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ABSTRACT

In this paper, a new approach for pitch estimation in polyphonic musical audio is presented. The algorithm
is based on the pair-wise analysis of spectral peaks. The idea of the technique lies in the identification of
partials with successive (odd) harmonic numbers. Since successive partials of a harmonic sound have well
defined frequency ratios, a possible fundamental can be derived from the instantaneous frequencies of the
two spectral peaks. Consecutively, the identified harmonic pairs are rated according to harmonicity, timbral
smoothness, the appearance of intermediate spectral peaks, and harmonic number. Finally, the resulting
pitch strengths are added to a pitch spectrogram.

The pitch estimation was developed for the identification of the predominant voice (e.g. melody) in poly-
phonic music recordings. It was evaluated as part of a melody extraction algorithm during the Music
Information Retrieval Evaluation eXchange (MIREX 2006 and 2009), where the algorithm reached the best
overall accuracy as well as very good performance measures.

1. INTRODUCTION band may be performed by an autocorrelation function
Pitch estimation algorithms have been traditionally dis- [2, 3, 4] or by the application of the STFT [5]. Finally,
cussed primarily in close relation to human perception  the period information of the distinct frequency channels
[1]. Yet, with the growing interest in applications for the  is summed up to obtain a measure of the pitch salience.
automatic transcription of music, new aspects have in-
spired the research on pitch estimation. The analysis of
real world music is a big challenge, as the signal may in-
clude many different sound sources. Usually, there is no
prior information about the number of sources or their
spectral envelopes. Inharmonic spectra may occur, as
well as percussive sounds.

However, methods based on the Fourier frequency spec-
trum prevail in melody extraction and multiple FO esti-
mation applications [6, 7, 8, 9]. One reason might be the
more efficient computation of the spectral analysis. The
period detection, which is performed on the spectrogram
representation of the audio signal, is often based on the
idea of pattern matching. Popular methods include the
Pitch extraction methods which are designed to work PreFEst algorithm developed by Goto [10] and the sub-
with monophonic audio often fail to produce satisfactory harmonic summation algorithm proposed by Hermes in
results with polyphonic music signals. Even the estima- [11].

tion of the predominant pitch may pose problems, as the
method has to be robust against spurious components,
the interference of partials from different sounds, and oc-
tave ambiguities.

Many of the recent pitch detection algorithms exploit the
spectral structure of musical sounds to address the prob-
lem of shared harmonics [3, 6, 8, 9]. In polyphonic mu-
sic, the musical intervals between simultaneously sound-
Of course, the human auditory system still plays an  ing notes usually have a harmonic relationship, so that
important role in recent research on pitch estimation partials of one tone will be at the same frequency as par-
[2, 3, 4, 5]. Methods based on modeling human per- tials of another tone. It is hard to apply prior knowl-
ception are characterized by the band-wise processing of ~ edge to keep apart partials from distinct audio sources,
the audio signal: the signal is analyzed by a filterbank, since there is a huge variety of possible timbres. How-
and then the predominant period is detected in each fre- ever, some physical properties of complex tones provide
quency channel. The period detection within a frequency clues to tackle the problem. Such properties include the
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Fig. 1: Overview of Pitch Estimation Algorithm

harmonicity of the tone’s partials, the smoothness of the
spectral envelope, or the synchrony of the amplitude evo-
lution of the harmonics.

The proposed pitch estimation algorithm is based on the
idea of subharmonic summation as described by Terhardt
in [12]. Subharmonic summation explains well the per-
ceived pitch of harmonic complex tones and quantita-
tively predicts a great variety of pitch phenomena. There
is one shortcoming of the above method that becomes
very apparent in the analysis of polyphonic audio: each
spectral peak creates a huge number of candidate virtual
pitches, so the situation becomes quite complex if there
is more than one note playing simultaneously. In the pre-
sented algorithm, the number of possible subharmonics
can be reduced considerably by the pair-wise process-
ing of spectral peaks. In order to address the problem
of shared harmonics and octave ambiguities, additional
measures are introduced. The measures exploit the phys-
ical properties of musical sounds, for example the aver-
age spectral slope of complex tones, the harmonicity of
partials, and the smoothness of the spectral envelope.

2. METHOD

2.1. Overview

The flowchart displayed in figure 1 gives an overview
about the pitch estimation method. The input to the
algorithm are the magnitude and the instantaneous fre-

quency (IF) of the spectral peaks obtained from a multi
resolution spectrogram. Then, each peak magnitude is
weighted with its respective IF. As indicated by the left-
most path in the flowchart, the weighted peak magnitude
is added as spectral pitch magnitude directly to the pitch
spectrogram.

The estimation of the virtual pitch magnitudes includes
more processing steps. Consecutively, two spectral peaks
at one time are combined into a candidate harmonic peak
pair. It is then assumed that both peaks are successive
(odd) harmonics (with harmonic numbers 1 and 2, 2 and
3,... as well as 1 and 3, 3 and 5, etc.). Following this
assumption, it is possible to calculate the fundamental
frequency of the perceived virtual pitch. Some addi-
tional weightings are applied, which rate the probabil-
ity that both peaks are indeed successive (odd) harmon-
ics: 1) the harmonicity weighting rates the frequency
relation between spectral peaks, 2) the spectral smooth-
ness criterion determines the maximum supported virtual
pitch magnitude, 3) the presence of intermediate spectral
peaks reduces the impact of the considered peak pair, and
4) the harmonic number also influences the virtual pitch
magnitude. After all peak pairs have been processed, the
virtual pitch magnitudes are added to the pitch spectro-
gram.

2.2. Spectral Analysis

If a partial of a complex tone is not obscured by other
harmonics or noise it can be detected as a peak in the
magnitude spectrum of the Short Term Fourier Trans-
form (STFT). In the case of polyphonic audio, multi-
ple sound sources play simultaneously and the interfer-
ence between concurrent sounds becomes more apparent
in the Fourier spectrogram. The interference of partials
from simultaneously playing notes can be decreased if
the frequency resolution of the STFT is increased. How-
ever, musical sound changes over time, so long STFT
data windows cannot be used to gain a very high fre-
quency resolution. A compromise has to be found be-
tween a good frequency resolution and a good time reso-
lution.

Such a compromise could be the use of a multi resolu-
tion spectrogram which is obtained from the audio sig-
nal by calculating a multi resolution Fast Fourier Trans-
form (MR FFT) [13]. The best frequency resolution
(Af =21.5 Hz) is reached for the low frequency compo-
nents up to approximately 600 Hz. The best time resolu-
tion corresponds to a FFT data window length of 5.8 ms
for frequencies above 4400 Hz. Due to different amounts
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of zero padding the resulting STFT frame size and the
hop size of the analysis window are 2048 and 256 sam-
ples for all STFT resolutions, respectively'.

The proposed pitch estimation method takes the peaks
of the STFT magnitude spectrogram and their respective
instantaneous frequencies (IF) as input. For the compu-
tation of the pitch spectrogram spectral peaks in the fre-
quency range between 55 Hz and 5 kHz are processed.
The lower limit has been set according to the typical
frequency range of melody notes, the higher limit de-
notes the frequency threshold for the induction of a vir-
tual pitch in the human auditory system [14, chapter6].
In order to obtain more stable IF measures, the average
frequency of two estimation methods is used, namely the
well-known phase vocoder [15] and a method proposed
by Charpentier [16].

Terhardt et al proposed the processing of aurally rele-
vant sinusoidal components and the deletion of masked
sounds [12]. In previous work [13], we aimed at the ex-
plicit identification of sinusoidal components in the mu-
sic signal. However, the accurate distinction between si-
nusoidals and noise is a challenging task especially for
signals with many concurrent sounds. In order to pre-
serve as much spectral information as possible and since
the proposed pitch estimation algorithm is very robust
against additional noise, this processing step has been
omitted.

If solely the predominant periodicity shall be extracted,
the computational efficiency of the algorithm can be in-
creased by setting a magnitude threshold for the spec-
tral peak candidates, a threshold that is 30 dB below the
maximum weighted peak magnitude is used for melody
extraction.

2.3. Magnitude Weighting

In order to obtain the weighted magnitude A, for the
spectral peak at STFT bin £, its STFT magnitude |X[k]|
is multiplied with the peak’s instantaneous frequency f;.

Aslk] = [X[K]]- filk] M

This weighting introduces a 6 dB magnitude boost per
octave. In effect the weighted signal is proportional to
the signal derivative.

The proposed magnitude weighting is based on the spec-
tral structure of musical sounds: The spectral slope of

! Assuming audio data sampled at 44.1 kHz.
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Fig. 2: Magnitude weighting for two tones with a spec-
tral rolloff of 6 dB per octave: a) STFT magnitude b)
weighted magnitude

instruments used in music and speech is between - 3 dB
and -12 dB per octave [17], the musically most interest-
ing rates of spectral rolloff are between 3 and 9 dB per
octave [18]. Sundberg found that the long-term average
spectral slope of speech and orchestra music is -6 dB per
octave [19]. Hence, the weighting shall equalize the im-
pact of low and high harmonics for the average complex
tone in music, which ideally has a spectral slope of -6 dB
per octave.

Figure 2 allows a qualitative comparison between the
STFT magnitudes and the weighted magnitudes. The ex-
ample uses two complex tones with 5 harmonics and a
spectral slope of -6 dB per octave. After the weighting
the harmonics of each tone have equal magnitudes. It
can also be noted that the resulting spectrum is not flat.
In this respect the proposed weighting differs from spec-
tral whitening methods (for example [3]), as it markedly
damps the low frequency bands.

All subsequent processing steps are computed with the
weighted spectral magnitude Aj;.

2.4. Spectral Pitch Magnitude

The spectral peak itself naturally invokes a pitch per-
ceived at its own instantaneous frequency. So at first
the weighted magnitude A; is added to the pitch spectro-
gram, if the instantaneous frequency f; is in the desired
pitch frequency range fiin < fi < fmax. Since the pitch
spectrogram has a logarithmic frequency scale, f; is con-
verted to a cent value ¢;:

¢i = 1200log, (?) with  fief = fmin.  (2)

ref

The minimum pitch frequency fnin = 5S5Hz is used as
reference frequency. In this case the lowest possible cent
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value in the pitch spectrogram is zero. If the frequency
resolution of the pitch spectrogram buffer is set to 1 cent,
the estimated cent values can be used as indices to the
spectrogram.

The spectral pitch magnitude is represented by a Gaus-
sian weighted with Ay:

c—¢j 2
o) = Ay 2 () 3)

The Gaussian reaches half its maximum value with a cent
offset of |c — ¢;| &~ 41cent. The width of the Gaussian
has been adjusted experimentally by the evaluation of the
melody extraction system 2.

2.5. Virtual Pitch Magnitude

According to Terhardt the formation of virtual pitch can
essentially be said to be a process of subharmonic match-
ing [12]. He presumed that each of the spectral pitches
evokes candidate virtual pitches at its subharmonic fre-
quencies. The subharmonic frequencies are found by di-
viding the partial frequency f; by integer numbers from
1 up to N3 Basically, the virtual pitch is perceived where
most of the candidate virtual pitches of the different spec-
tral peaks match.

The presented approach builds upon the idea of subhar-
monic matching. Still, contrary to Terhardt, we do not
assume virtual pitch candidates at each subharmonic fre-
quency of a spectral peak. Rather, we demand that only
(odd) successive harmonics evoke a virtual pitch. This
way, the number of candidate virtual pitches can be de-
creased noticeably, because the considered subharmonic
frequencies are derived from the frequency intervals be-
tween spectral peaks (see section 2.5.1).

In principle the virtual pitch magnitude is derived from
the weighted spectral magnitude of the identified har-
monic. However, several additional ratings are intro-
duced that estimate the probability of the virtual pitch.
Consecutively, the identified harmonics are rated accord-
ing to harmonicity, timbral smoothness, the appearance
of intermediate spectral peaks, and harmonic number
(see sections 2.5.2-2.5.5).

2.5.1. Pair-Wise Subharmonic Summation
In order to detect (odd) successive harmonics, spectral
peaks are evaluated pair-wise. Successively, each spec-

2In order to save compuation time, the Gaussian weightings are
precomputed and only 100 values are added to the pitch spectrogram,
which has a resolution of 1 cent.

3Terhardt sets the maximum harmonic number to 12. In the pre-
sented approach, harmonics up to harmonic number 20 are considered.

tral peak is combined with all other peaks. For each peak
pair, it is assumed that both spectral peaks are partials
with an (odd) successive harmonic number (harmonic
numbers 1 and 2, 2 and 3,... as well as 1 and 3, 3 and
5, etc.). Using the supposed harmonic relationship of
the spectral peaks, the most likely harmonic numbers can
be derived from their instantaneous frequencies fh;gh and

Jiow-

At first, it is assumed that both peaks are successive har-
monics. In this case, the harmonic number Ay, of the
partial with the lower frequency fiow is computed as:

hlow flow < flow >
= = hjow =round | ——— | . (4)
how+1  fhigh fow Jhigh — fiow

The harmonic number of the partial with the higher fre-
quency i8 hpigh = hiow + 1.

Then, the supposed harmonic numbers are calculated as-
suming odd successive harmonics:

hlow _ flow
how+2  fhigh

2 frow
— ). (5
Jhigh — flow ) ©)

Using equation 5, the computed harmonic number is
valid only if the rounded result is indeed an odd num-
ber. Naturally, the harmonic number of the partial with
the higher frequency is hpigh = hiow + 2.

= hjow = round <

Because of equation (5) odd harmonics are discovered”
more often than even harmonics. To avoid an increased
impact of odd harmonics in the final pitch spectrogram,
all identified harmonic numbers for one peak are at first
solely listed. After all possible peak pairs have been eval-
uated, the computed virtual pitch is added to the pitch
spectrogram only once for each harmonic number found.

The virtual pitch frequency f, is computed individually
for each partial by the straightforward division of instan-
taneous peak frequency and estimated harmonic number,
e.g. fp = fi/h. Experimental results have shown that
harmonics with a harmonic number £ greater than 20 do
not improve the estimation accuracy.

The virtual pitch magnitude is estimated using several
weightings which are described in the following sections.

2.5.2. Harmonicity

Let’s imagine a spectral peak pair with the instantaneous
frequencies fiow = 300 Hz and fyjon = 400 Hz. Accord-
ing to equation (4) the harmonic number is calculated
as hjow = 300Hz/(400 — 300) Hz = 3. Since the values
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form an example of an ideal harmonic relation between
successive harmonics, the result is exactly the harmonic
number and has not be rounded. If we consider another
peak pair with the instantaneous frequencies fiow = 300
Hz and fhigh = 415 Hz, the result of equation (4) before
rounding is approximately A = 2.6. In this case it may
be doubted that both peaks are successive harmonics, be-
cause the frequency interval is not close to any ideal har-
monic relation.

Most of the evaluated peak pairs are actually not suc-
cessive (odd) harmonics. The estimated ideal harmonic
relation can be a criterion to rule out such peak pairs.
The allowed offset between the the estimated frequency
interval and the exact harmonic interval is set to 120 cent:

1200- [log, Fuign —log, () | < 120 (6)
flow hlow

If, for example, the frequency interval between two peaks
shows a 100 cent offset from the exact harmonic interval,
both peaks will probably not belong to the same sound
source. But maybe both peaks are indeed successive har-
monics, and only the estimated instantaneous frequen-
cies are erroneous. Anyway, the virtual pitches which are
induced by both peaks will not combine to a joint pitch
in the pitch spectrogram, because the Gaussian function
which is used in the summation has its inflection points
at 35 cents. Hence, the estimated pitch from this peak
pair is ambiguous. Nonetheless, such a marked offset is
allowed in order to obtain as many valid peak pairs as
possible — even though the frequency relation is quasi
inharmonic. Very often the ambiguity is resolved by the
summation of other harmonics, so that in the end the best
matching virtual pitch frequency can be estimated with
some reliability 4.

On the logarithmic frequency scale only the lowest
neighboring harmonics have very distinct frequency in-
tervals (1200, 702, 498, 386 cent), while for example the
intervals between harmonics 14/15 and 15/16 are 119.4
cent and 111.7 cent, respectively. This means that only
for the lower harmonics the harmonicity can be an ef-
fective criterion to rule out peak pairs. As the frequency
intervals between high harmonics are very similar on the
logarithmic frequency scale, even small deviations from

4In the melody extraction algorithm, the harmonics are added to
tone objects during the subsequent processing. After the fundamental
frequency of the tone object has been estimated, the allowed frequency
offset for the inclusion of a harmonic is usually much lower (e.g. the
maximum offset is 35+h)

the ideal harmonic frequencies can lead to a faulty esti-
mation of the harmonic number. That is the reason why
the virtual pitch estimates from very high harmonics are
not very reliable.

The harmonicity rating r; is implemented simply as a
boolean value — the peak-pair is discarded if the condi-
tion given in 6 does not hold>.

2.5.3. Spectral Smoothness

Most instrument sounds show pronounced peaks (for-
mants) as well as regions with lower energy in their spec-
tral envelope. While it is impossible to make predictions
about the spectral power distribution as a whole, a cer-
tain smoothness of the spectral shape is observed. The
assumed smoothness of the spectral envelope can be used
as an additional criterion in the pitch extraction.

As a consequence it is eligible that successive harmonics
have more or less the same magnitude. However, some
stopped-pipe wind instruments, for example the clarinet
or the panpipe, have timbres that mostly contain odd har-
monics. In this case it is hard to find partials with suc-
cessive harmonic numbers. So again, odd successive har-
monics have to be considered to estimate the smoothed
spectral envelope.

The supported (smoothed) virtual pitch magnitude Sj, de-
pends on the magnitudes of the neighboring harmonics.
At first, the preliminary support magnitudes S~ and S*
are estimated separately for each frequency direction. If
the current harmonic number /4 is even, S~ and ST are
computed from the magnitudes of the harmonic neigh-
bors A;—1 and Ajy1:

S =min(4-A,_1,Ap) and

7
S+ = min(4-Ah_H,Ah). ( )
If the current harmonic number / is odd, also the odd har-
monic neighbors are considered. In this case, the biggest
harmonic neighbor from the higher and the lower fre-
quency range is chosen for the calculation:

S™ = min(4-max(A;,_1,Ap—2),Ap) and

SJr = min(4 . max(AhH ,Ah+2),Ah).

®)

If a partial has only one harmonic neighbor, the other
support magnitude is set to zero.

SWithin the allowed interval the harmonicity may be rated with help
of a cosine function: rating 1 is reached for an ideal harmonic relation,
rating zero is given at the interval borders.
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a) | spectral Magn. A, supported Magn. S;, I

1 2 3 4 5 6 7 8 9 10,

Fig. 3: Combination of harmonic candidates and sup-
ported virtual pitch magnitudes: a) combination of 7
partials, which have at least one neighboring (odd) har-
monic, b) combination of 5 partials, which have no har-
monic neighbors, ¢) combination of 8 partials which have
distinct weighted magnitudes

The final supported magnitude S, is a weighted sum of
S~ and ST. In the weighted sum, the smaller supported
magnitude gets a higher weight. Three conditions are
distinguished:

0.64,+S" ifh=1
S,=404S 4+8t ifsS >ST 9)
048t 4+S else.

The estimated magnitude support S; must not be greater
than the weighted spectral magnitude A;. The constant
factors used in equations 7 - 9 have been found empir-
ically. The required support from neighboring harmon-
ics is an important difference to Terhardt’s algorithm. If
some harmonics are missing or cannot be detected the
algorithm outputs may differ drastically. Figure 3 shows
the smoothed spectral envelopes for different combina-
tions of sinusoidals. The three examples show how miss-
ing or weak harmonic neighbors lead to a reduction of
the supported virtual pitch magnitude. If no harmonic
neighbors can be identified (as is the case for partials 4,
6 and 9 in figure 3b), no virtual pitch is induced. Still, the
implemented timbral smoothing allows a certain degree
of variation in the spectral envelope, as can be noted in

figure 3c.

2.5.4. Attenuation by Intermediate Peaks

Usually, each spectral peak is combined with a number
of different peaks from the lower and higher frequency
range. Among the possible peak combinations, the pair-
ings of immediately neighboring spectral peaks are of
particular interest for the pitch estimation. Nonetheless,
we do not use the order of the peak combination directly
as a measure, because the spectrum also includes spuri-
ous peaks, which might skew the rating. Rather, the mag-
nitudes of the intermediate spectral peaks are summed up
and compared to the magnitudes of the evaluated peak
pair. If the noise level is comparatively low, at least the
noise peaks will not influence the rating too much.

The rating factor r,,, which represents the attenuation of
the virtual pitch magnitude due to intermediate spectral
peaks, is given by

Amin

m= Amin +KZiAi. (10)
The term Y ; A; denotes the sum of all peak magnitudes A;
that exist between the evaluated peaks. The term Ap;y, is
the smaller spectral magnitude of the evaluated peak pair,
e.g. Apin = Min(Ajoy,Apigh). The constant factor K de-
termines the attenuation. We have found empirically that
K = 0.5 gains the best results in our melody extraction
system.

The main benefit of the masking criterion is the preven-
tion of octave errors. Of course, intermediate peaks also
occur because of the overlapping spectra of simultaneous
sound sources. But certainly, advantage is taken from
the fact that often the timbres of different instruments
dominate in different spectral regions. For example, the
strongest partials of the bass instruments are often found
in the low frequency range, while the melody voice usu-
ally has strong harmonics in the high frequency regions.

2.5.5. Harmonic Impact

A small, but positive effect is gained if the impact of
the higher harmonics is reduced by a small amount. The
damping of higher harmonics amounts to only 1 dB per
octave. The weighting factor r;, depends on the harmonic

number h:
S
rp=h 20le® (11)

The parameter r;, denotes the harmonic impact.
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2.5.6. Estimation of the Rated Virtual Pitch
Magnitude

In order to obtain the virtual pitch magnitude A,, the sup-
ported peak magnitude S, is multiplied with the ratings
derived from the harmonicity r;, the appearance of inter-
mediate spectral peaks r,,, and the harmonic impact ry:

AV:ri-rm‘rh-Sh. (12)

The resulting virtual pitch magnitude A, is added to the
pitch spectrogram in the same way as the spectral pitch
magnitudes (see section 2.4).

3. RESULTS

3.1. MIREX Audio Melody Extraction

The presented pitch estimation method has been imple-
mented as part of a melody extraction algorithm which
was evaluated at the Music Information Retrieval Eval-
uation eXchange (MIREX) in 2006 and 2009 [20, 21].
On both occasions, the algorithm achieved the best over-
all accuracy and at the same time stands out due to very
short runtimes. Of course, there are more processing
steps involved in the extraction of the melody. Nonethe-
less, the simple tracking of strong pitches in the pitch
spectrogram will already produce good results [20].

Table 3.1 shows a brief excerpt of the evaluation results
in the years 2006 and 2009. The Raw Pitch measure rep-
resents the estimation performance for all voiced frames.
This means the evaluation is constrained to the time in-
stants where the melody voice is present. The measure
Overall Accuracy requires a voicing detection which is
not performed by all systems (affected results are marked
by an asterisk).

The two best results for the datasets ADC 2004
and MIREX 2005 are given for comparison, because
the ADC database and the development collection of
MIREX 2005 is used in a subsequent evaluation®. Fur-
thermore, the average results over all databases are pre-
sented for the melody extraction task of MIREX 2009.

It should be noted that the results of MIREX 2006 are
more significant for the evaluation of the proposed pitch
estimation method, because the tone tracking was per-
formed directly on the pitch spectrogram data. The cur-
rent melody extraction system uses the proposed pitch

6Both datasets with reference transcriptions can be downloaded at
http://labrosa.ee.columbia.edu/projects/melody/

estimation method to estimate starting points of high
level tone objects.

3.2. Frame-Wise Evaluation of the Predomi-
nant Pitch Detection

In spite of the promising MIREX results, it is difficult to
identify the contribution of the pitch extraction method
to the overall performance.

Salamon and Gémez have estimated the potential per-
formance of a a chroma-based pitch salience function
by considering an increasing number of salient pitch
peaks [7]: presuming an ideal pitch selection process, the
melody is identified correctly as soon as one of the peak
candidates matches the transcribed reference frequency.

We adopt this idea for the evaluation of the proposed
algorithm, however, using modified conditions for the
analysis. Since the above-quoted approach uses chroma
features, octave errors are not detected. In our evalua-
tion, the reference frequency is not mapped to an octave
range. The pitch is identified correctly if the frequency is
less than 50 cent away from the ground truth. Moreover,
a magnitude threshold which lies 10 dB below the max-
imum pitch magnitude of the analysis frame is imposed
on the pitch candidates.

Figures 5 and 6 show that the estimation accuracy con-
verges towards a “glass ceiling” with a rising number of
pitch candidates. The limiting value for the ADC 2004
database amounts to 93%. It does not differ significantly
from the value of about 90% given in [7]. However, an
improvement can be noted for the most salient pitch peak
(77 versus 71 % in [7]), even though the conditions used
for our evaluation are more strict’.

Another interesting aspect is the impact of the different
parameters on the algorithm performance (see figures 5
and 6). The most important individual processing step —
apart from the basic algorithm structure — is the magni-
tude weighting introduced in section 2.3. At first sight,
the magnitude weighting seems to be counterproductive,
because it in fact takes away power from the fundamental
frequency. Yet, during subsequent processing the funda-
mental frequency will also profit from the strong weight-
ing of the overtones.

And one significant advantage remains: the notes from a
potential bass voice are damped while at the same time

7Unfortunately the estimation results for the MIREX 2005 devel-
opment collection (MIREXO5 train) cannot be compared meaningfully
since the reference data has been corrected only recently.
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Year Dataset Algorithm Raw Pitch (%) |Overall Acc (%) |Runtime
2006 ADC 2004 Dressler 82.9 82.5 27 s
Ryynanen & Klapuri 80.6 77.3 440 s
MIREX 2005 Dressler 77.7 73.2 48 s
Ryynanen & Klapuri 71.5 67.9 773 s
2009 ADC 2004 Dressler 87.1 86.3 n/a
Cao & Li1 85.1 76.6 n/a
Cancela 82.9 82.5 n/a
MIREX 2005 Dressler 76.4 74.8 n/a
Wendelboe 75.0 58.2* n/a
Cancela 68.0 66.5 n/a
all datasets Dressler 80.6 734 24 min
(unweighted av.) [Tachibana et al 751 55.1* 1468 min
Durrieu et al 1 74.5 66.9 23040 min
Wendelboe 73.4 55.1* 132 min
Joo et al 73.3 56.6 3726 min
Rao & Rao 72.2 65.2 26 min
Hsuetal 1 66.1 50.5 344 min
Cancela 64.1 62.9 4677 min
Cao & Li1 63.5 52.2 28 min

Fig. 4: Melody Extraction Results of MIREX 2006 and MIREX 2009
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Fig. 6: MIREXOS5 train: Potential Performance vs Peak

Fig. 5: ADCO04: Potential Performance vs Peak Number
Number
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the melody notes are boosted. As a consequence the
greatest impact of the magnitude weighting is observed
if the audio recordings contain musical voices of compa-
rable strength. In fact, the improvement of the estimation
accuracy can be attributed rather on the improvement in
individual test files than on general characteristics of the
data collections. For example, the estimation accuracy
is increased markedly for test files with a strong bass
voice (for example midil: +52%, midi4: +58%, train12:
+42%, trainl3: +38%), while the detection of the pre-
dominant pitch is slightly worse for files which have ad-
ditional voices with a higher frequency than the actual
melody voice (daisy2: -10%, train10: -8%).

No other criterion or parameter has such a marked effect
on the estimation accuracy like the magnitude weighting.
Yet, the small contributions of the individual measures
sum up to a significant improvement, as can be noted
from the yellow curve in the diagram. Here, the spectral
smoothing, the attenuation by intermediate peaks, and
the harmonic number weighting have been omitted. In-
stead, the weighted spectral magnitude Ay was added as
virtual magnitude to the pitch spectrogram.

Surprisingly, the spectral envelope smoothing has no sig-
nificant effect on the estimation of the predominant voice
in the frame-wise evaluation. This may be contributed to
the fact that most of the music pieces tested have a strong
melody voice.However, the spectral smoothing plays an
important role for the estimation of multiple fundamental
frequencies.

4. SUMMARY AND PERSPECTIVES

In this paper we presented a novel approach to pitch de-
tection in polyphonic music. The pair-wise evaluation of
spectral peaks results in considerable time savings, be-
cause the number of possible virtual pitches can be sig-
nificantly reduced. Additional ratings have been intro-
duced in order to avoid octave errors and to discriminate
peaks/partials from different audio sources.

The MIREX results show that the pitch extraction al-
gorithm works well with different kinds of polyphonic
music. Furthermore, the analysis of the pitch estima-
tion front-end reveals that in most cases the predominant
voice is identified correctly even without any postpro-
cessing. Another positive characteristic of the proposed
method is the very efficient computation of the pitch.

Despite the promising results, it must be noted that many
aspects of human pitch perception are not covered by

the proposed algorithm. The calculated pitch magnitude
does not exactly correspond to the magnitude perceived
by humans. In particular the magnitude estimate should
not depend substantially on the existence of other audio
sources — as it does in the proposed algorithm.

Furthermore, it should be noted that the pitch spectro-
gram is not a one to one representation of existing mu-
sical notes. The pitch strengths can be seen as proba-
bilities of perceiving a predominant pitch. In order to
retrieve other (weaker) tones, the effects of the predomi-
nant pitch have to be factored out, because considerable
pitch strengths occur at integer multiples of its funda-
mental frequency or in combination with other periodic
sound sources.

For the detection of multiple pitches different approaches
have been proposed which address the problem of shared
harmonics. Such approaches include the iterative detec-
tion of the predominant pitch and the subsequent deletion
of the tone [2, 3], as well as the joint pitch candidate se-
lection [5, 6, 8]. Preliminary experiments have shown
that the presented approach can be quite easily adapted
for the iterative detection/cancellation method.
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