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Abstract

Raising the performance of the systems identification speaker
still constitutes the object of several research. Recently, we
have proposed an approach which jointly exploits the informa-
tion of the vocal tract and the glottis source. The approach syn-
chronously takes into account the correlation between the two
sources of information. The proposed theoretical model which
consists of using a joint law is presented in this work. Some
restrictions and simplifications were taken into account to show
the significance of this approach in practical way. The funda-
mental frequency and the MFCC coefficients (Mel Frequency
Cepstrum Coefficients) were used to represent the information
of the source and the vocal tract, respectively. The probabil-
ity density of the source, in particular, was considered to obey
a uniform law. Tests were carried out with only the women
speaker coming from de speech telephony database (SPIDRE)
recorded from various hand set telephones. In this article, mod-
elling the source information is proposed by using a Gaus-
sian Mixture Model (GMM) rather than the uniform probabilis-
tic model. Tests are extended to all speakers of the SPIDRE
database. In this respect, four systems were proposed and com-
pared. The first is a baseline system based on the MFCC and
does not use any information from the source. The second ex-
amine only the voiced segments of the vocal signal. The last two
relate to the suggested approaches according to the two tech-
niques. The source information is supposed to follow a normal
distribution in one technique and a logNormal distribution in the
other. With the proposed approach, the profit in performance in-
creases by 10,5% for the women, 7% for the men and 8% for
all speakers.

1. INTRODUCTION
The most popular approach used to recognize the speaker iden-
tity is based on the use of the Mel Frequency Cepstral Coeffi-
cients (MFCC) as the parameters, and the Gaussians Mixtures
Models (GMM) for the classification task [8]. The MFCC co-
efficients are supposed to extract and convoy the vocal track
contribution. This approach worked well when the speech
is recorded in clean conditions. However, the performance
dropped considerably when speech was recoded in hostilitiy en-
vironments [9].

Recently, various approaches have been proposed to im-
prove the performance of speaker identification systems. The
main objectives be reached consist to be robust to: effect of the
noise, channel distortions, handset variability and the number
of speakers.
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Particulary, several works were oriented to incorporate or
combine in different way the source and vocal track informa-
tion. The prosodic features are, usually, used as parameters for
the glottic source. These are known to carry specific speaker
information such as the melody, intonation and loudness. Gen-
erally, the melody and intonation are parameterized by the pitch
(fundamental frequency) such averaged pitch, pitch contours,
pitch jitters and location [1] [2] [6] [7]. On the other hand,
the loudness is parameterized by the short-time spectral energy.
Speaker recognition systems exclusively based on pitch do well
when the number of speakers is small. However, performance
decreases significantly when the number of speakers increases.

Indeed, the major problem is knowing how to incorporate
and model glottis source and vocal tract information. Various
techniques have been investigated for handling the unvoiced
segments [11]. Shao and al. [12] have proposed an integrated
pitch and MFCC extraction for speech recognition and recon-
struction by using a auditory model. Zilca and al. [15] have
presented a pseudo pitch synchronous algorithm for speaker
recognition applications. Arcienega and Drygajlo [3] have pre-
sented a statical approach using pitch dependent GMMs. This
approach purposes to model simultaneously the statical distri-
bution of the short-term acoustic vectors and long-term prosodic
features. In spite of the good results, the experiment is devoted
only to clean speech. Most of the models reported in the litera-
ture assume the independence of the glottis and the vocal tract.
Ezzaidi and al. [5] have proposed a statical model that takes into
account the correlation between the glottis and the vocal tract.
They used a joint probability function with many restrictions
and hypotheses account for the correlation between source and
vocal tract. Particulary, they used a uniform probabilistic model
of the glottic source and GMM models for the MFCC coeffi-
cients.

In this paper, some modifications have been added to the
model presented in [5]. A pitch is considered not locally uni-
form and a Gaussian Mixture model is proposed, tested and
evaluated. A summary of the proposed model is described in
the next section. The speech analysis, parameters estimation
and database are described in section 3 , 4 and 5. The baseline
and the proposed systems are described in section6. Sections7
and8 present the results, discussion and conclusion.

2. Proposed model

Principles of the model suggested in a previous work [4] are
outline here. The pitch (̂X) and vocal tract (̂Y ) features are two
discritezed random processes, andf is the joint probability of



the two discretized random processesX̂ andŶ , so:

f(xi,
−→yj ) = P (X̂ = xi, Ŷ = −→yj ) with (1)

0 ≤ f(xi,
−→yj ) ≤ 1 and

i=n∑
i=1

j=m∑
j=1

f(xi,
−→yj ) = 1. (2)

The respective marginal probability functions are:

f(xi) =

m∑
j=1

f(xi,
−→yj ) andf(yj) =

n∑
i=1

f(xi,
−→yj ). (3)

Each speakers is supposed to be defined by its probability
function, as:

fs(xi,
−→yj ) = Ps(X̂ = xi, Ŷ = −→yj ). (4)

It was observed that:

fs(xi,
−→yj ) = fs(

−→yj/xi)fs(xi). (5)

fs(xi) is a priori probability of a pitch frequency equal to
xi andfs(

−→yj/xi) is theconditionalprobability of observing a
feature vector equal to−→yj , given that the pitch frequency isxi.

In the previous work, we have focused only on a local es-
timation and integration of conditional probabilityfs(

−→yj/xi).
The factorfs(xi), a prior probability in equation5, was sup-
posed locally uniform. The experiments are reported on the
whole speakers Spidre database including men and women.

In this work, we focus on the conjoint integration of the
fs(
−→yj/xi) andfs(xi) in speaker recognition systems. A Gaus-

sian Mixture Model was used for prior probabilityfs(xi) and
the conditional probabilityfs(

−→yj/xi).

2.1. Feature vector distributions based on pitch knowledge

Let us defineIk, k = 1, . . . , N as sub–intervals of the pitch set
{x1, x2, .., xn}. We recall thatx1 = 66 Hz, xn = 660 Hz
and N is the number of intervals withI1 ∪ . . . ∪ IN =
{x1, x2, .., xn}. Each subspaceHk in the space(x,~y) is asso-
ciated with a pitch intervalIk. For eachHk, we suppose that
the probability functionfs(

−→yj/xi) is stationary and pitch de-
pendent inside the intervalIk.

Theoretically, a number of modelsfs(
−→yj/Ik) = λs,k

would be equal ton and a number of modelsfs(
−→xi) = λ́s,k

would also be equal ton. By subdividing the space intoN sub-
spaces, the number is reduced toN . The interval length ofIk

is based on the shape of the pitch histogram.

3. Speech analysis
Mel Cepstrum Coefficients derived from a bank of filters
(MFCC) are used as features to characterize the vocal tract in-
formation for the speaker identity. Coefficients ofc1 to c12 are
used. The speech is first preemphasized (0.97); then, a sliding
Hamming window with a length of 32 ms and a shift of 10 ms
is positioned on the signal.

Cepstral mean normalization and liftering are also per-
formed. Delta and delta-delta MFCC are not used, as the com-
parison between the systems would be biased. In fact, adjacent
segments can have different pitch values belonging to different
sub–intervalsIk.

The pitch is used as prosodic features to characterize the
source contribution (glottic). Used in this work is the pitch
tracker proposed by Rouat and al [10]. It is based on the compu-
tation of autocorrelation function estimated from each cochlear

filters bancs. Particulary, the pitch tracker was proposed for the
speech recorded from the telephony support, which is the case
of the database used in this work. The pitch is estimated every
10 ms. A median filter is then used to smooth the pitch esti-
mation over a window duration of 70 ms, in order to be less
affected by the doubling/halving error pitch estimation.

4. Pattern recognition
4.0.1. Parametric model

A Gaussian Mixture Model (GMM) [8] is used as a parametric
model. Each speaker is characterized by 2xN models, where
N correspond toN -pitch intervalsIk. Precisely,N models
are trained on al-dimensional vector estimating the vocal tract
contribution. Each model uses weighted sum of 32 (M = 32)
Gaussians. The lastN models are trained on1-dimensional
vector to estimate the pitch source information. Here, Each
model uses a weighted sum of 4 (M = 4) Gaussians. This
choice was justified by the histograms analysis. Thus each spe-
cific speakers is characterize by two GMM models (λs,k and
´λs,k) for each pitch intervalIk, for the MFCC coefficient and

the pitch information, respectively.
Let us definep(−→y /λs,k), the Gaussian mixture density as-

sociated with the probability functionfs(
−→yj/Ik) for speakers,

as

p(−→y /λs,k) =

M∑
i=1

wi,kbi,k(−→y ) (6)

with

bi,k(−→y ) = 1

(2π)l/2|Σi,k|1/2 exp{− 1
2
(−→y −−−→µi,k)

′
Σ−1

i,k(−→y −
−−→µi,k)}.

M is the GMM order,−→y is the l-dimensional vector es-
timating. The i-th Gaussian density is noted asbi,k with
meanµi,k and covariance matrixΣi,k andwi,k are the mixture
weights.bi,k, µi,k, Σi,k andwi,k are defined for pitch interval
Ik and for speakers.

In the context of the framework, the same model was pro-
posed for the pitch information. The number of mixture of
Gaussians was fixed toM = 4.

4.1. Recognition criterion

We defineT as the test length over which the recognition is
performed. A frame-by-frame estimation of log–likelihood for
each speakers and pitch intervalIk is first performed.

Each frame (32 ms length) is shifted by 10 ms. Then, the
maximum log–likehood for each speaker is estimated overT .
When the test sentence is longer thanT , the score average over
a number of lengthT is computed according to this equation:

ST,s =
nb. of seg. correctly tested for T duration

total nb. of seg. tested for T duration
(7)

The final identification score is obtained by averaging over the
number of speakersNs, as:

Score =

∑Ns
i=1 ST,i

Ns
(8)

5. Speech database
A SPIDRE–Swichboard Corpus is used. It is comprised of a 45
speaker database, including all men and women. Each speaker
has 4 conversations originating from 3 different handsets. The



training data contains 3 conversations, with 2 conversations
coming from the same handset. The last conversation, using
the third handset (different from the others), is presented as the
test data. This combination is referred to as themismatched
condition.

6. Strategies
6.1. The baseline strategy

The baseline strategy uses both the voiced and unvoiced seg-
ments. The suppression of silence was carried out based on
the energy evolution and the comparison with fixed thresholds.
One model,λs,b, for each speaker is generated for the baseline
system.

6.2. Recognition based on voiced speech segments

A module that estimates the pitch and selects the voiced seg-
ments is included. A pitch tracker and a voiced-unvoiced de-
tection system [10] in conjunction with the SID system analysis
module are used as well. In this case, silence and unvoiced seg-
ments are automatically rejected. During training for each pitch
period, we centered a 32 ms duration window and extracted the
MFCC coefficients.

One model,λs,v, is generated for recognition on the voiced
speech system.

6.3. Recognition based on the estimated a posteriori prob-
abilites

For the third and the fourth proposed systems, four pitch inter-
valsI1,. . . ,I4 are created according to the pitch frequency his-
togram. More than 90% of the pitch frequencies belong to the
interval of [150Hz,220Hz] for women speakers and to the inter-
val of [90Hz,150Hz] for men speakers. The pitch frequencies
are distributed over 4 intervals as follows:

• Women intervals :

• I1 = [150, 180];

• I2 = [170, 200];

• I3 = [190, 220] ;

• I4 = [63, 150] ∪ [220, 600].

• Men intervals:

• I1 = [90, 120];

• I2 = [110, 130];

• I3 = [120, 150] ;

• I4 = [63, 90] ∪ [150, 600].

The choice of four intervals is a trade off between fine pitch
intervals and sufficient training size of the models. During train-
ing and for each intervalIk, the MFCC vectors and pitch are
used to generate a parametric model for each speaker. There-
fore each speaker is characterized by 2x4 models. With the aim
of overcoming the pitch estimation errors, we choose an overlap
of 10 Hz between the intervals. Thus, the MFCC vectors from
speech whose fundamental frequency belongs to two adjacent
intervals (Ik, Ik+1), associated to subspacesHk andHk+1, re-
spectively are during the testing session, evaluated over these
two subspaces and we keep the best score.

The fourth modelλp
s,k is generated for recognition, taking

into account the conditional probability of voiced speech ac-
cording to the pitch. The pitch is distributed as a Gaussians

Mixture. The difference between the two proposed systems
simply consists in training the third system model with the loga-
rithm of the pitch instead of the estimated pitch value. The third
technique is inspired from the work of Sönmez and al.[13]. Us-
ing a simple correlation model, they showed that the pitch has a
lognormal distribution. Therefore, in the third system the train-
ing is done with log(pitch). On the other hand, in the fourth
system the training is directly carried out data pitch without any
postprocessing.

7. Results and discussion

Table 1:scores of all speakers
times 100 ms 500 ms 1 s 2 s 3 s

baseline 29% 58% 71% 81% 85%
voiced +1.48 +1.38 +1.72 +3.11 +3.17

LogFoMod +9.32 +6.17 +3.04 +2.05 +0.14
FoMod +9.30 +6.10 +3.06 +2.34 +0.28

Table 2: scores of women
times 100 ms 500 ms 1 s 2 s 3 s

baseline 26% 56% 68% 79% 84%
voiced +0.91 +0.69 +1.84 +3.70 +3.23

FoLogMod +11.84 +9.42 +6.82 +4.74 +0.76
FoMod +11.87 +9.09 +6.63 +4.83 +0.76

Table 3: scores of men
times 100 ms 500 ms 1 s 2 s 3 s

baseline 31% 61% 73% 82% 86%
voiced +5.71 +4.58 +3.39 +3.61 +3.73

FoLogMod +10.12 +4.80 +0.55 +0.07 -0.34
FoMod +10.08 +4.87 +0.70 +0.49 -0.09

Tables1, 2 and3 report the identification results observed
with the four techniques: 1) Baseline (voiced and unvoiced seg-
ments), 2) Voiced (only voiced segments), 3) Voiced segments
with partition of space intoH1 to H4. The pitch is supposed to
distribute according to the lognormal model (noted LogFoMod)
and 4) Voiced segments with partition of space intoH1 to H4.
The pitch is supposed to distribute according to normal model
(noted FoMod).

The first column gives the value ofT , that is, the duration
of maximum log–likehood estimation.

Compared to the baseline system, the sign ’+’ indicates a
profit in performance and ’-’ indicates a loss in performance.

The results show that the baseline system yields the low-
est identification rates. All the proposed systems yield a profit
in score for all durations and in the reported experiments. The
profit in score decreased as the time duration test increased. Par-
ticulary, the proposed system yields a profit in score of almost
10% for women speakers, 7% for men speakers and 8% for all
speakers, when the test duration is less than 500 ms. Conse-
quently, we can deduce that the strategy suggested is interest-
ing for systems which make decisions over short durations. It
should be emphasized here that almost all systems converge



towards the same weak scores when the test duration is rel-
atively large. This weakening in profit can be explained by
the non-standardization and the different space-dimensions of
MFCC coefficients and the pitch. In particular, the pitch varia-
tion which is considered weak compared to MFCC implies that
de pitch probability density is narrow resulting in biased deci-
sions when time duration increases. Consequently, it will be
judicious to balance the probability densities in order to obtain
homogenized scores.

Generally the best score is observed with men speakers and
the weaker score is observed with women speakers. Compar-
ing the last two techniques, we found that they yielded similar
scores. Therefore, modelling the pitch by a lognormal distri-
bution can be considered unsuitable and inappropriate for the
speech with telephone quality.

For the results presented, aT of 1 second is equivalent to
100 MFCC vectors and is independent of the technique. The
weak performance of the baseline system might be partially due
to the smaller number of voiced frames in a fixedT .

As shown in tables1, 2 and3, the proposed models im-
prove the baseline system. When the dependence of source and
vocal tract is taken into account, the best results are observed
for durations, T, lower than 500 ms.

In several cases, the pitch is not well estimated and affects
the performance. If these errors are corrected, we can possibly
contribute to better training and evaluation.

8. Conclusion

Motivated by the fact, that the speaker intervariability is more
apparent on the basis of the pitch histograms rather that the spa-
tial distribution for formants, an approach that preserves the de-
pendence between the vocal source and the vocal tract has been
proposed. Experiments that integrate the a-posteriori probabil-
ity of observing a MFCC vector given the knowledge of the
pitch frequency have been reported. The MFCC and pitch pa-
rameters are modelled respectively by32 and 4 mixtures of
Gaussians. They are compared with a baseline system oper-
ating on all voiced and unvoiced speech segments and with a
second system that operates on voiced speech segments only.
Closed set Speaker Identification experiments were performed
on the SPIDRE corpus which comprises highly confusable fe-
male speakers.

Systems based on voiced segments yield good scores. How-
ever, when the dependence of the source and vocal tract is taken
into account, the best results are observed for durationsT lower
than 500 ms (10% for women speakers, 7% for men speak-
ers,8% for all speakers).

Despite the limited improvement in performance, it appears
that the approach is promising. In fact, many restrictive hy-
potheses have again been made to set up the experiments as:
the pitch tracker has been supposed to be reliable; a sufficient
training data is assumed for subspace decomposition; a direct
dependence of MFCC and pitch in each subspace is assumed.

We therefore suggest, as future work, to optimize the num-
ber/width of the pitch intervals (Ik) and to introduce weighting
between a priori probability distribution of the pitch (fs(xi))
and conditional probability (fs(

−→y j/xi)) in accordance with
equation5. A modified version of the proposed method should
be investigated, in order to keep and to exploit conjointly the
unvoiced and the voiced speech segment.
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