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Pitch and Thrust Allocation for Full-Flight-Regime Control of Winged
eVTOL UAVs

Jacob B. Willis1 and Randal W. Beard2

Abstract— Trajectory tracking control for winged eVTOL
aircraft is complicated by the high-angle-of-attack aerodynam-
ics experienced during navigational flight occurring immedi-
ately after takeoff and immediately before landing. The total
energy use of the vehicle can be reduced and the control
performance can be improved by appropriately considering
the pitch angle of the vehicle in varying flight conditions. We
present a review of high-angle-of-attack aerodynamic models
as well as an algorithm for finding the optimal pitch and
thrust of a winged eVTOL throughout its flight regime. We
show simulation results demonstrating a 75% reduction in
tracking error over our previous work while maintaining a
similar average thrust and an 85% reduction in tracking error
over using a multirotor-like controller.

I. INTRODUCTION

One of the major challenges in the control design of
winged electric vertical takeoff and landing (eVTOL) un-
manned aerial vehicles (UAVs) is the high-angle-of-attack
aerodynamics they experience while in partially transitioned
flight regimes. Because of the nature of turbulent flow, these
aerodynamics are challenging to predict and will likely vary
with minor changes in flight conditions.

In our previous work [1], we develop a trajectory tracking
controller that can be generally applied to any vectored thrust
or lift and cruise winged eVTOL UAVs 1. We demonstrate
that, within the constraints of the thrust vector, trajectory
tracking can be performed at any pitch angle. The pitch
angle is then a free variable that can be used to satisfy
secondary objectives such as minimizing thrust or ensuring
passenger comfort. We refer to finding the appropriate pitch
angle, and the related thrust vector, as the pitch and thrust
allocation problem. Figure 1 shows the overall architecture of
our trajectory tracking controller and highlights how solving
the pitch and thrust allocation problem fits into the complete
control system.

In [1] we solve the pitch and thrust allocation problem us-
ing a general-purpose nonlinear optimizer. The shortcomings
of this approach, however, are the optimizer cannot handle
the problem’s multiple local minima and the high computa-
tional cost of an optimizer embedded within a control loop.
Here, we investigate the pitch allocation problem in more
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detail; we review post-stall aerodynamic models found in
the literature and propose a search-based method for finding
the global optimum of the pitch allocation problem. We also
point out that while the pitch allocation problem exhibits
multiple local minima that vary with the optimization pa-
rameters, the locations of the minima vary slowly, so we
propose an iterative method for refining the optimal solution
over multiple iterations of the control loop.

Previous work in this area is limited. The work on tra-
jectory tracking for winged eVTOLs by Anglade, et al. [2]
utilizes a flat-plate lift and drag model and finds an analytic
solution to the pitch and thrust allocation problem. However,
the solution ignores constraints on the desired pitch angle
and does not apply to alternative lift-drag models, such as
those discussed in section II. A similar control architecture
for multirotors is the controller by Lee, Leok, and McClam-
roch [3]. Because multirotors lack lifting surfaces and thrust
vectoring, the roll and pitch of the vehicle are both defined by
pointing the −zb axis in the direction of the desired force
vector. This method of determining the pitch can also be
applied to winged eVTOLs by ignoring aerodynamic forces
and vectored thrust and is the only mode available for low-
speed winged eVTOL control in the PX4 Autopilot [4]. We
use it as a baseline comparison in our results.

We begin in section II by comparing multiple high-
angle-of-attack lift and drag models found in the literature.
We then cover the pitch and thrust allocation problem in
section III, and in section IV we show the trajectory tracking
improvements of our new algorithm over using a nonlinear
optimizer as done in our previous work [1].

Throughout this paper the notation rca/b is used to denote
a vector quantity r of frame a with respect to frame b and
expressed in frame c. Similarly, the notation ϕa/b is used
for an angle from frame b to frame a. We use i to refer to
the north-east-down inertial frame, and b to refer to the true
body-fixed frame. The desired, desired pitch, and stability
frames, are denoted d, p, and s respectively. The inputs to the
pitch and thrust allocation block in fig. 1 are expressed in the
desired frame, which has been rolled and yawed such that the
commanded force vector resides in the vehicle longitudinal
plane. The outputs of the pitch and thrust allocation are
expressed in the desired pitch frame. The stability frame is
used to express the aerodynamic forces and is described in
more detail subsequently.

https://evtol.news/classifications


Fig. 1. Block diagram of the control scheme we presented in [1]. The
controller tracks a three times differentiable position trajectory and a one
time differentiable yaw trajectory. This paper focuses on the emphasized
pitch and thrust allocation block.

TABLE I
AERODYNAMIC AND VEHICLE MODEL NOMENCLATURE

Symbol Value Description
α – Angle-of-attack (deg)
α0 15◦ Stall angle-of-attack
CL0

0.005 Constant lift coefficient
CLα 2.819 Linear lift coefficient
CDp 0.003 Parasitic drag coefficient
AR 7.815 Wing aspect ratio
S 0.259 Wing planform area (m2)
ρ 1.268 Air density (kg/m3)
e 0.9 Oswald efficiency factor
M 50 Blending transition rate
m 1.0 Mass of vehicle (kg)
g 9.81 Acceleration due to gravity (m/s2)
ξmin 0◦ Minimum thrust angle
ξmax 90◦ Maximum thrust angle
θmin 0◦ Minimum desired pitch angle
θmax 15◦ Maximum desired pitch angle

II. HIGH-ANGLE-OF-ATTACK LIFT AND DRAG MODELS

Table I lists the symbols used in this section, as well
as the value of constants used throughout the paper. The
vehicle-specific constants were determined for the E-Flight
convergence aircraft, as described in [5].

At small angles of attack (|α| < α0), the behavior of lifting
surfaces is well understood and typically modeled by a linear
lift curve and a quadratic drag curve,

CL,SA(α) = CL0 + CLαα (1a)

CD,SA(α) = CDp +
(CL0 + CLαα)2

πeAR
. (1b)

However, as |α| � 0, these models fail to predict the
aerodynamic behavior of the wing. In their work on post-
stall perching, Cory and Tedrake [6] use a flat-plate model
to fit flight data taken over the α ∈ [−20◦, 140◦] range. A
similar model is proposed by [7] and applied to the control
of a winged eVTOL in [2]. This model is equivalent in lift
and adds a constant offset in drag to [6] and is given by

CL,FP1 = 2 sinα cosα (2a)

CD,FP1 = CDp + 2 sin2 α. (2b)
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Fig. 2. Comparison of various high-angle-of-attack lift and drag models
found in the literature. The small-angle models are good for |α| ≤ α0, the
flat plate models are best for |α| � 0, and the blended model combines the
small-angle and flat plate model to cover a larger range of attack angles.

An alternative flat plate model is given by Stengel in [8],

CL,FP2 = 2 sgn(α) sin2 α cosα (3a)

CD,FP2 = 2 sgn(α) sin3(α). (3b)

These flat plate models tend to underpredict lift for low
angle-of-attack flight, as demonstrated in [9] where radial
basis functions are fit to experimental data to produce a better
CL match. An alternative, used in [10], [11], [12] is to blend
the small-angle angle-of-attack lift and drag models in eq. (1)
with the flat plate models in eq. (3). To blend the small-angle
and flat plate models, we first define the sigmoid function,

σ(α) =
1 + e−M(α−α0) + eM(α+α0)(

1 + e−M(α−α0)
) (

1 + eM(α+α0)
) (4)

where M is the transition rate and α0 is the stall angle. Then
the blended lift and drag coefficients are

CL,B* = (1− σ(α))CL,SA(α) + σ(α)CL,FP*(α) (5a)
CD,B* = (1− σ(α))CD,SA(α) + σ(α)CD,FP*(α). (5b)

Figure 2 shows a comparison of these different models.
The small-angle lift curve is truncated at ±α0. The blended
model adds additional complexity of a minimum between
the peak following the linear lift curve and the peak of the
flat plate curve.

A comparison of the CL/CD efficiency of the various
aerodynamic models is shown in fig. 3. The flat plate models
both exhibit significant differences from the small-angle
model, whereas the blended models closely follow the small-
angle curve for low α and converge to the flat plate curves
for large α. Because the flat plate models poorly predict the
efficiency at small attack angles, we expect their performance
during level, high-speed flight to be poorer than the blended
models.

The flat plate and blended models capture the fundamental
behavior of a wing at high attack angles, and the blended
models capture the laminar flow aerodynamics at low attack
angles. The blended models show a rapid decrease in lift
at α0, providing a model for stall. However, in real flight,
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Fig. 3. Aerodynamic efficiency plot showing CL/CD for α near 0. For
|α| < α0 = 15◦, the small-angle (SA) model is the best fit to a real aircraft.

small variations in the flight conditions would cause flow
separation to occur at other angles. This loss of laminar
flow exhibits hysteresis and has been previously modeled
by incorporating a flow separation parameter in the system
state [13], [14]. We do not investigate the use of a flow
separation parameter in this work, however, the proposed
solution to the pitch and thrust allocation problem can
be applied to these models assuming the flow separation
parameter is kept static on each iteration of the control loop.

III. PITCH AND THRUST ALLOCATION

The trajectory tracking controller given in our previous
work [1] computes a desired applied force vector, F d

d, where
d signifies the desired frame. The desired frame is located
at the center of mass of the vehicle and is rolled and yawed
such that F d

d lies in the body longitudinal plane, but the
desired frame has a zero pitch angle. The task now remains
to find the optimal pitch to achieve the desired applied
forces through a combination of aerodynamic and propulsive
forces. To do so, we find the pitch angle which minimizes
the thrust necessary to achieve F d

d by taking advantage
of the aerodynamic forces on the vehicle while respecting
limits on the thrust direction. We begin by describing the
relationship between the total forces F d

d, the thrust T p
d and

the aerodynamic forces F s
aero. Recall that p denotes the

desired pitch frame, which is rotated about the yd axis from
the desired frame by θp/d, and s denotes the aerodynamic
stability frame, where ys = yd and xs is aligned with the
projection of the airspeed vector in the xd-zd plane. The lift
and drag forces act along the zs and xs axes respectively.
We assume zero wind, so the desired velocity vector vdd/i is
the airspeed vector. The vector quantities and angles used in
this section are depicted in fig. 4.

We let Va = ‖vdd/i‖ be the magnitude of the desired
airspeed. We define the flight path angle to be the angle
between the horizontal plane and the desired velocity vector,

γs/d = tan−1

(
−vdz,d/i
vdx,d/i

)
. (6)

The stability frame is then defined as a rotation by γs/d
about the yd axis. We define the angle-of-attack to be the
angle between the xs and xp axes; because we assume wind

is zero, θp/d = αp/s + γs/d. We define the longitudinal
aerodynamic force vector to be

F s
aero(α, Va) =

[
−Fdrag(α, Va)
−Flift(α, Va)

]
(7)

where Flift(α, Va) = 1
2ρV

2
a SCL,∗(α) and Fdrag(α, Va) =

1
2ρV

2
a SCD,∗(α), with CL,∗ and CD,∗ given by one of the

models in section II.
We define the angle of the vectored thrust with respect to

the pitched frame as

∠T = tan−1

(
−T p

z,d

T p
x,d

)
, (8)

the angle of the desired force vector with respect to the
desired frame as

∠F = tan−1

(
−F d

z,d

F d
x,d

)
, (9)

and the desired force vector expressed in the stability frame
as

F s
d = R̄(γs/d)F̄

d
d (10)

where

R̄(ϕ) =

[
cosϕ − sinϕ
sinϕ cosϕ

]
(11)

is an active rotation by ϕ, and since F d
y,d = 0 we define the

two-vector F̄ d
d = [F d

x,d,F
d
z,d].

For the desired forces to be achieved, the applied thrust is
a nonlinear function of θp/d,

T p
d(θp/d) =

R̄(θp/d − γs/d)
(
F s
d − F s

aero(θp/d − γs/d, Va)
)
.

(12)

Fig. 4. Depiction of the vectors and angles used in computing the
aerodynamic forces and thrust. The origin of frames p and s coincide with
the origin of frame d. The xd axis of the desired frame is in the horizontal
plane, that is, it is orthogonal to the zi axis of the inertial frame.

A. Pitch and Thrust Optimization

Through much of the flight regime, there is not one unique
solution to eq. (12), so we use θp/d as an optimization



variable to minimize the thrust magnitude, ‖T p
d‖. The op-

timization is then
given Va, γs/d,F

s
d

min ‖T p
d(θp/d)‖+ µθ2p/d

w.r.t. θp/d

s.t. T p
d(θp/d) =

R̄(θp/d − γs/d)
(
F s
d − F s

aero(θp/d − γs/d, Va)
)

θp/d ∈ [θmin, θmax]

∠T ∈ [ξmin, ξmax].
(13)

Including µθ2p/d in the objective with 0 < µ � 1 ensures
a single minimum exists when Va = 0. The constraint on
θp/d ensures the vehicle remains in a nominally level state,
while the constraint on ∠T ensures the thrust is within the
producible range. As given in eq. (13), the optimization will
fail when the desired force vector is outside the range that
is achievable while satisfying θp/d ∈ [θmin, θmax] and ∠T ∈
[ξmin, ξmax]. To accommodate this, we perform a second
optimization when eq. (13) fails to find a feasible solution.
The purpose of the secondary optimization in eq. (14) is to
find a feasible thrust at pitch angles outside the desired range,

given Va, γs/d,F
s
d

min θ2p/d

w.r.t. θp/d

s.t. T p
d(θp/d) =

R̄(θp/d − γs/d)
(
F s
d − F s

aero(θp/d − γs/d, Va)
)

θp/d ∈ [−π
2
,−θmin] ∪ [θmax,

π

2
]

∠T ∈ [ξmin, ξmax].
(14)

Because this searches outside the nominal range of pitch
angles, we formulate the objective to select the feasible
solution closest to satisfying the θmin, θmax bounds rather
than to select the minimum thrust solution. This enables the
controller to handle scenarios such as fast reverse flight or
rapid air braking where the vehicle uses the drag at a high
angle of attack to quickly decelerate.

B. Sampling-Based Pitch and Thrust Allocation
Depending on the lift and drag model used, and because

the angle-of-attack is frequently outside [−α0, α0] eqs. (13)
and (14) can have multiple local minima. We solve it globally
on each iteration of the control loop by sampling and
choosing the lowest cost feasible point. Because the input
trajectory and system states vary continuously, the solution
to eqs. (13) and (14) is similar from iteration to iteration.
To avoid an excessively high number of samples in any one
iteration, we increase the sampling density near the previous
solution. The algorithm for computing the best pitch angle
is shown in algorithm 1. Lines 1 through 5 solve eq. (13)
and lines 6 through 9 solve eq. (14). Line 1 generates
cubically spaced refinement samples around the previous
optimal solution; it evaluates to {} when no previous solution
exists.

Algorithm 1: Sampling method for finding the opti-
mal pitch and thrust.

Input: Va, γs/d, F s
d, θ?prev

Output: θ?, T ?

/* Generate θ samples */

1 θr = θ?prev + ∆θ (linspace(−1, 1))
3

2 θs = linspace(θmin, θmax) ∪ {θr,i|θr,i ∈ [θmin, θmax]}
/* Compute thrust at sample points */

3 T s = R̄(θs − γs/d)
(
F s
d − F s

aero(θs − γs/d, Va)
)

/* Find feasible pitch and thrust pairs */

4 θg,T g = {(θs,i,T s,i) | ∠T s,i ∈ [ξmin, ξmax]}
/* Find thrust minimizing pair */

5 θ?,T ? = {(θg,i,T g,i) | i = argmin
(
‖T g‖+ µθ2g

)
}

6 if (θ?,T ?) = {} then
/* No solution found in [θmin, θmax] */

7 θs =
(
linspace(−π2 ,

π
2 ) ∪ θr

)
\ [θmin, θmax]

8 Repeat lines 2-4
/* Find pitch minimizing pair */

9 θ?,T ? = {(θg,i,T g,i) | i = argmin
(
θ2g
)
}

10 end

C. Pitch Allocation Results

Figures 5, 6, and 7 show the result of the proposed pitch
and thrust allocation algorithm along sweeps of varying
inputs. In all figures, the small-angle with angle-of-attack
cutoffs model (eq. (1)), the flat plate 1 model (eq. (2)), and
the blended flat plate 2 (eq. (5) with eq. (3)) model are
optimized using algorithm 1 and the legend entries for these
models are SA, FP1, and B2 respectively. A comparison is
made to using a multirotor-like method of pointing the −zp
axis in the direction of the desired force and computing the
resulting thrust using eq. (12) and the blended flat plate 2
model. The legend entry for this method is ∠F d

d. Due to
model differences, the absolute magnitude of thrust should
only be compared between the optimized blended 2 and the
multirotor blended 2 methods.

Figure 5 shows the effect of varying the flight path angles
while the airspeed and desired force are held constant. The
increase in θ? after γ ≈ 150◦ is due to the first pitch
allocation in eq. (13) failing and the second method in
eq. (14) being applied. The discontinuity at this point is
due to the wide spacing of the θ samples. It is resolved by
subsequent iterations of the algorithm sampling near the pre-
vious solution. The pitch rate restriction described in eq. (15)
prevents this behavior in the final control implementation.
The sharp discontinuities in the small-angle plot are due
to the truncation of the lift line. The discontinuities from
θ? = θmax to θ? = 0 near γ = 100◦ is due to the blended
and flat plate models exhibiting zero drag near α = ±180◦.

Figure 6 shows the effect of increasing the airspeed while
the flight path angle and desired force are held constant. This
figure reflects a transition to forward flight, showing that at
low airspeed, the pitch angle saturates at θmax and the thrust
compensates for a lack of lift. As the vehicle accelerates,



lift is produced by the wings, and near Va = 10m/s, it is
no longer necessary to produce thrust along the zp axis.
This corresponds with a complete transition. Beyond Va =
10m/s, Tx increases slowly to compensate for the increasing
parasitic drag. In comparison, the multirotor solution pitches
the vehicle down to point the thrust in the direction of
travel. As the vehicle accelerates the thrust required for the
multirotor controller increases quadratically due to increasing
drag. The comparison is cut off at Va = 10m/s due to the
unattainable thrust required at higher airspeed.

Figure 7 shows the effect of modifying the direction of the
applied force while the flight path angle, airspeed, and F d

z,d

are held constant. For Fx < −2.5, the desired force vector
cannot be achieved without violating the θmax bound, and the
secondary optimization is used to find the appropriate pitch
and thrust. Above this, the optimized methods stay at θmax
and produce thrust using Tx while the multirotor method
continues to pitch forward, causing an increase in the total
thrust magnitude.
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Fig. 5. Optimal thrust and pitch for increasing flight path angles. The
other inputs to algorithm 1 are held constant at Va = 3.0m/s and F d
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IV. INCORPORATION INTO FULL CONTROLLER

To illustrate the improvements of using algorithm 1 to
solve the pitch and thrust allocation optimization in eqs. (13)
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Fig. 7. Optimal thrust and pitch for increasing Fx, which makes F d
d =

[Fx, 0,−mg]T . The other inputs to algorithm 1 are held constant at Va =
3.0m/s and γ = 0◦.

and (14) over our previous nonlinear optimization approach
we incorporate each into the control loop shown in fig. 1 and
simulate tracking the trajectory used in [1]. The trajectory
is meant to simulate a takeoff and landing in a congested
area and is 100m long, has a maximum altitude of 10m, a
maximum velocity of 6.4m/s, and includes a 90◦ change
in yaw. The simulation environment, described in [5], uses
the blended 2 aerodynamic model as the true vehicle lift
aerodynamics and the small-angle model for the true vehicle
drag aerodynamics.

A. Restricting the Pitch Rate

Because algorithm 1 is solved at a single instant, the
result may be discontinuous over successive iterations of the
control loop. To avoid rapid changes in the pitch rate, we
restrict the rate of change of the pitch command. Letting θ?

be the solution from algorithm 1, and θprev be the previously
commanded pitch angle, we pick the commanded pitch angle
to be

θp/d =


θprev + ∆tωymax θ? − θprev > ∆tωymax

θprev −∆tωymax θ? − θprev < −∆tωymax

θ? Otherwise
(15)

where ∆t is the time between iterations of the control loop
and ωymax is the maximum desired angular rate about the
ypd axis. Once θp/d has been determined, we compute the
commanded thrust T p

d using eq. (12).

B. Simulation Results

Implementing the algorithm described above significantly
improved the behavior of our controller in [1]. Figures 8
and 9 show the results of the nonlinear optimization method
(N Opt.) from our previous work, applied to the blended
2 model; the ∠F d

d (multirotor-like flight) method; and the
new sampling method that is described here, applied to the
small-angle, flat plate 1, and blended 2 aerodynamic models.
Table II shows the error and thrust averaged along the tra-
jectory for each of the different pitch allocation results. The
sampling method on all three models had a similar average
error and average thrust. The nonlinear optimization method
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TABLE II
SIMULATION AVERAGE POSITION ERROR AND THRUST

Method Avg. error (m) Avg. thrust (N)
Nonlinear Optimizer on B2 0.830 8.86
Multirotor 1.46 10.3
Small-Angle 0.188 9.01
Flat Plate 1 0.22 9.03
Blended 2 0.17 8.94

shows a slightly lower average thrust than the sampling
methods, but it experiences a significantly higher average
error. We attribute this to the optimization getting stuck in a
local minimum. All of the pitch and thrust allocation methods
significantly outperform the multirotor-like controller for this
trajectory.
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Fig. 8. Comparison of position error, thrust magnitude, and pitch angle
for a sample trajectory including takeoff, cruise, and landing.

V. CONCLUSION

Trajectory tracking control of a winged eVTOL can be
improved by considering the high angle-of-attack aerody-
namics experienced during navigational flight. Using our
global sampling-based algorithm to find the optimal pitch on
an aerodynamic model that approximates the lift and drag
experienced at high attack angles significantly reduces the
tracking error of our previously presented trajectory tracking
controller. This algorithm can also be applied to aerodynamic
models derived from experimental data or to models that
include flow separation.

The results presented here are a step towards the ap-
plication of our proposed trajectory tracking controller to
winged eVTOL UAV flight hardware. Additional future work
includes identifying and approximating the high-angle-of-
attack aerodynamic model for a flight vehicle.
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