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Abstract. The general purpose of an adaptive optics system is to correct for the wavefront corrugations due to
atmospheric turbulence. When applied to a stellar interferometer, care must be taken in the control of the mean
optical path length, commonly called differential piston. This paper defines a general formalism for the piston
control of a deformable mirror in the linear regime. It is shown that the usual filtering of the piston mode in the
command space is not sufficient, mostly in the case of a bimorph mirror. Another algorithm is proposed to cancel
in the command space the piston produced in the pupil space. This analysis is confirmed by simulations in the
case of the GI2T interferometer located on Plateau de Calern, France. The contrast of the interference fringes is
severely reduced in the case of a classical wavefront correction, even in short exposures, but is negligible with our
algorithm, assuming a realistic calibration of the mirror. For this purpose, a simple concept for the calibration of
the piston induced by a deformable mirror is proposed.

Key words. instrumentation: interferometers – instrumentation: adaptive optics – atmospheric effects – methods:
numerical – techniques: interferometric

1. Introduction

Adaptive Optics (AO) in astronomy (Rousset et al. 1990)
is now a well established technique to correct the severe
starlight wavefront disturbances induced by atmospheric
turbulence and to restore the diffraction limit of single
telescopes. An AO system comprises a wavefront sensor
(WFS) and a deformable mirror (DM) in a conjugated
pupil plane, which can be either a bimorph deformable
mirror (BDM), generally associated to a curvature WFS
(Roddier 1988), or a piezo-stack DM (PDM) with a Shack-
Hartmann WFS (Rigaut 1992). The quality of AO correc-
tion is directly linked to the spatial variance of the cor-
rected phase over the pupil. The spatial average of the
phase, the piston, has no effect on imaging and is not seen
by the WFS.

For very high spatial resolution, the beams of two or
more telescopes can be combined in a stellar interferom-
eter (SI) (Labeyrie 1975). Performance of SIs is limited
by the optical path difference (OPD) between the tele-
scopes, induced mainly by atmospheric turbulence. As in
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AO, this can be corrected using a Fringe Sensing Unit
(Cassaing et al. 2000) and a delay line.

Up to now, SIs were limited to the very bright stars
because of the severe atmospheric limitations. The main
challenge of very high angular resolution is to drastically
improve the limiting magnitude. Several SIs under con-
struction plan to use large telescopes corrected by AO
techniques, such as the VLTI (Donaldson et al. 2000), the
Keck Interferometer (Colavita et al. 1998), and the GI2T
(Mourard et al. 1994), for which an AO system based
on a curvature WFS and a BDM is under construction
(Vérinaud et al. 2000).

When using AO in a stellar interferometer, the control
of the DM piston mode is a critical issue since a piston
induced by each DM creates an additional OPD, shifting
the interference fringes. A solution is to consider all the
sensors (WFSs and fringe sensor) and the DM actuators as
a whole (dashed line in Fig. 1), driven by a global control
system (Roddier 1999).

In this paper, we investigate further the interaction
between AO correction and OPD. In Sect. 2, we explain
the origin of the DM piston effect and describe a correction
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Fig. 1. General layout of a stellar interferometer equipped with
AO

method. In Sect. 3, a simulation of the piston effect for the
GI2T is presented. In Sect. 4 we propose an experiment
to calibrate the piston contribution of each DM mode and
evaluate its precision in terms of error propagation on the
sky.

2. Piston control in Adaptive Optics

2.1. Basics of AO control

For the good understanding of the piston effect, it can be
useful to consider the general control algorithms of an AO
system and the behavior of the DM. In the weak deforma-
tions regime, a DM can be characterized by the vectorial
basis of its influence functions Fi(r), defined as the DM
phase response at a point r in the pupil, to a unit voltage
applied to each actuator i. The components φi of a given
DM phase response |Φ〉 on the influence functions form
the command vector φ applied to the mirror. This can be
written:

|Φ〉 =
∑
i

φi|Fi〉. (1)

The mirror phase can also be decomposed on a more con-
venient basis such as Zernike-like DM modes |Z ′i〉 that fit
the better, at the least-square sense, the real Zernike poly-
nomials |Zi〉 (Noll 1976). We define z′i as the normalized
command-vector producing |Z ′i〉 on the DM. The two vec-
torial spaces (respectively DM commands and DM phases)
are provided with the scalar products defined as:

φ · φ′ =
∑
i

φiφ
′
i, (2)

〈Φ|Φ′〉 =
1
S

∫∫
R2

Φ(r)Φ′(r)γ(r)dr, (3)

where γ(r) is a weighting function describing the
pupil apodization due to a possible spatial filtering
(Ruilier & Cassaing 2000) and S is the weighted pupil

Fig. 2. Simulated deformations of a BDM. Influence functions
of the central electrode (top) and of an electrode of the outer
ring (bottom); the dashed line represents the outline of the
useful pupil and the spikes denote the position of the 3 fixed
points of the DM mount

surface. In the non-filtered case γ(r) is simply the pupil
function.

For a BDM, the influence functions can easily be com-
puted in the case of an infinite plate by solving a Poisson
equation in the Fourier space (Kokorowski 1970):

Fi(r) = FFT−1
(
Wi(k)(α‖k‖2 − β)

)
, (4)

where Wi(k) is the 2D Fourier transform of the function
of the voltage distribution over the DM when electrode i is
driven (equal to a constant on the surface of the actuator
and to 0 outside) and α and β are constants depending
on the piezoelectric material. This model can be applied
to a DM of finite size since the useful aperture is only half
the whole plate diameter. A final 3D rotation is applied to
take into account the DM mount (3 fixed points giving the
boundary conditions). Two influence functions computed
with this method are displayed in Fig. 2.

The commands applied to the DM can be linked
to the analyzed phase by a linear model of the WFS
(Rousset 1993). To compute the command matrix C link-
ing the command φ to apply to the actuators with
the wavefront measurements s, (φ = Cs), one must
first determine the interaction matrix D whose column-
vectors are the WFS measurements when each actuator
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Fig. 3. 3D view and plot of a mirror section for the piston
and defocus modes of a BDM. Top: the piston mode |Z′1〉.
Center: the defocus mode |Z′4⊥〉 orthogonal to the |Z′1〉 mode
in the command space. Bottom: the defocus mode after piston
correction

is driven individually. The response of the WFS to a given
command writes:

s = Dφ. (5)

As some DM modes are not detected by the WFS, D is
singular and the command matrix must be computed by
inverting D after a singular value decomposition (SVD).
The command matrix C is given by:

C = XE(−1)U t, (6)

whereE(−1) is the pseudo-inverse of E the diagonal matrix
containing the eigen-values λi, and U and X are the ma-
trices of the orthogonal eigen-vectors (usually called the
system modes) of respectively DDt and DtD. In practice
the eigen-vectors of X corresponding to the lowest eigen-
values λk are mirror modes whose detection by the WFS is
very noisy. Such undetected modes are at least the piston
mode |Z ′1〉 (Fig. 3) and also the waffle mode for a PDM
coupled with a Shack-Hartmann WFS.

To compute a command matrix allowing to close the
loop without saturation, the undetected modes are dis-
carded in the command space by setting their huge gains
λ−1
k in E(−1) to zero and leaving the other λ−1

i unchanged.
The DM piston mode |Z ′1〉 is thus never commanded. We
may call this approach classical control.

To close the loop and to ensure stability, the command
is usually temporally filtered by a simple integrator with a
given gain g. The command vector at the time ti is given
by:

φti = φti−1
− gCsti . (7)

Another approach is modal control, based on a filtering in
a relevant basis (Gendron & Lena 1994). This basis can
be the Zernike-like modes |Z ′i

⊥〉, orthogonalized to |Z ′1〉
in the command space (Rigaut et al. 1994). Let O be the
change of base matrix from the |Fi〉 to the |Z ′i

⊥〉. The
modal control command matrix Cmod can be derived from
the zonal control command matrix C by:

Cmod = O−1GmodOC, (8)

where Gmod is the diagonal matrix containing the gains,
that can be optimized according to the SNR of each mode.

2.2. Origin of the piston effect

To describe how piston can be introduced, we suppose the
mirror is able to produce a perfect piston mode so that
|Z ′1〉 = |Z1〉. The piston in the pupil is then given by:

〈Φ|Z ′1〉 =
∑
i,j

φiz
′
1j .〈Fi|Fj〉· (9)

Therefore, when the influence functions are orthonormal,
i.e. 〈Fi|Fj〉 = δij , orthogonality to z′1 in the command
space (i.e. φ ·z′1 = 0) automatically implies orthogonality
to the piston in the pupil (〈Φ|Z ′1〉 = 0). This is nearly the
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Fig. 4. Matrix 〈Fi|Fj〉 simulated for a PDM (left) and for a
BDM (right)

case of a PDM for which the matrix 〈Fi|Fj〉 is almost di-
agonal (Fig. 4): filtering the piston in the command space
may also filter it efficiently in the pupil. But for a BDM,
the matrix 〈Fi|Fj〉 is rather uniform (Fig. 4): the condi-
tion φ · z′1 = 0 is not sufficient to produce a zero-mean
deformation. For example, if the Zernike-like defocus |Z ′4〉
is filtered in the command space by

z′4
⊥ = z′4 − (z′4 · z′1)z′1, (10)

the mean of the resulting phase |Z ′4
⊥〉 is far from zero as

shown by Fig. 3.

2.3. Correction of the piston effect

The simplest strategy for correcting the piston effect is to
completely discard the DM piston induced in the pupil at
the command level. Each influence function contributes to
the piston mode in the pupil plane by a quantity ηF

i given
by:

ηF
i = 〈Fi|Z1〉· (11)

We assume for the following that the ηF
i values are known.

A method to determine them experimentally is described
in Sect. 4.

The piston correction in the control loop can be ob-
tained by subtracting from the command vector Cs the
piston command weighted by a coefficient representing the
overall contribution of Cs to the pupil piston. This coef-
ficient is simply the scalar product between Cs and the
ηF vector of components ηF

i . The command giving a zero-
mean deformation may be written:

φ = Cs−
[
(Cs) · ηF

] z′1
ηZ
′

1

, (12)

where ηZ
′

1 = 〈Z ′1|Z1〉. Although this correction term could
be merely added at each iteration of the control loop,
we show below that Eq. (12) can be rewritten as a sin-
gle matrix multiplication. By developing Eq. (12) for the
actuator i we obtain:

φi =
∑
j Cijsj −

[∑
k

(∑
j Ckjsj

)
ηF
k

] z′1i
ηZ
′

1

=
∑
j

[
Cij −

z′1i
ηZ
′

1

(∑
k

Ckjη
F
k

)]
sj . (13)

This can be condensed in:

φ = Ks with Kij = Cij −
z′1i
ηZ
′

1

(
CtηF

)
j
. (14)

Therefore the piston effect can be corrected by using a
single command matrix K given by Eq. (14), so that Ks
gives a zero-mean mirror deformation. For example, the
result of piston correction for the application of a defocus
on a BDM is shown in Fig. 3.

The main feature of this algorithm is that no ex-
tra computation time is needed for the piston effect
correction.

2.4. Limitations

The first limitation of the piston correction algorithm is
saturation. The absolute values of the voltages applied
to the actuators are limited in practice to a given maxi-
mum Vmax. Thus, the erratic saturations of the commands
occurring during atmospheric compensation induce phase
correction errors, and also jumps in the average of the
DM phase over the pupil (i.e. of the piston |Z1〉), be-
cause of a mis-correction of the piston mode. The piston
mis-correction ∆ can be written:

∆ =
ηF

ηZ
′

1

· (φT − φ), (15)

where φ is the ideal command computed by the matrix
multiplication Ks and by the loop integration (Eq. 7),
and φT is the real command limited to the thresholds
±Vmax.

Piston residuals due to saturation can be corrected by
subtracting ∆z′1 from the applied command when satu-
ration is present. Furthermore this correction needs to be
applied only during the loop iterations where the com-
mand saturates, which occurs only in a sporadic way.
Accordingly, the saturation correction doesn’t add any sig-
nificant temporal delay in the loop. The saturation issue
is illustrated by simulations in Sect. 3.

Another limitation is hysteresis of the piezoelectric ma-
terials inducing departure from the linear hypothesis. For
most of the materials used for BDMs, the amplitude of the
hysteresis cycle curve is comprised between 5 and 10%.
The complete study of the hysteresis effect is a difficult
task because of the complexity of the behavior of the
mirror as every deformation depends on the entire tra-
jectory of the commands applied to the mirror. However
an analytical study of the hysteresis effect on the piston
mode (Tordo et al. 2000) shows that the maximum error
remains negligible at least for short time-scales.

3. Simulations of the piston induced
by a bimorph mirror

To evaluate the bimorph piston effect during atmospheric
compensation, the GI2T with two curvature-based AO
systems and their close-loop temporal control have been



318 C. Vérinaud and F. Cassaing: Piston control with adaptive optics in stellar interferometry

Fig. 5. Piston contribution of Zernike-like modes for one BDM
(D = 1.5 m, r0(0.5 µm) = 8 cm). The total standard deviation
of the piston is 0.9 λ (at 0.7 µm). Some relevant modes: 2–3:
tip-tilt, 4: defocus, 11: spherical aberration

simulated. The turbulence spatial and temporal character-
istics are obtained by shifting three phase-screens based
on von Karman statistics in front of the pupils, with an
average wind speed of 15 m s−1. At each iteration, the DM
phase is recorded and projected on the Zernike-like modes
|Z ′i
⊥〉 and on |Z1〉 giving the piston in the pupil.

3.1. Piston filtering in the command space

We first show the effect of classical AO control when the
DM piston command z′1 is filtered.

In order to determine the contribution to the piston of
each correction mode we compute the covariance matrix Γ
of the components ζi of the DM phase |Φ〉 on the Zernike-
like modes.

Γij = 〈ζiζj〉 − 〈ζi〉〈ζj〉 with |Φ〉 =
∑
i

ζi|Z ′i
⊥〉, (16)

where 〈〉 denotes temporal average. The piston contribu-
tion of a mode is then computed from Γ and from the mean
value ηZ

′

i of each mode over the pupil which is defined by:

ηZ
′

i = 〈Z ′i
⊥|Z1〉· (17)

The piston variance induced by mode k is:

σ2
k =

(
ηZ
′

k

)2

Γkk + 2
∑
j 6=k

ηZ
′

k ηZ
′

j Γkj . (18)

The results for the GI2T configuration and for r0 = 8 cm
are displayed in Fig. 5. The amplitude of the induced pis-
ton is obviously not negligible since the standard deviation
of the total piston in one pupil is 0.9λ at 0.7 µm and is pro-
portional to (D/r0)5/6. We can notice that defocus is the
mode that carries most of the piston and tip and tilt have
different contributions because of the three-point mount.

To evaluate the piston effect on fringe contrast mea-
surements for a given exposure time, we assume that the

Atmospheric OPD

(with command matrix K
and sat. effect correction)

ν1 ν
2

Bimorph OPD

(Classical control)
Bimorph OPD

Fig. 6. Temporal power spectrum of the OPD induced by
two bimorph mirrors in classical control and with the K ma-
trix, compared with the atmospheric OPD. The conditions are:
r0(0.5) = 8 cm, outer-scale: L0 = 50 m, Diameter: D = 1.5 m,
baseline = 40 m, wind speed v = 15 m s−1, λ = 0.7 µm.
(ν1 = 0.3v/D = 3 Hz)

pistons induced by the two DMs are uncorrelated. The
OPD induced by the two DMs, as shown in Fig. 6, is
rather fast compared to the atmospheric OPD based on
the model of Conan (Conan et al. 1995). Indeed the bi-
morph OPD cut-off frequency ν2 = 30 Hz is greater than
the atmospheric OPD cut-off frequency ν1 due to aperture
filtering.

Such a strong high frequency additional OPD leads
to a significant fringe contrast loss, even in short expo-
sures. The variance σ2

p,τ of the OPD during the exposure
time τ can be computed from classical spectral theory
(Tango & Twiss 1980):

σ2
p,τ =

∫ ∞
0

[
1−

(
sin(πfτ)
πfτ

)2
]
Wp(f) df, (19)

where Wp(f) is the temporal power spectrum of the OPD
variations. The fringe visibility of a point-source can be
approximated by (Conan 1994):

V ' exp(−σ2
p,τ/2). (20)

Figure 7 plots the fringe visibility attenuation due to
the atmospheric and bimorph OPD versus the exposure
time. These fringe visibilities are computed with Eqs. (19)
and (20), using the spectra given in Fig. 6. It clearly shows
that, even on short exposures, the OPD induced by AO in
the classical zonal command must be attenuated to limit
the loss and wandering of fringe contrast during the obser-
vation. For example, according to Fig. 7, the fringe visibil-
ity would be 48% for the 7 ms exposure time of the Next
Generation Photon-Counting camera under construction
for the GI2T (Abe et al. 2000).
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Fig. 7. Fringe visibility attenuation versus exposure time due
to bimorph piston (solid line) and atmospheric piston (dashed
line) in the conditions of Fig. 6

3.2. Piston filtering in the pupil space

The induced piston can be considerably reduced using
the command matrix K with saturation effect correction.
Assuming a perfectly known ηF vector the residual OPD
becomes negligible as shown in Fig. 6.

To illustrate the need of saturation effect correction,
we analyze the DM piston residual under strong turbu-
lence. The standard deviation of the residual piston due
to saturation, by using the command matrix K alone, can
be very large. For r0 = 6 cm it is about 0.6 µm as shown
in Fig. 8. We plotted in the same figure the BDM piston
residuals by using the algorithm of the saturation effect
correction defined by Eq. (15). The standard deviation of
these residuals are less than ten nanometers.

These simulation results show that the piston effect
can be very well corrected if the contribution to the piston
of each actuator is known. In Sect. 4 we propose a method
to calibrate experimentally the ηF vector, which is the key
parameter for piston correction.

4. Proposition of an interferometric experiment
for the DM piston characterization

The contribution to the piston for each actuator (ηF vec-
tor) is not easy to evaluate. The usual influence functions
measured with a Zygo interferometer are not sufficient
as the pure piston component may be sensed with dif-
ficulty. Simulations including the positions of the three
fixed points confronted to real influence functions would
probably permit to obtain a good estimate of the piston
term. Yet simulations usually show discrepancies with the
real influence functions, and the position of the three fixed
points may be somewhat fuzzy. Furthermore, if the be-
havior of the DM is changing for some reason (tempera-
ture mostly), the precise responses of the actuators should
be taken into account with a built-in instrument, like it

Fig. 8. Piston residuals due to saturation (with command
matrix K) under strong turbulence (top) and residuals for
saturation effect correction (bottom). r0 = 6 cm, wind
speed = 15 m s−1

is done by measuring an interaction matrix. Thereby, we
propose an interferometric experiment intended to char-
acterize the piston effect and we evaluate the precision
expected from the calibration and the error propagation
through the AO reconstruction process.

4.1. Optical layout

Figure 9 schematically describes an optical setup that can
be included in an AO bench to measure the piston in-
duced by the DM. For good spatial and temporal coher-
ence, the source is a laser filtered by a pinhole and colli-
mated. Two beam-splitters are used to split the beam in
two arms and then to recombine them in a flat tint mode.
One arm includes the DM and the other is used as a refer-
ence. The pupil is defined before splitting by a diaphragm
matching the telescope obstruction, then re-imaged by re-
lay lenses on the second beam-splitter and last on a single-
pixel detector, with an intermediate image on the DM. For
fine alignment, one can use a pupil camera and the WFS
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Fig. 9. Optical scheme for measuring the piston contribution of
the DM correction modes. (DM: deformable mirror, RL: Relay
Lenses for pupil transfer)

to close the loop on the low order modes with a low tem-
poral bandwidth.

4.2. Principle of the measurement

Before starting the calibration, one must first determine
the piston command-vector z′1 of the DM. This vector can
be obtained by the SVD of an interaction matrix recorded
with the WFS. It is usually the eigen-vector of matrix X ,
resulting from the SVD (Sect. 2.1), corresponding to the
lowest eigen-value. If the influence functions of the DM are
known, from a Zygo interferometer for example, the pis-
ton command can also be determined by least-square tech-
niques. In this latter case, the user can also build a more
convenient set of mirror modes like for example Zernike-
like modes.

The calibration procedure can be performed either in
a zonal or in a modal way. In the first case, each actuator
is calibrated individually in order to determine directly
the ηF vector. In the second case, a set of new modes
orthogonal to the piston in the pupil can be built and
injected in the modal command matrix computation.

We show here how to calibrate the piston contribution
of Zernike-like |Z ′i

⊥〉 modes of the DM, represented by
the change of base matrix O defined in Sect. 2. If a zonal
method is used, the |Z ′i

⊥〉 modes are merely to be replaced
in this description by the influence functions |Fi〉.

The intensity at a given point r in the recombined
pupil is given by:

I(r) = I1 + I2 + 2
√
I1I2 sin

[(
φ0 −

π

2

)
+ Φ(r)

]
, (21)

where I1 and I2 are the intensities of the two beams after
splitting, φ0 is the phase between the two arms and Φ(r) is
the mirror phase displacement. The OPD between the two
arms is adjusted in order to get a grey tint in the pupil,
whose intensity is midway between the maximum and the
minimum of the fringe intensity (φ0 = (2k + 1)π/2). In
this region and for weak amplitudes of the deformation,

Total intensity = 6187 ph. Total intensity = 4917 ph.

Fig. 10. Simulation of interferograms in the recombined pupil
of the coma Zernike-like DM mode |Z′7⊥〉 driven with a ±λ/4
amplitude. The overall intensities for two opposite coma com-
mands are different, revealing the presence of piston in the
pupil

the intensity is linear with respect to Φ(r). Accordingly,
the overall intensity for a zero-mean mirror deformation
remains unchanged. Conversely, if the deformation is not
zero-mean, which is a priori the case for the Zernike-like
modes |Z ′i

⊥〉, the change in intensity reveals the presence
of piston in the pupil (Fig. 10). This property is used to
calibrate the piston contribution of each actuator.

The general process of piston calibration consists in
modulating the mirror mode to characterize at a given
temporal frequency f0, with a deformation amplitude less
than λ/4. The overall intensity fluctuations measured on
the single-pixel detector are recorded and can be processed
by synchronous detection.

When a non zero-mean mode Zernike-like mode is
driven with a sine signal for example, the overall intensity
at the output is characterized by fluctuations (Fig. 11)
with a significant contribution at f0. Now this mode has
to be modified by adding the DM piston command z′1
weighted by a coefficient κ to the command producing
the |Z ′i

⊥〉 in order to cancel the piston in the pupil. The
new deformation to modulate writes:

|Z ′′i 〉 = |Z ′i
⊥〉+ κ|Z ′1〉. (22)

By adjusting the coefficient κ during the temporal modu-
lation of |Z ′′i 〉 on the DM, it is possible to cancel the contri-
bution of intensity fluctuations at f0. When this is realized
the mode |Z ′′i 〉 is orthogonal to |Z1〉 in the pupil space. The
corresponding command vector z′′i contains now the DM
piston command z′1 and is related to the contribution ηZ

′

i

of the uncalibrated Zernike-like mode |Z ′i
⊥〉:

z′′i · z′1 =
ηZ
′

i

ηZ
′

1

where ηZ
′

i = 〈Z ′i
⊥|Z1〉. (23)

If the actuators are calibrated (zonal method) instead of
modes, the vector ηZ

′
in Eq. (23) is to be replaced by ηF

and can thus be injected in Eq. (14) for computing the
searched command matrix K. In the modal method we
described, the ηF vector is related to ηZ

′
by:

ηF = O−1ηZ
′
. (24)
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dirft correction and vibrations
Low frequency energy due to

Piston residual

Fig. 11. Simulated power spectrum of intensity fluctuations for
the coma mode driven with an amplitude of λ/4 at f0 = 30 Hz.

Top: |Z′7⊥〉, middle: |Z′′7 〉 with a λ/500 piston error, bottom:
|Z′′7 〉 calibrated

As the new modes represented by a change of base ma-
trix O′ obtained by the piston adjustment are zero-mean
modes, they can also be directly used in the computation
of a modal optimized command matrix by replacing O by
O′ in Eq. (8). The resulting command matrix produces
zero-mean deformations like the matrix K.

For sensitivity purposes we wish to apply a modula-
tion with the largest possible amplitude. With a maxi-
mum deformation amplitude of λ/4, the response already
reached the non-linear region, so that some intensity fluc-
tuation remains even when the driven mode is zero-mean
as shown in Fig. 12. However these results show that
calibrating Zernike-like modes, which have a more sym-
metric shape than single influence functions, may induce
negligible errors except for a few modes.

Fig. 12. Simulation of piston errors due to non-linear ef-
fects: intensity fluctuation transposed to piston error in nm
for piston-free modes driven with a ±λ/4 amplitude (at
0.7 µm). (Cross: calibration for single actuators, stars: cali-
brated Zernike-like modes)

4.3. Simulation results

We simulated this interferometric experiment by comput-
ing the pupil interferograms at the single-pixel detector
considering our 31 element BDM model. We took into ac-
count photon noise, 8 105 photons per second, and chose
rather pessimistic parasite vibrations in the bench includ-
ing a slow drift of λ/16 and an arbitrary white piston
noise of λ/200 standard deviation. The slow drift is cor-
rected with a low bandwidth with the mirror itself by
using the mean intensity as feed-back. In a real experi-
ment, the modulation frequency could be adjusted tak-
ing into account the real vibrations spectrum. The power
spectrum analysis of the simulation results displayed in
Fig. 11, shows that it should be easy to extract the con-
tribution of intensity fluctuations due to a small piston
in the driven mode, even in presence of photon noise,
parasite vibrations and possible source instability.

4.4. Error propagation

Assuming our DM model is right, it is possible to evaluate
the precision we can reach for the piston calibration. From
Fig. 11, we can assume that an accuracy of λ/500 for the
piston adjustment of each correction modes may be easily
reached. From this precision, it is possible to compute as
for Fig. 5 the residual contribution of each mode to the
pupil piston when it is propagated by the AO correction of
atmospheric turbulence. The results displayed in Fig. 13
take into account the non-linear effects. The overall resid-
ual piston standard deviation for one DM is less than λ/48
and thus the final error in OPD due to the two DMs would
be λ/33. This is sufficient to make the fringe contrast loss
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Fig. 13. Residual piston error of bimorph mirror during atmo-
spheric compensation versus mode number for a λ/500 accu-
racy of mode calibration with a λ/4 amplitude. r0 = 8 cm,
wind speed = 15 m s−1

due to AO negligible in short exposures. In long exposures
the loss would be of about 2% for these mean turbulence
conditions.

4.5. Effect of spatial filtering

For calibration purposes the science beam of an
interferometer is sometimes spatially filtered by single-
mode optical devices (Coudé du Foresto et al. 1998)
(Malbet et al. 1999). This leads to an apodization
of the intensity in the pupil, defined by the func-
tion γ(r) of Eq. (3) close to a truncated Gaussian
(Ruilier & Cassaing 2000). Thus the method presented
in Sect. 4 can not be used just as it is. Indeed the
same spatial filtering as in the science beam must be
applied in a focal plane of the calibration bench. In this
case the calibration can be done only with a square
signal modulation because the intensity after spatial
filtering depends on the wavefront shape. If a sinusoidal
modulation is used one should use the free interferometric
output of the calibration bench (output 2 of Fig. 9). The
signal to be recorded is then the normalized difference of
the overall intensity between the two arms.

A second order effect of single-mode filtering could
be the difference between the shapes of the fundamen-
tal mode for different bandwidths. The correction modes
should then be optimized to minimize the piston in-
duced by the bimorph mirrors in the spectral bands of
observation.

As instrumental characteristics may significantly affect
the fringe contrast measurements of an astrophysical ob-
ject, the AO piston calibration processes we considered
could greatly benefit from direct measurements through
the science instrument (Fig. 1) in order to include all the
effects.

5. Conclusions

The effect of AO correction on the fringe contrast mea-
sured with a Michelson Stellar Interferometer has been
analyzed. Control of the deformable mirror piston mode
is critical since it is not seen by the WFS, but can induce
contrast losses. Our analysis shows that filtering the pis-
ton mode in the command space for a bimorph mirror is
not applicable, since this leads to severe contrast losses in
typical conditions, even for short exposures. By deriving
the general formalism of piston control in AO, we demon-
strate that the fast piston motions can be corrected with-
out any significant additional computation time. However,
this requires a prior knowledge of the absolute influence
functions of the deformable mirror, including the piston
term.

In this goal, we propose a calibration bench able to
measure the piston contributions; this set-up could be
used to qualify the performances of piston control and
could also be upgraded to a built-in facility for on-site
calibrations.
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