 and fEC, let 0"1 be the root of (27) identified in Section 4.
Let Dn, D* be the polynomials corresponding to   / as in Section 2.  It is clear that
En(z) + zmDn(z) = 0 has at most one root, say r„ m > 1 in |z| > 1.  If no such root
exists, write r„ m = 1.  The equation E*(z) + zmD*(z) = 0 has exactly one root r*m
> 1 in \z\ > 1.  Furthermore, we have the following:

Lemma 3.   77ie following inequality holds for all m> 1 :

T        < 0     < T*n, m m n,m'

Proof.   Let / be as above, and let a = 0_1.  The function

(En(z)f(z)-Dn(z))(z-a)

is holomorphic in |z| < 1 and, if not identically zero, is negative for 0 < z < 1, as
shown in [7, p. 80].  Thus

{£■„(1 +zmf)-(En+zmDn)}iz-a)
(29)

= zmiEnf-Dn)iz-a)<0    for0<z<l.

Let \p = i~nlm.   It is clear that a = 0_1 < r~x < x~!m = \¡/ < 1.  Ifi//<l,we can set
z = \p in (29) and obtain

(30) £„W(l + .//'"/0/'))(V'-c*)<0.

Now En vanishes once in 0 < z < 1 (at r"1) and £"„(0) = 1 > 0, so Eni\¡s) < 0. Thus
(30) implies (1 + ^mfi^/))iii - a)> 0.  However, at z = 0, we clearly have
(1 + 0m/(0))(0 - a) < 0. Hence zmfiz) + 1 vanishes in 0 <z < i//, so 9m > rnm.  Of
course, if i// = 1, the result 9m > 1 = Tn m is trivial.

The proof that 9m < t* m is similar.
We now consider the following problem:   given m > 1 and an interval [a, 0], de-

termine all 9m in [a, 0]. We shall see that this problem can be solved effectively for
m > 2, provided [a, ß] does not intersect {1} U S.

The restriction a > 1 may seem unfortunate since we are interested in the
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question of whether inf T > 1.  However, if one could determine an interval [a, ß]
with 1 < a < ß such that [a, 0] O T is empty then, since T is closed under the opera-
tion of taking successive powers, one would also know that [a1^, 01'*] H T is empty,
for all k= 1,2,....  If l/»i< (log ß/logo)-l, then  \Jk=m [allk,ß1/k] =(l,01/m],
and one would have inf T > 01/m.

By a similar argument, if one could determine an interval [a, 0] with a < 01 ̂ 2
such that [a, 0] C\ T is a finite set, then one could determine all points in (1, 0] nr
and, hence, find min T.   For each fixed k it is certainly clear that one can determine
for each o E [a, 0] n T whether or not ollk E T (by checking a finite number of poly-
nomials).  Only a finite number of values of k would need to be checked since the de-
gree of o ET increases at an estimable rate as a —► 1, by the work of Blanksby and
Montgomery [2].

Returning to our main problem, we wish to consider fE C with expansion u0 +
uxz + ■■• and to determine conditions on {un} so that 9m E [a, 0].  Fix m, and let
Bniz) = zmDniz) + Eniz).  It can be shown that Bn satisfies the recurrence relation
(4).  If we are to have 9m < 0, then by Lemma 3, rn + 1 m < 0, and this means Bn+X(ß)
< 0.   Using (4) just as in Section 2, we find that this implies a condition un < s*(0),
where s* satisfies the recurrence relation

(31) s*n + x -wn + x=(l+ ß)2ß-x(s* - un)(un - wn)/(s* - w„).

The only explicit dependence on m is through the initial condition, and we find
that
(32) so(0) = (0m + 1-l)/(0m-0)-

Note that when am = 1 we have sj(0) = °°, which, if used in (31) gives

(33) s*-wx=(l+ß)2ß-\u0 + l).

This can be verified to be the correct value.
Similarly, using amD*(a) + E*(a) < 0, we find a condition un > sn(a), where

(34) w*n + x - v,., = O + «)2a-liw* - un)iun - s„)/iw* - s„)

and
(35) s0ia) = -iam + l + l)/(am + a).

Again, if «0 = 1, the fact that w* = °° means that we must use a special formula for
s2(a).

Lemma 4.  Suppose [a, 0] does not intersect the set {1} US.  Let V be the
tree of Section 2 restricted by the further conditions

(36) snia) < un < s*(ß),   for all n>0.

If m > 2, then P is a finite tree.   If m = 1, and u0 is fixed, then the tree defined by
the remaining conditions is finite.

Proof.   If not, P would contain a path to infinity which would correspond to an
fE C'.  For this /we would have 9m = 1 or 9m E S.   However, the inequalities (36)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



PISOT AND SALEM NUMBERS 1255

guarantee that a < 9m < 0, which contradicts the assumption that [a, 0] does not inter-
sect {1}U S.

To put these results into practice, similar remarks to those concerning vn and u* in
Section 2 may be made. That is, we in fact replace (36) by

(37) Snia)<un<S*iß),

where Sn, S* are rational numbers with a fixed denominator satisfying Sn < sn and
s* < 5*.   Unfortunately, no auxiliary inequalities such as (19) seem to be available
here, so it is possible that the tree defined by (37) may be infinite even when the tree
defined by (36) is finite.  This could occur if, e.g., [Sn] < [sn] at some stage.  This,
in fact, caused some difficulty in practice when the denominator of Sn, S* was chosen
to be d = 103, but the choice of d = 107 avoided this problem in all the computations
to be described next.

We now describe the application of this algorithm to find all Salem numbers of
the form 9m for m > 2 in certain intervals [a, 0] with 0 < 1.3.  By the results of [4,
p. 322], if 0 > ym(x) = (xm + 1 - l)/(xm - x), then 0m > x.   Taking x = 1.3, we find
that, for m = 2,3,4, 5 we have 7m(1.3) = 3.069, 2.069, 1.743, 1.586.  From our list
of S O [1,1.86675], we can thus treat m > 4 by inspection.  In fact, m > 6 was al-
ready discussed in [4].  The number of P E S which produce 9m E (1,1.3] is 1,1,2,
2,6 for m = 8,1, 6, 5, 4, respectively.

For m = 3, we could not deal with the entire interval (1,1.3], but restricted our
search to [1.1,1.3].  The tree which was searched had 317 nodes, height 28, and 22 P
were found for which 03 E [1.1,1.3], all of degree at most 16.

For m = 2, we examined an even smaller interval [1.125,1.3] in two separate
parts [1.125,1.2] and [1.2,1.3].  For [1.2, 1.3], the tree had height 57, had 42499
nodes and 544 suitable P were found.  For [1.125,1.3], there were correspondingly
14603 nodes, height 38 and 32 P.   The total CPU time for these various calculations
was about 17 minutes.  Most of the time was spent in searching the subtree for which
(«0>... , u4) = (1,2, 4, 8, 16).  The reason for this is readily seen:   the function
1/(1 - 2z) = 1 + 2z + 4z2 + • • • is in C(2), the second derived set of C, and has 02 =
1. Thus, a neighbourhood of this function contains a great many g E C for which 02 is
close to 1.  All such 02 which satisfy 02 > a must occur in the search of the tree.

The program contained a provision for recognizing already known Salem numbers
and factoring the polynomials Pm which occurred.  For example, the largest degree
polynomial found was of degree 46, namely

P(z) = z46 - 2z45 - z39 - z34 - z29 - z22 - z16 - z11 -z6-l,

with0 = 2.0153852503 and P2 = FXF2FX0F46T3T
The new small Salem number o42 of degree 26 appeared twice on this list. There

are thus 43 known Salem numbers in [1.125,1.3].  The number of times each appears
in the list of 576 = 544 + 32 numbers just mentioned is roughly correlated with the
degree of the number.  Only two numbers a23 (degree 26) and o3x (degree 44) did
not appear.  The numbers axx, o28, a29, a32, a33 of degrees 26, 30, 30, 30, 34 each
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appeared once only, while a22 (degree 8) appeared 67 times and a38 (degree 10) ap-
peared 68 times.

6.  Intervals Near Integers.  In [4], it was shown that if \P(0)\ = u0, and 0 >
u0 + 2 + x + x_1, then 0 j > x, so that small Salem numbers can only be produced
in this case for u0 < 0 < u0 + 2 + x: + x_1.  C. J. Smyth [15] has proved a sort of
converse of this, which states that if 97 > 1 and 0 < «0 + e2 with 0 < e < 1/2, then
07  < 1/(1 - e).   His interesting proof considers the conjugates of 0 in detail.  The fol-
lowing is a comparable result which instead uses Lemma 3.

Lemma 5.  Let \P(0)\ = u0 > 1, e = sgn P(0) and o = 9\.  Suppose that 9 =
u0 + 6.   Then

(38) a + a-1<2 + ô(Wo + l)2/(M2-«0).

Hence, a < 1 + aS1'2 for a computable constant a.
Proof.   By Lemma 3, a < tÎ v  Now D*(z) = z2 - ux/(u0 - l)z + «0, so r* ,

solves Biz) = 0 where Biz) = izD*iz) + £$(z))/(z + 1) = z2 -{«,/(w0 - 1) -
(u0 - l)}z + 1. Thus, we must have 0 < B(a) which reduces to

(39) a + a~l < ux/(u0 - 1) - (u0 - 1).

On the other hand, by [7], we have r2 < 0, which implies that D2(9) < 0.   Since
D2(z) = -z2 + (ux/iu0 + l))z + u0, this implies

(40) ux/(u0 + l)<(92-u0)/9.

Estimating ux in (39) by (40), and using (1 + 5/u0)_1 > 1 - S/«0   gives (38).
The supposition that inf T > 1 thus has interesting consequences for the subset

of S satisfying the conditions of Lemma 5, since 9\ > 1 implies 9\ E T.   In particular,
0 + is always in T.   For example, if inf T > 1, then there must be a lower bound u0
+ 50 with 60 > 0 independent of uQ on those 9 ES satisfying P(0) = u0 > 0.  If ox
is indeed the smallest Salem number, then Lemma 5 gives 50 > 0.026.

A brief study was thus made of Su O [u, u + 5] for small S, where Su = { 9 E
S:   0_1 is the pole of an fE C with /(0) = «}.  Note that Su is a closed set.   It is
easy to show, using the methods of [7], that min Su is the root 0 > 1 of the cubic
z3 ~iu- l)z2 -uz-u, so that min Su =¿ u + (w + l)""1.   Note that 07 = 1.  The
smallest limit point appears to be (u + (u2 + 4)1 '2)/2 corresponding to f(z) =
u/(l-uz-z2). Since the size of this number is« + u~x ~u~3 + 0(u~5), we see that a
great many points of Su are to be found rather close to min Su.

For example, min S9 = 9.0979635508 and min S'g < 9.1097722286.  The inter-
val [9,9.1] n S9 contains 27 points, none with P(0) > 0.  An incomplete search of
[9.11,9.12] ns9 revealed the degree 16

D*6 =1-8-9 -10 -2-3555-4-5-621999,

with 0 = 9.1112415981 for which 0+ = ax.
It is clear that the sets Su deserve a closer examination, but this will not be done

here.
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7. Pisot Sequences. In [3] we proved that there are Pisot sequences which satis-
fy no linear recurrence; in particular £"(14,23) is such a sequence. After [3] was writ-
ten, D. G. Cantor sent me a copy of the thesis of P. Galyean [9], in which many ¿i-se-
quences with a0 < 10 were investigated. He found many which satisfied no recurrence
of degree at most d where typically d = 15, 20, 25 or 20. He conjectured that at least
some of these in fact satisfy no recurrence whatsoever. We shall show that this is in-
deed the case for a number of his examples.

If E(a0, a j) is an ^-sequence, then lim an+x/an = 0(aQ, ax) = 9. If E(a0, a,) is
recurrent then it satisfies either an S-recurrence, so 0 E S, or a T-recurrence, so 0 ET.
To show that an S-recurrence is not satisfied, it suffices then to show that 0 £ S. The
same idea was used in [3] but now our algorithm for deciding 0 ^5 is more efficient.

The main contribution of [3] was a method for dealing with 7-recurrence. Theo-
rem 1 of [3] can handle most of the examples we discuss here, but a sharpening of that
criterion is necessary for some.  Unexplained notation in the following is taken from

PI-
Let E(a0, ax) be assumed for the moment to satisfy a ^-recurrence. We call a

recurrence pure if the generating function f(z) = A(z)/B(z) has deg A < deg B. It is
shown in [3] that if 9(a0, ax) > 2, then the recurrence for E(a0, ax) is pure. If r =
(1 + 51/2)/2 < 0 < 2, then the recurrence is pure, provided a0 > 2 + 13/(02 -0-1);
and this can always be arranged by dropping a few initial terms of the sequence. If 0
< t, we cannot deal with general T-recurrence, but must assume, a priori, that the re-
currence is pure.

Thus, let E(a0, ax) satisfy a pure T-recurrence.  Then an has the form

(41) an = X9n + pß~" + 5„,      « = 0,1,...,

where 0 and À can be computed to arbitrary accuracy and S n is an almost periodic se-
quence which satisfies

(42) |02ô„-20ô„ + ] +5„+2|<l/2    for n = 0, ±1, ±2, ....

Using (41) as the definition of an for n < 0, it can be shown that the an are integers.
This fact, combined with (42) shows that the an, -K < n < 0 can be computed from a
knowledge of a0, ax, ... , aN (where K —► °° as N —► °°), provided 0 > t.  The reason
for the condition 0 > t is that it implies (1 + 0)/202 < 1/2 so that the an are uniquely
determined from

K - Aeian + l>an+2>an + 3)\ <0 + S)/292.

However, even if 1 < 0 < r, we still have (1 + 0)/202 < 1, so the a„, for n < 0, form
a tree which is at most binary. For example, E(7,11) has 0(7,11) = 1.5499304464 <t.
If we assume that EiJ, 11) satisfies a pure T-recurrence, then an is given by 4, 2, 1, 1,
2, 4, 7 for n = -1, ... , -7, while a_s = 11 or 12.  The next branching occurs at a_23.

To state our new criterion, let v = p(9 - 0-1)2.   Then (41) and (42) show that
I" ~ (an+2 ~26an+i + S2an)9"\ < 0"/2 for all n.   This restricts v to an interval /„ of
length 9" for each n, positive or negative.   If E(a0, ax) is T-recurrent, these intervals
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must have a nonempty intersection.  For example, £"(9,15) is not T-recurrent since
/_, H I_20 = 0; Eil, 11) is not pure T-recurrent since I0 Ci /_7 = 0.  Furthermore,
our list of 5 shows 0(7,11) ÇS, and 0(9,15) - 1.6913056849 £ S.   Hence, £"(9,15)
satisfies no recurrence whatsoever, and Eil, 11) satisfies no pure recurrence.

For 0 larger than 1.932, we apply the algorithm of Section 3 to a small interval
[a, ß] with a < 9 < 0.  Continued fractions are used to select a and 0 with small de-
nominators.   For example, to check that 0(7,15) = 2.12911 25851 58341 gS, we
looked at the interval

[96617/45379, 28215/13252] = [2.12911 25851 16,2.12911 25867 79],

and found that S D [a, 0] contains exactly one number 0, of degree 41, namely 0 =
2.12911 25851 58442, with

P=    1-3   2 0-1    1-1    10-1    10-1    10-1    1-1    10
-2   3-2 0   1-1    1-10   1-10   1-10   1-1    1-10 1-1.

We can thus conclude that dist(0(7,15), S) = 1.011 x 10~13.
Using these techniques, Eia0, ax) has been proved to be nonrecurrent for (a0, ax)

= il, 15), (8,14), (9,15), (9,17), (9,19), (10,18), (10,21) and (10,22). In addition,
the following do not satisfy a pure recurrence:  £(7,11), £(8,10), £(8,12), £(10,15).

D. G. Cantor [6] has studied families of £-sequences of the type £(fl0, ax + ct^m)
for integer m.   He gives conditions under which each member of the family, for suffi-
ciently large m, satisfies a recurrence.  The family £(7,49m + 15) is interesting since it
contains the nonrecurrent £(7,15) but it appears from [9] that E(l,49m + 15) is re-
current for m > 1, with generating function A(z)/(Qiz) - mzAiz)), where Aiz) = 1 +
z + 2z2 - 3z3, and ß(z) = 1 - 2z - z3 + z4.   The polynomial z4Qiz~x) is indeed the
minimal polynomial for a P. V. number; but

Aiz)/Qiz) = 7 15 32 68 144... ,
while

£(7,15) = 7 15 32 68 145 ... .

Observing that (68)2/32 = 144%, we see that the "reason" £(7,15) is a nontypical
member of its family is that we have rounded 144% up to 145 rather than down to
144.

8.  Finite Families of S and T Numbers.  An interesting phenomenon was en-
countered at a number of points in our investigation, and is perhaps best illustrated by
the following example.  In an attempt to prove the nonrecurrence of £(6,16), we con-
sidered a small interval containing 0(6,16) = 2.69920 99139.   An incomplete search of
this interval revealed a number of polynomials of the form (z"£(z) + A(z))/(z1 - 1),
where P(z) = zs - 3z4 + z3 - z - 1 and A(z) = z8 + z5 + z4 - z2 + 2z - 1.  If we
let B(z) = (z7 - l)(z - 1), then a straightforward calculation shows that

(43) |P(z)|2 = \A(z)\2 + |fi(z)|2    on|z|=l;
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and hence, if Q(z) = zs£(z_1), that f(z) = A(z)/Q(z) is bounded by 1 on |z| = 1.
However, P $ S since, in addition to a root 0 = 2.6992099139, it has roots a, ä with
a ä 1.007144 exp /(51.56064o).

By methods similar to the proof of Lemma 3.1 of [4], it can be shown that if co
is a root of z"P + A = 0 with | co| = 1 and

(44) « < Re co {^'(co)^(co)-1 - PTw)/^)-1} = Mico),

then z"P + A has exactly one root in \z\ > 1 and that this is then a member of S.
From (43), the only choice for co is either co = 1, or else a 7th root of unity, and in-
deed, if w = exp (27T//7), then co"/>(co) + 4(co) = 0 if n = 4 (mod 7).  Also, M(co) =
111.7561 so that iz"Piz) + >4(z))/(z7 - 1) is in S if n = Ik + 4 with 0 < k < 15. We
obtain a similar family by using zsAiz~x) in place of Aiz).

The polynomial P appeared in [9] as well.  Galyean found that £(6,16) was pre-
dicted for 45 terms by (6 - 2z + z2 + 3z3 + 2z4)/zs/>(z~1)> but that it satisfies no re-
currence of degree < 361 [9, pp. 18, 78].

By Rouché's theorem, all the polynomials z"Piz) ± ,4(z) or z"Piz) ± z8,4(z-1)
have at most three zeros in |z| > 1 so these provide suitable polynomials for the meth-
od of Section 7 of [4].  For example,

PQiz) = z6Piz) - z8Aiz-x) =1-311-300-1-100-1

has roots 0 = 2.6791355714 and a, ä with |ct| = 1.000453.  Thus, 1 + 2(|a| - 1)_1 =
4418.46 so [4, kmma 7.1] it is possible that zmP0iz) + ez1 xPQiz~x), e = ±l, pro-
duces Salem numbers for m as large as 4418.   Indeed, with e = -1, Salem numbers are
produced for all but 7 values of m in 2 < m < 100 and for m = 4184; with e = 1,
Salem numbers are produced for all but 14 values of m in 1 < m < 100, and also for
m = 4013, 4020, 4027, 4034.
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