
N A S A  T E C H N I C A L  
M E M O R A N D U M  

N T 1 - 3 2 2 1 4  

NASA TM X- 67889 

PISTON MANONiETER AS AN ABSOLUTE STANDARD FOR VACUUM\- 

GAUGE CALI BRATION 

by I, Warshaw sky 
Lewis Research Center 
Cleveland, Ohio 

TECHMCAL PAPER proposed for  presentation at 
Fifth International Vacuum Congress sponsored 
by the American Vacuum Society 
Boston, Massachusetts, October 12-15, 1971 



Pis ton  Manometer a s  an Absolute Standard f o r  Vacuum-Gauge Calibration 

I. WARSHAWSKY 

NASA Lewis Research Center, Cleveland, Ohio 44135 

Total pressure i n  a ca l ib ra t ion  volume i s  determined by measuring %he 

force  on a t h i n  c i r cu l a r  d isc ,  of accurately-known area,  t h a t  i s  f r ee ly  

suspended i n  a hole i n  t h e  container wall,  so t h a t  the  d i s c  i s  substant ia l ly  

f lush  with t h e  wall.  The d i sc  almost f i l l s  t he  hole, so t h a t  the re  i s  a 

narrow annular gap. A continuous flow of ca l ib ra t ing  gas, in jected in to  t he  

container i n  order t o  maintain a desired pressure, passes through the  annular 

gap t o  a di f fus ion pump. The r a t i o  of pressures on the  two faces of the  

d i sc  i s  on the  order of  100:1, so t h a t  downstream pressure need be known 

only nominally i n  order t o  deduce t h e  upstream pressure. Force on the  d i sc  

i s  measured by a balance t h a t  i s  ca l ibra ted i n  s i t u  with dead weights, In 

one arrangement, pressures i n  the  range of  10-500 pTorr were measured with 

an estimated probable e r ror  of  ( 1  pTorr + I$). 

INTRODUCTION 

The p i s ton  manometer t o  be described is  intended t o  provide a means 

fo r  ca l ib ra t ing  and intercomparing several  vacuum gauges by subjecting them 

1 
a l l  t o  a common, accurately-known pressure. Brombacher has reviewed most 



of  the  various ca l ib ra t ion  methods t h a t  were described p r io r  t o  1965. ~ o l a n d a ~  

l ists  newer volume-ratio methods. Like t he  volume-ratio and conductance- 

pressure-divider (CPD) methods, t he  pis ton manometer method depends on the 

a b i l i t y  t o  create  a pressure t h a t  i s  very much lower than the  lowest pressure 

of t h e  gauge-calibration range. It uses a continuous flow of gas, like the 

CPD method, but  it does not require computation o r  measurement of the con- 

ductance of a r e s t r i c t i on .  It yie lds  a pressure from d i r e c t  measurements of 

force  and area ra ther  than in fe r r ing  it from the  laws of gas flow, and hence 

does not require  i den t i f i c a t i on  of  t he  flow regime a s  continuum o r  f ree -  

molecule. 

The pr inc ip le  o f  measuring t he  force  on a f reely-f loat ing piston,  while 

gas flows s tead i ly  between p i s ton  and surrounding cylinder,  has been the  bas i s  

of several  measuring devices f o r  t h e  continuum regime. These range from 

3 present-day commercial precision pressure ca l ib ra to rs  t o  ear ly  instruments , 

var ia t ions  o f  which a r e  s t i l l  i n  commercial use today, t o  measure Low d i f f e r -  

e n t i a l  pressures a t  1 bar  absolute. A p i s ton  manometer f o r  t he  mi l l i t a r r  

4 5 range was described i n  1955 . Brombacher summarizes r e l a t ed  devices, 

The present paper i s  d i rected toward proof of  t he  pressure-measuring 

method a t  low absolute pressures r a the r  than toward treatment of the  gatxge- 

ca l ib ra t ion  problem, but  t h i s  l a t t e r  problem i s  commented on. 

BASIC ARRANGEMENT O F  APPARATUS 

Figure 1 serves t o  i l l u s t r a t e  both t h e  arrangement of apparatus and the  

premises of the  ca l ib ra t ion  method. The gauges t o  be ca l ib ra ted  a r e  mounted 

on the  periphery o f  a multipart r i ng  immediately above the  baseplate of a 

conventional b e l l - j a r  type pumping system. Gauge-tubulation axes a r e  r a d i a l  

and coplanar. The central ly-located opening through which the  b e l l  j a r  would 



3 

normally be evacuated i s  almost f u l l y  blocked by a piston,  i n  the  form o f  a 

t h i n  horizontal  p la te .  The p i s ton  i s  suspended from a force-measuring device 

(dynamometer) and f l o a t s  f r ee ly  i n  t he  opening i n  the  baseplate, with very 

small annular clearance. A second chamber, of appreciable volume and cross 

section,  i s  interposed between t he  baseplate and t h e  pumping system; addit ional ,  

ca l ibra ted gauges a r e  used t o  monitor the  pressure p i n  t h i s  chamber, 
0 

Calibration gas enters  a t  the  top of  the  b e l l  jar ,  a t  a steady r a t e  

controlled by a leak valve, and i s  beamed upwards t o  f a c i l i t a t e  uniform 

dispersal .  A l l  of  the  entering gas i s  removed through t he  annulus between 

pis ton and baseplate. 

I f  p i s ton  area i s  A, and the  net  force  on t he  piston,  due t o  pressure, 

i s  AF, the  upstream pressure p i s  given by 

2 I n  t he  p r ac t i c a l  rea l i za t ions  o f  the  apparatus, A i s  of the  order o f  100 em , 
t he  annular gap b i s  about 0.02 cm, and po << p. Thereby, the  accuracy 

of knowing p depends p r inc ipa l ly  on the  measurement of AF/A. The f ree -  

molecule volume flow r a t e  through the  annulus i s  on the  order of 5 l / sec  fo r  

N2, but  need not be known. 1 pTorr produces 1.33 pN (=  136 pgf) .  

It i s  assumed t h a t  the goal  of the  ca l ib ra t ion  system i s  t o  create  a 

known boundary condition of  pressure i n  t he  plane o f  t he  mouth of  the  gauge 

tubulation, while the  molecular f l ux  across t h i s  plane i s  negligibly small, 

It i s  hoped t h a t  the  following features  help t o  achieve t h i s  goal: (1) the  

plane i n  which the  gauge axes l i e  i s  su f f i c i en t l y  below the  point  of gas 

in ject ion,  so t h a t  pressure i n  t h i s  plane i s  uniform; ( 2 )  t he  pis ton i s  very 

near t h i s  plane, so t h a t  i t s  upper surface i s  a l so  subjected t o  t h i s  pressure; 

(3)  t he  annular gap const i tu tes  a su f f i c i en t l y  high impedance t o  promote 
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equalization of pressure i n  t he  volume above the  piston; (4) the  continuous 

mass flow r a t e  of ca l ib ra t ing  gas i s  su f f i c i en t l y  l a rge  t o  swamp the mass 

flow r a t e  of gases desorbed by the  b e l l  jar;  ( 5 )  t he  downstream pl_enm, for 

s imilar  reasons, i s  a l so  su f f i c i en t l y  isobar ic  so t h a t  t he  pressme indicated 

by t h e  downstream gauge represents the  pressure on the  underside of the  pis ton,  

Additional p r ac t i c a l  refinements, not shown i n  Fig. 1, a r e  

(1) Grounded sheet-metal ba f f l e s  a r e  used t o  prevent l ine-of-s ight  

p a r t i c l e  t r ans f e r  between gauges. 

( 2 )  The piston-and-dynamometer assembly may be ra i sed  10 cm o r  more, by 

means of mechanical manipulators operated through high-vacuum sea l s .  %is  

operation serves two separate purposes: it permits obtaining a "zero" 

reading f o r  t he  condition AF = 0, and it permits i n i t i a l  evacuation of t h e  

b e l l  j a r  a t  f u l l  speed of  t he  pumping system. 

DESIGN CONSIDERATIONS 

Pis ton and Or i f i ce  

Two of t he  p i s ton-or i f i ce  combinations t h a t  have been used a r e  shown i n  

Fig. 2. They a r e  intended t o  keep the  r a t i o  of p i s ton  weight t o  fu l l - s ca l e  

l i v e  force  
AFmax adequately small. 

The design of Fig. 2a has been used f o r  pressures below about 1 mTorr, 

A c i r cu l a r  d i sc  of s o f t  A 1  f o i l ,  20 pm thick,  i s  formed in to  t he  shape of a 

shallow dish with v e r t i c a l  sides.  Final  diameter i s  about 11.3 cm, producing 

a nominal hor izontal  area of 100 cm'. The forming, which i s  performed with 

dies,  produces wrinkled v e r t i c a l  surfaces, s ince  t he  f o i l  i s  folded over on 

i t s e l f .  Thus, t h e  0.6 cm-high v e r t i c a l  surfaces a r e  20 t o  60 pm thick,  Mass 

o f  the  d i sh  i s  about 0.8 g. 
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Al ternat ive  methods of supporting t he  d i sh  a r e  shown on the r i g h t -  and 

left-hand s ides  o f  Fig. Za. I n  one method, a 0.3 mm diam hole i s  punched i n  

t he  v e r t i c a l  s ide,  about 0.2 cm from the  upper edge, and the  0,25 rnm diam 

supporting wire i s  hooked through the  hole. An advantage o f  t h i s  method i s  

t h a t  the  protruding wires p ro tec t  t he  d i sh  agains t  f a l l i n g  through the  o r i f i c e .  

I n  t h e  other  method, a wire hook i s  cemented near t he  ins ide  corner of  the 

dish,  with high-vacuum cement. This method of  support i s  the  more rugged o f  

the  two. 

The baseplate used with t h i s  design of p i s ton  has a sharp-edged o r i f i c e  

with 120' included angle. To fu r t he r  ensure roundness, the  edge i s  blunted 

t o  form a v e r t i c a l  cylinder about 0.1 mm high. Baseplates a r e  usually a t  l e a s t  

3 cm thick.  

The piston-and-orif ice design o f  Fig. 2b has been used f o r  the range 

10-500 mTorr. This p i s ton  can be  used i n  the  pumping por t  i n  t he  baseplate 

o f  a conventional pumping system of  nominal 10 cm s ize ,  i f  the  s ides  of the 

por t  a r e  adequately round, smooth, and square. The p i s ton  i s  a d i sc  o f  hard- 

drawn s t a in l e s s  s t e e l ,  25 pm thick,  machined t o  a diameter 0.1-0,2 mm l e s s  

than t h e  hole diameter. Its mass i s  about 2g. Each supporting wire passes 

through a hole punched i n  the  disc;  the  end o f  the  wire i s  twisted i n to  a loop 

t h a t  w i l l  provide f i rm support under t he  heavier forces exerted by the higher 

pressures. 

A l l  support designs use t h r ee  supporting wires, hooked t o  the  bent corners 

of  a small t r i angu la r  p la te ,  shown a t  the  top o f  Fig. 2. This p l a t e  i s  f r e e  

t o  r o t a t e  about a c en t r a l  wire t h a t  i s  hooked t o  t h e  dynamometer, The 

supporting wires a r e  made very long, 20-40 cm, so t h a t  hor izonta l  misal igment  

between t h e  geometric center  of  the  o r i f i c e  and t he  upper c en t r a l  wire w i l l  
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produce very l i t t l e  transverse force  between pis ton and o r i f i c e  a t  t h e i r  point  

of contact. 

When hor izontal  misalignment i s  adequately small, t h e  pis ton swings 

constantly ins ide  the  o r i f i c e ,  so t h a t  s t a t i c  f r i c t i o n  a t  the  o r i f i c e  i s  

negligible.  

Dynamometer 

The dynamometers t h a t  have been used w i l l  be sketched only b r i e f l y  

because of space l imi ta t ions .  Details  w i l l  be presented i n  a NASA Technical 

Note now i n  preparation. 

For pressures below 1 mTorr, t he  dynamometer i s  a specia l  modification 

of a high-quality drArsonval microammeter with conical  p ivots .  Two s t i f fened  

0 pointers,  180 apar t ,  c rea te  the  appearance of  an equal-arm balance. The 

pis ton i s  suspended from one pointer ,  and a counterbalancing A 1  weight from 

the  other.  Natural period of  the  assembly i s  8 sec. Current through the  

moving c o i l  i s  adjusted t o  keep t he  p i s ton  ( ~ i ~ .  2a) ve r t i c a l l y  centered i n  

t he  o r i f i c e ;  a 60 Hz d i t he r  current  is  a l so  in jected t o  overcome pivot f r i c t i o n ,  

Spring torque i s  l e s s  than 0.2$ of electrodynamic torque. 

Two methods of  galvanometer-current control  have been used: (1) Manual 

adjustment of a mult i- turn rheosta t  while the  v e r t i c a l  posi t ion of the  

p i s ton  i s  observed visually.  The se l f -protect ive  protruding-wire method of 

support (Fig. 2a) i s  then pa r t i cu l a r l y  useful. ( 2 )  Optical  servosystem, A 

20 pm A 1  f l a g  i s  attached t o  the  p i s ton  t o  p a r t i a l l y  in te rcep t  the  l i g h t  

from a project ion lamp, when t he  pis ton i s  i n  proper v e r t i c a l  posi t fon,  The 

lamp image f a l l s  on a photocell,  connected i n  a feedback c i r c u i t  with the  

galvanometer co i l ,  t o  maintain t he  pis ton i n  proper v e r t i c a l  locat ion,  

Optical  elements, except f o r  t he  f l ag ,  a r e  outside the  vacuum system; two 
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windows, 180 apar t  i n  the  ca l i b r a t i on  r ing,  a r e  used. Osc i l l a t ions  o f  t h i s  

servosystem produce more v io len t  motion of the  piston,  a t  about 9 Hz, than i s  

obtained i n  t he  manual method, but  convenience, s t a b i l i t y ,  and sa fe ty  of 

operation a r e  higher. Ver t i ca l  pos i t ion  can be maintained t o  0.1 me 

For pressures between 10 and 500 mTorr, the  p i s ton  ( ~ i ~ .  2b) has been 

supported by an unbonded resistance-strain-gage fo rce  transducer, energized 

with 1/10 of i t s  normal supply voltage i n  order t o  reduce excessive temperature 

r i s e  of  t h e  strain-gauge wires i n  t he  vacuum environment. Bridge output 

voltage i s  a measure of force. Ver t i ca l  de f lec t ion  of the  transducer a t  

maximum pressure i s  about 0.2 rnm. 

Cal ibra t ion 

I n  s i t u  determination of dynamometer s e n s i t i v i t y  ( c a l i b r a t i o n - e ~ r v e  s lope)  

i s  made by adding an accurately-known weight t o  the  p i s ton  and noting the  

change i n  dynamometer output indication.  The weight i s  of the  order of AF mx* 

The addi t ion is  performed with mechanical l inkages operated, through bigh- 

vacuum seals ,  from the  outs ide  of  the  b e l l  j a r .  

Dynamometer zero, corresponding t o  AF = 0, is  o rd inar i ly  determined 

with the  p i s ton  wel l  above the  o r i f i c e ,  and with the  leak valve closed, so 

t h a t  both s ides  of  the  p i s ton  a r e  a t  the  same pressure. However, a t  pressures 

above 1 mTorr, where sorpt ion e f f ec t s  a r e  negl ig ible ,  the  zero can a l so  be - 
determined with p i s ton  i n  p lace  i n  t he  o r i f i c e ,  by closing a high-vaeuun 

valve between t he  pumping system and t he  downstream plenum. 

TESTS AND ANALYSIS OF PERFORMANCE 

Performance poss ible  i n  p r a c t i c a l  cases was determined by building two 

types of  systems f o r  gauge calibrat ion--a low-pressure system and a high- 

pressure one. To conserve space, t he  high-pressure sys tem ( 10-500 m ~ o r r  ) w i l l  



not be considered any fu r t he r  than t o  s t a t e  t h a t  i t s  estimated probable e r ro r  

( e  ) i s  (0.3 mTorr + 0.1%). The following discussion deals  withthe Tow- 
P 

pressure system (10-500 p , ~ o r r ) ,  which i s  t he  l e s s  accurate and more in te res t ing  

one. 

Test Sys tem 

A vacuum system used t o  prove the  manometer consisted of a 46x76 em 

(18x30 i n )  g lass  b e l l  j a r  and an aluminum-alloy ca l ib ra t ion  r ing,  baseplate,  

and downstream plenum. A Viton L-ring sealed the  b e l l  jar ;  Viton O-rings 

sealed a l l  o ther  components. The multipart ca l i b r a t i on  r i ng  held a magnetic- 

sec to r  mass spectrometer and f i v e  ion  gauges ( a  nude Bayard-Alpert (B-A) type, 

two of  a tubulated B-A type, and two of  a tubulated conventional-triode type) ,  

Other por t s  were used f o r  windows, manipulators, e l e c t r i c a l  connections, and 

gas in ject ion.  A 25 cm, water-baffled d i f fus ion  pump const i tu ted the  pumping 

system. 

Factors That Affect  Accuracy 

Downstream Pressure 

This pressure was measured with two tubulated B-A type gauges, of  t he  

same type a s  those used i n  the  upstream plenum, but  not  previously ca l ib ra ted ,  

The indicat ions  o f  the  two gauges d i f fe red  by 28% of t h e i r  mean. The 

measured s e n s i t i v i t i e s  of  the  two upstream gauges d i f fe red  by 20%. The down- 

stream pressure was computed by assuming t he  same mean s e n s i t i v i t y  f o r  both 

1 p a i r s  of  gauges. Probable er ror ,  e f o r  one p a i r  i s  about the  di f ference,  
P ' 

The r a t i o  a t  various values o f  p, f o r  A r ,  i s  shown i n  Fig. 3. 

If we conservatively assume an e of 20% i n  knowledge o f  po, t he  corre-  
P 

sponding e i n  p w i l l  be l e s s  than 0.2%. I f  ca l ib ra ted  gauges had been 
P 

used downstream, t he  e i n  p would have been negligible,  s ince  the  present  
P 
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work and t h a t  o f  Holanda have shown t h a t  a s ing le  gauge may have an e 
P 

of about 3%. 

Gas Composition 

The r e l a t i o n  between pressure, a s  measured by the  p i s ton  manometer, and 

molecular density,  a s  measured by an ion  gauge, depends on the  i den t i t y  of 

t he  gases present .  This r e l a t i o n  a f f e c t s  deduction of downstream pressure 

from the  ion gauge reading. It a l so  a f f e c t s  the  upstream-gauge ca l i b r a t i on  

computation. When contaminating gases a r e  present  together with the  ca l ib ra t ion  

gas ( subscr ip t  G )  , we have the  simultaneous r e l a t i ons  

where j i s  a running index, s i s  s e n s i t i v i t y  ( co l l e c to r  ~ u r r e n t / ~ r e s s u r e ) ,  

+ 
i s  p a r t i a l  pressure , P t  i s  t o t a l  pressure, i i s  t o t a l  ion co l lec to r  

current ,  and subscr ip ts  T,C respect ively  ind ica te  t h a t  t he  summation i s  t o  

be taken over t he  t o t a l i t y  of  gases o r  over only the  contaminating gases, 

For an ion gauge used i n  the  presence of contaminating gases, we def ine  

P EIG 7 
t h e  equivalent indicated pressure  o f  gas G, by 

The r a t i o  PEIJp approaches unity a s  ( CZ p . )IPG +O. 
J 

Determination o f  p requires  a knowledge of s f o r  the  mass 
0 J 

spectrometer; determination of p 
EIG f o r  t he  ion gauges being cal jbra ted 

requires  a knowledge of s ./s f o r  the  p r inc ipa l  contaminants. However, 
J G 

the  knowledge need not be accurate i f  C.Z p .  << pG. For t he  mass spectrometer, 
J 



s must be determined empirically; f o r  an ion gauge, 
j 

sl/sG may be taken as  

t he  average value l i s t e d  by Summers7 i n  h i s  comprehensive review of t h e  

published l i t e r a t u r e  on ion gauge s ens i t i v i t y .  

I n  the  spec ia l  case where t he  amount of  contaminants does not change 

a f t e r  gas G i s  in jected,  the  s . ' s  need not be known. Sens i t i v i t y  i s  given 
J 

simply by 

3- 
where iC and pC are,  respectively,  the  gauge current  and the  measured 

t o t a l  pressure p r i o r  t o  opening o f  t he  l eak  valve. 

The p r inc ipa l  contaminants i n  the  t e s t  system were H20 and CO, Their 

p a r t i a l  pressures were subs tan t ia l ly  independent o f  p when the  ca l ib ra t ion  

gas was He, N2, o r  A r ;  CL p j  was about 4 pTorr. The e f f e c t  on po i s  

negl ig ible  when p > - 10 pTorr. 

Effect ive  P i s ton  Area 

It i s  convenient t o  def ine  an e f fec t ive  p i s ton  area  A which allows 

f o r  t he  presence of drag forces  a s  wel l  a s  f o r  purely geometric dimensions. 

Measurable geometric dimensions. The d i sh  shown i n  Fig. 2a i s  too 

flimsy t o  allow d i r e c t  measurement o f  diameter. A lower l i m i t  t o  i t s  diameter 

i s  the  measurable diameter of t he  s t e e l  d i e  with which it was formed, p lus  

40 pm. An upper l i m i t  i s  t he  measurable diameter of  the  o r i f i c e .  However, 

a c lose r  est imate i s  obtainable from an i n f e r e n t i a l  measurement of  annulus 

width. 

Annulus width. An e l e c t r i c a l  analogue of the  vacuum system of Fig, 1 

i s  shown i n  Fig. 4, where only the  p r inc ipa l  impedances a r e  indicated,  

Pressure p i s  usually s l i g h t l y  higher than atmospheric. The time constant 1 

of response of b e l l - j a r  pressure p t o  a change i n  p ( o r  t o  a small change 1 



I n  the  free-molecule regime, the  value of CR2 
f o r  an i n f i n i t e ly - th in  

o r i f i c e  of area A, gives 

where Aa = nD b, D = o r i f i c e  diameter, b = annulus width, V = upstream. 
0 0 

volume, ~ ( R ~ T / ~ T N ) ~ / ~  = average molecular velocity.  

Neglecting t he  possible increase i n  a due t o  nonzero orifice-edge 

899 thickness , the  width b may be determined by measuring the  time constant 

of response when t he  leak-valve s e t t i ng  i s  changed s l i g h t l y  o r  when pl 
i s  

reduced abruptly. We have done t h i s  and find,  typical ly ,  t h a t  z * 22 s e e ,  

leading t o  b = 0.16 mm. However, the  pis ton area thus computed should be 

augmented by a correction representing the  e f f ec t  of drag. 

Drag forces.  The flow of gas through the annulus may exert  a drag an 

the  p i s ton  of  Fig. 2a. It is  not necessary t o  t r e a t  t h i s  phenomenon i n  

d e t a i l  because simple l i m i t s  may be s e t  on i t s  magnitude. The lower l i m i t  i s  

zero. The upper l i m i t  i s  t he  f r i c t i ona l '  force  t h a t  would be exerted a t  low 

Knudsen numbers i f  pis ton and o r i f i c e  were long, concentric cylinders; t h i s  

1 
force  i s  merely - the  product of  annulus area nDb and pressure-difference 2 

p - po. Taking one ha l f  of t h i s  force  a s  a median between upper and lower 

l i m i t s  i s  tantamount t o  assuming t h a t  o r i f i c e  diameter Do i s  diminished by 



annuius width b. This conclusion i s  independent of  the  nature of  the flow 

regime . 
Thus, the  e f fec t ive  p i s ton  diameter i s  taken a s  Do - b, with a maximm 

uncertainty of 100 b / ~ ~  percent. I n  the  present  case, t h i s  l a t t e r  quanti ty 

was 0.14%. 

Force Measurement 

Dead weight ca l ib ra t ions  with c l a s s  M weights have es tabl ished t h a t  

nonl inear i ty  o f  t he  dynamometer i s  negligible.  Peak-to-peak var ia t ion  i n  

s e n s i t i v i t y  (s lope)  has been 0.07% over a 100-day period. A more s ign i f i can t  

e r ro r  i s  t he  va r i a t i on  i n  zero during one day; t h i s  has an average value 

equivalent t o  0.1 pTorr. 

Correlat ion Between AF and Pressure Difference 

The p r inc ipa l  source of e r ro r  appears t o  l i e  i n  t he  random uncertaLnty 

with which dynamometer current  represents  pressure difference.  An overall 

evaluation of t h i s  e f f ec t  was obtained i n  the  following manner. 
i 

The leak valve opening was changed i n  small s t eps  t o  obta in  many val.ues 

+ 
of pt. A t  each pressure, g r i d  current  i and co l lec to r  current  i of 

each of t he  f i v e  ion gauges were measured t o  0.1%~ and t he  quanti ty 

was computed. The quant i ty  i i s  a normalizing f ac to r  (c 1) t o  cor rec t  

f o r  t he  devia t ion of i- from i t s  nominal value i- A smooth curve w a s  
0' 

drawn through t he  points .  Random deviat ions o f  individual  points  from the  

curve were a t t r i bu t ed  t o  defects  of  t he  p i s ton  manometer technique, For 

10 < - p < - 100 yTorr, these  deviat ions did  not exceed 0.7 pTorr; f o r  100 ( p  < 
500 pTorr, 90% did  not  exceed 2%. 
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Summary of Estimated Errors 

A s impl i f ied  formulation f o r  the  summation of e r ro rs  t r e a t ed  above i s  
. . 
t h a t  e i n  the  range 10 < pt < 500 pTorr i s  ( 1  T o  + 1 ) .  m e r e  i s  a 

P - - 
90% probab i l i ty  t h a t  e r ro rs  w i l l  not exceed twice t h i s  value. 

DISCUSSION 

The effectiveness of  t he  p i s ton  manometer depends on using a p i s ton  whose 

area  i s  l a rge  compared t o  t h e  annulus area,  maintaining su f f i c i en t  downstream 

pumping speed t o  c rea te  a high pressure r a t i o  and an isobar ic  downstream 

plenum, and having a dynamometer o f  adequate s e n s i t i v i t y  and capacity. We 

point  out  some compromises involved i n  achieving these  goals. 

Increasing annulus width f a c i l i t a t e s  mechanical construction and operation 

and a l so  reduces t he  time required t o  e s t ab l i sh  a new pressure. But it reduces 

the  pressure r a t i o  and increases t he  uncertainty i n  e f fec t ive  area.  

If downstream-plenum volume i s  not isothermal, the  gauges may not represent  

the  pressure on t he  underside of the  piston.  If t he  pumping system uses a 

cryogenic t rap ,  r ad ia t ion  shielding may be considered. However, such shieldrtng 

may s i gn i f i c an t l y  r a i s e  po. 

Since t he  time of construction o f  t he  dynamometer described here, there  

have be& numerous developments i n  vacuum microbalanceslO. They may provide 

a means f o r  downward extension o f  the  use fu l  range. However, such extension 

w i l l  require  deeper examination of how isobar ic  a condition can be created 

i n  t h e  upstream plenum, where the re  a r e  present  several  gauges t h a t  0pera-k 

a t  a va r ie ty  of  tubulat ion,  envelope, and element temperatures. 

The subs t i tu t ion  o f  a bakeable upstream plenum t o  achieve lower pressures 

i s  straightforward,  a l b e i t  expensive and more complex. 
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Final  proof o f  t he  manometer w i l l  require  ( 1 )  a  group of ion gauges of 

su f f i c i en t l y  constant s e n s i t i v i t y  t o  allow t h e i r  use a s  t r an s f e r  standards 

and ( 2 )  intercomparison of the  ca l ib ra t ion  of these  gauges with ca l ib ra t ions  

i n  o ther  c a l i b r a t i on  systems. 

CONCLUSION 

The p i s ton  manometer i n  i t s  present  r e a l i z a t i on  o f f e r s  the  advantages of 

independence of t he  i den t i t y  of  t he  gas and o f  t he  Knudsen nunber o f  the  flaw, 

f a c i l i t y  of  creat ing an isobar ic  condit ion f o r  gauge ca l ib ra t ion ,  and p r in -  

c i p a l  dependence on measurements of length and mass. I n  t he  range above 

10  pTorr, it appears t o  o f f e r  inaccuracies acceptably small f o r  most purposes, 
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TO PUMPING 
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Fig. 1 Basic arrangement of piston manometer for vacuun-gauge calibration.  
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Fig. 2 Piston and o r i f i ce  arrangements. 



UPSTREAM PRESSURE, p, m i c r o t o r r  

Fig.  3 Pressure r a t i o  f o r  a  c a l i b r a t i o n  with argon. 
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Fig.  4 Analog represen ta t ion  of the  gas flow system. 


