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Abstract 
Dynamic modeling of spoken dialogue seeks to capture how 
interlocutors change their speech over the course of a 
conversation. Much work has focused on how speakers adapt 
or entrain to different aspects of one another’s speaking style. 
In this paper we focus on local aspects of this adaptation. We 
investigate the relationship between backchannels and the 
interlocutor utterances that precede them with respect to pitch. 
We demonstrate that the pitch of backchannels is more similar 
to the immediately preceding utterance than non-
backchannels. This inter-speaker pitch relationship captures 
the same distinctions as more cumbersome intra-speaker 
relations, and supports the intuition that, in terms of pitch, 
such similarity may be one of the mechanisms by which 
backchannels are rendered ’unobtrusive’. 
Index Terms: backchannels, pitch, interlocutor similarity, 
inter-speaker features 

1. Introduction 
In [1], we showed that the tendency for interlocutors to mimic 
each other’s behavior (i.e. entrainment, priming, 
accommodation, inter alia in the literature) can be modeled 
dynamically over the course of a dialogue. Such dynamically 
modeled inter-speaker similarity captures the continuous and 
on-going nature of spoken dialogue and highlights its 
interactional aspects, whereas much other modeling is more 
focused on the individual behaviors of the speakers. In this 
paper we continue to investigate dialogue in terms of its inter-
speaker relations. We examine the relationship of a speaker’s 
pitch to that of her interlocutor in short feedback responses 
compared to other vocalizations. 

Short vocalizations such as mm-hm, okay and yeah can be 
used to indicate that the speaker producing them is following 
and understanding, and they encourage the other speaker to 
proceed [e.g. 2, 3, 4]. These brief utterances are known in the 
literature as backchannels, continuers, or feedback, and have 
important communicative and interactive functions. 
Backchannels are generally described as being somehow 
produced in the background. They are often not taken to 
constitute a speaking turn or to claim the floor in studies of 
turn-taking behavior. They may occur in the midst of another 
speaker’s speech without disrupting that speaker [e.g. 5, 6], 
and they are quieter and shorter than other instances of the 
same lexical items [e.g. 7, 8-11]. They have also been found, 
in the corpus studied here, to have higher pitch and to be more 
likely to bear a rising pitch accent (L+H*) and a high 
boundary tone (H-H%) than other categories of short 
vocalizations [12]. 

In this paper, we focus on how backchannels are rendered 
unobtrusive, beyond previous observations about their voice 
quality, duration and loudness levels. We examine a 
previously unstudied aspect of the ‘backgrounding’ of 
backchannels in terms of their pitch. We posit that one way of 
making an utterance less conspicuous is to make it more 

similar to the interlocutor’s speech. We look for support for 
this intuition by investigating whether backchannels are more 
similar to the immediately preceding utterance than non-
backchannels with respect to pitch. This could also be 
described as investigating whether inter-speaker similarity, as 
far as pitch is concerned, is more pronounced in the vicinity of 
backchannels than elsewhere in a conversation. 

1.1. Backchannels and spoken dialogue systems 

A growing field in spoken dialogue system design aims at 
designing human-like spoken dialogue systems: systems that 
speak the way people speak to each other, and that encourage 
their users – their interlocutors, as it were – to behave as when 
talking to other people [e.g. 13, 14]. A prominent target in this 
endeavor is to improve the way spoken dialogue systems 
decide when to speak and when to remain silent. Closely 
related to this capability is the ability of dialogue systems to 
understand, appropriately respond to, and produce 
backchannels. One of the aims of our investigations of 
backchannels in spontaneous conversation is to improve the 
way human-like spoken dialogue systems handle such 
vocalizations. For example, the behavior of a system that 
encounters speech while it is itself speaking can be greatly 
improved if the system knows at an early state whether the 
encountered speech is a backchannel or not. If the user’s input 
indeed represents a backchannel, the system may safely finish 
what it is saying; if instead the user attempts to claim the turn, 
the system should cease speaking at its earliest convenience or 
– if it has something urgent to say – raise its voice and 
continue speaking [15]. Similarly, a system aiming to behave 
as humans do should produce backchannels at appropriate 
places in the dialogue. It thus needs to know not only when to 
produce backchannels, but also how they should be produced 
and what responses they are likely to elicit. (See [16] for a 
description of how a system’s use of backchannels affects user 
behavior.) 

1.2. Inter-speaker relative descriptions 

As indicated above, backchannels have been described as 
having prosodic characteristics which differentiate them from 
other vocalizations. Some of these seem to be intrinsically 
relative. Quiet, for example, like most prosodic characteristics, 
makes sense only in relation to something else – to some 
model of loudness. A general model would capture how loudly 
a speaker speaks on average. This model can be acquired once, 
and any speech can be compared with it to give a general idea 
of whether it is loud or not. This generality comes at a price, 
however, and a static model would fail to filter out variation in 
loudness for other reasons. For example, we have Lombard 
effects caused by variable background noise and variations in 
the theme and intensity of the dialogue. A more specific model 
might be acquired by tracking a speaker’s loudness over a 
conversation, permitting one to measure the speaker’s relative 
distance from her own recent production, which normalizes 
out some of the variation. As a final example, if we measure 
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the distance between the current speaker and her interlocutor, 
we obtain a dynamic and current measure that is less sensitive 
to influences affecting both speakers simultaneously. 
Examining other features, such as pitch, in this more dynamic 
way may lead to similar robustness gains. 

2. Method 

2.1. Columbia Games Corpus 

The data used in this work is drawn from the Columbia Games 
Corpus, a collection of spontaneous task-oriented dialogues by 
native speakers of Standard American English, and its 
associated annotations. This corpus contains recordings made 
using close-talking microphones, with speakers recorded on 
separate channels, 16 bit/48 kHz, in a sound-proof booth. 
Speakers were asked to play two types of collaborative 
computer games that required verbal communication. The 
speakers did not have eye contact. There were 13 subjects (7 
males and 6 females) and they formed 12 different speaker 
pairs. Eleven of the subjects spoke with two different partners 
in two separate sessions. The recording sessions lasted on 
average 45 minutes, and the total duration of the corpus is 9 
hours 8 minutes. 

The corpus has been orthographically transcribed and 
manually annotated for a number of phenomena. For the 
present study, we have primarily used the labeling of single 
affirmative cue words (i.e. lexical items potentially indicating 
agreement such as alright, gotcha, huh, mm-hm, okay, right, 
uh-huh, yeah, yep, yes, yup) with their communicative 
function, by three trained annotators, and the labeling of turn-
exchanges, by two trained annotators. One function labeled for 
affirmative cue words was ‘backchannel’; others were 
affirmation/agreement, cue phrase beginning discourse 
segment, cue phrase ending discourse segment, pivot 
beginning and pivot ending: variants of the previous categories 
in which both cue phrase and affirmation/agreement functions 
were present, literal modifiers, return from a previous task, 
checks and stalls. Turn exchanges were labeled by first 
identifying Interpausal Units (IPUs), maximal sequences of 
words surrounded by silence longer than 50 ms [cf. talkspurts 
in 17]. A turn was defined as a maximal sequence of IPUs 
from a single speaker, so that between any two adjacent IPUs 
there is no speech from the interlocutor [cf. talkspurts in 18]. 

All turn transitions in the corpus were classified using a 
labeling scheme adapted from [19] that identifies, inter alia, 
smooth switches (S) — transitions from speaker A to speaker 
B such that (i) A manages to complete her utterance, and (ii) 
no overlapping speech occurs between the two conversational 
turns; pause interruptions (PI), defined as cases similar to 
smooth switches except that A does not complete her 
utterance; and backchannels (BC), defined as an utterance 
produced a “response to another speaker’s utterance that 
indicates only I’m still here / I hear you and please continue”, 
with no attempt to take the turn. Speech from A following 
backchannels from B was labeled separately as X2. All 
continuations from one IPU to the next IPU within the same 
turn were automatically labeled as HOLD transitions. See 
http://www.cs.columbia.edu/speech/games-corpus/ for further 
details and annotation manuals. 

2.2. Data 

For the present study, we examined transitions involving a 
speaker change in the Columbia Games Corpus. Speaker 
HOLDs were excluded, as they are not directly relevant for 
inter-speaker relations. Transitions with overlapping speech 
were excluded to guarantee that all pitch analyses remained 

untainted by crosstalk. Our primary interest was the 
comparison of backchannels (BC), smooth switches (S), and 
pause interruptions (PI), which were all included. We also 
included speech following backchannels (X2) for 
completeness, as this is the only remaining category of speaker 
change in silence, and as it might provide insights as to what 
happens “on the other side” of a backchannel. 

In subsequent statistical analyses, we collapsed the data 
for smooth switches and pause interruptions (S+PI), as these 
categories are similar and as there are relatively few pause 
interruptions. Thus, we contrasted backchannels with smooth 
switches plus pause interruptions, and utterances following 
backchannels. In addition, we contrasted backchannels with a 
collapsed category including all other single affirmative cue 
words (AFFCUE). The backchannel category in both 
comparisons was identical, while the other discourse functions 
of affirmative cue words comprised a subset of the smooth 
switches plus pause interruptions category. The latter 
comparison was motivated primarily by the shared vocabulary 
of backchannels and other affirmative cue words. 

2.3. Prosodic features 

We used a Praat script, the Prosogram v2.6 
(http://bach.arts.kuleuven.be/pmertens/prosogram/) to extract 
the fundamental frequency (F0) data upon which all pitch 
features were based. The Prosogram provides a perceptually 
motivated stylization of the F0 contours in voiced portions of 
local intensity maxima. In other words, the Prosogram has the 
desirable property of providing reduced and stylized 
descriptions of pitch patterns in intervals approximating 
syllable nuclei [e.g. 20]. The following parameter settings 
were used: a frame period of 0.01 s; an automatic 
segmentation using the intensity of the band-pass filtered 
signal; a glissando threshold G=0,16/T2 (where T is the 
duration of the analyzed segment); and a differential glissando 
threshold DG of 20. 

All pitch features were calculated from stylized semitone 
transformed F0 values from all dialogue segments containing a 
single speaker. Segments with overlapping speech were 
excluded throughout to avoid the risk of crosstalk 
contaminating the pitch values. Speaker means and standard 
deviations were calculated for all speaker/session pairs. These 
statistics were used for all speaker based normalizations. 

To describe the transitions, we used the mean pitch over 
the last 500 ms preceding (and including) the last voiced 
frame before the transition, and the mean pitch over the first 
500 ms following (and including) the first voiced frame after 
the transition. Instances where less than 50 ms of either 500 
ms interval was voiced were excluded from further analyses. 
For comparison, we extracted traditional, individual pitch 
means (based on the current speaker only) by (i) calculating 
the distance from the speaker’s mean over the current session 
(OWN). We also calculated relative pitch distances between 
speakers across the transitions based on (ii) raw pitch 
(RAWREL), (iii) mean normalized pitch (MEANREL), and (iv) 
z-score normalized pitch (ZREL). A hybrid measure which can 
be seen as part individual and part relative was also included: 
the distance between the current speaker’s raw pitch and the 
previous speaker’s overall pitch mean (OTHER). 

3. Results 

3.1. Inter-speaker distances 

The analysis of pitch distance between consecutive utterances 
revealed that backchannels are different from other kinds of 
utterances, and that they are more similar to the preceding 
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utterance with respect to pitch than to e.g. the prior speaker’s 
continuation after the backchannel. An ANOVA with pitch 
distance in semitones (RAWREL) as dependent variable and 
turn exchange type (three levels: BC vs. S+PI vs. X2) as 
independent variable showed a significant main effect 
F(2,4165)=37; p<.01. A Tukey HSD post hoc test showed 
that all three levels of the independent variable were 
significantly different. Thus, backchannels (mean 0.7 ST) 
were significantly closer to the preceding utterance; smooth 
switches plus pause interruptions were significantly higher 
than the preceding utterance (mean 1.8 ST); and utterances 
following a backchannel (i.e. X2) were significantly lower 
than the preceding backchannel (mean -1.7 ST), cf. Figure 1. 

Similarly, backchannels were on average 1.3 ST closer to 
the preceding utterance than the AFFCUE category (other 
discourse functions of affirmative cue words; mean 2.0 ST). 
This difference, too, was significant in an ANOVA: 
F(1,1822)=10; p<.01. 

The same analyses using MEANREL (i.e. mean normalized 
pitch) and ZREL (i.e. z-score normalized pitch) produced 
qualitatively identical results. Therefore, these results have 
been omitted from the presentation. 

3.2. Model based pitch 

The analyses of pitch distance between utterance and session-
wide models of speaker pitch range generally showed that 
backchannels were higher in pitch than other types of 
utterances. The main effect of turn exchange type (BC vs. 
S+PI vs. X2) was significant both in the ANOVA with 
distance from the mean of the same speaker’s pitch range (i.e. 
OWN) as dependent variable: F(2,4165)=27; p<.01; and in the 
ANOVA with distance from the mean in the previous 
speaker’s pitch range (i.e. OTHER) as dependent variable: 
F(2,4165)=6; p<.01. Tukey HSD post hoc tests showed that 
all three levels were significantly different in the OWN 
analysis, while only backchannels were significantly different 
from the other levels in the OTHER analysis. Thus, 
backchannels (mean 1.7 ST) were significantly higher in pitch 
than both S+PI (mean 0.7 ST) and X2 (mean 0.2 ST) in the 
OWN analysis, cf. Figure 2. In the OTHER analysis, 
backchannels were significantly higher (mean 1.6 ST) than 
both S+PI (mean 0.6 ST) and X2 (mean 0.1 ST), while S+PI 
and X2 were not significantly different. 

Similarly, backchannels were on average 0.8 ST higher 
than the AFFCUE category in the OWN analysis (mean 0.9 ST), 
and 0.9 ST higher than the AFFCUE category in the OTHER 
analysis (mean 0.7 ST). Both these mean differences were 
significant: F(1,1822)=18; p<.01 (OWN); and F(1,1822)=6; 
p<.05 (OTHER). 

4. Discussion 
The results show that a dynamic inter-speaker pitch relation – 
the difference between the pitch of the speech immediately 
preceding a speaker change and the pitch speech following 
immediately after the change – captures the same distinctions 
as the more cumbersome and less direct intra-speaker relation 
between a speaker’s mean pitch and current pitch. Each 
difference observed in the OWN analysis (significant 
differences between BC, S+PI, and X2; significant differences 
between BC and AFFCUE) was also observed and significant in 
RAWREL (as well as MEANREL and ZREL). We argue that all 
of the statistical mean differences found are large enough to 
have perceptual relevance. 

 

Figure 1: Pitch distance relative to previous utterance in 
semitones (RAWREL) for backchannels (BC), smooth switches 
plus pause interruptions (S+PI), and utterances following a 
backchannel (X2). 

 

Figure 2: Pitch distance relative to own pitch mean in 
semitones (OWN) for backchannels (BC), smooth 
switches plus pause interruptions (S+PI), and 
utterances following a backchannel (X2). 

The finding is of interest for spoken dialogue system 
design, since keeping track of the immediately preceding pitch 
(from system or from user) is direct and dynamic and 
eliminates the need to keep track of speaker statistics or to 
build static speaker models of for example pitch range. Inter-
speaker relations are also potentially more robust against 
variation (e.g. ambient noise, engagement, dialogue type). 

The results also show that backchannels are indeed more 
similar to the preceding utterance in pitch than other 
utterances, or, put differently, that inter-speaker similarity is 
more pronounced in backchannels than elsewhere. As far as 
we know, this is a novel contribution, and it lends support to 
the intuition that making an utterance more similar to another 
speaker’s speech with respect to pitch is a means of making it 
less conspicuous. 

We also note that backchannels were produced on average 
1.7 ST above a speaker’s mean, which is consistent with [12], 
while at the same time being on average only 0.7 ST above the 
previous speaker (compare Figures 1 and 2). Thus, 
backchannels become more similar by meeting a raised pitch 
in the preceding utterance. This suggests that the speech 
preceding backchannels is also higher than the speaker’s 
mean, and strengthens the idea that the speaker of the 
backchannel goes out of her way to match the preceding 
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speakers final pitch in these transitions, rather than just 
meeting by coincidence. 

The pattern remains the same when we compare 
backchannels to other affirmative cue words with a near-
identical vocabulary: backchannels are relatively closer to the 
preceding utterance, while being higher compared to their 
speaker’s mean. Based on these findings, we speculate that 
similarity to the preceding utterance is a prosodic 
characteristic of backchannels. 

We also note that X2 – utterances following a backchannel 
– are produced on average at a pitch which is very close (0.1 
ST) to the speaker’s mean, while at the same time being on 
average 1.7 ST lower than the preceding backchannel, 
suggesting a pattern of a first utterance ending high in a 
speaker’s range, followed by a backchannel equally high, 
followed by more speech from the first speaker starting at this 
speaker’s mean pitch. 

We included for completeness the OTHER analysis, which 
can be said to combine inter-speaker relations with static 
modeling. It produces results that are very similar to the OWN 
analyses, but one significant distinction is lost. 

5. Conclusions and future work 
We have shown that the pitch at the beginning of a 
backchannel is similar to the pitch at the end of the utterance 
that precedes it. This relationship appears particular to 
backchannels and the utterances preceding them, when we 
compare the pitch distances across other types of non-
overlapping turn exchanges, they are without exception larger 
than in the backchannels. This is also an indication that the 
tendency towards interlocutor similarity with respect to pitch 
is stronger in backchannels than in other types of utterances. 
We view this study as a starting point for attempts at a more 
dynamic modeling of dialogue, with a stronger focus on the 
relations between the speakers. 

Next steps include tuning, testing, as well as adding other 
inter-speaker features (e.g. loudness relations and other inter-
speaker pitch features), for example by including them in a 
dialogue act classification task. Another obvious extension is 
to test the parameters on materials with greater variability – 
for example variation in the engagement of the interlocutors or 
in the ambient noise level – to quantify their robustness. 

6. Acknowledgements 
This research was carried out at the Department of Computer 
Science, Columbia University, New York. Funding was 
provided by the Riksbankens Jubileumsfond (RJ) project P09-
0064:1-E Prosody in conversation and by NSF IIS-0307905. 

7. References 
[1] Edlund, J., Heldner, M., and Hirschberg, J., "Pause and gap 

length in face-to-face interaction", In Proceedings of Interspeech 
2009, 2779-2782, 2009. 

[2] Allwood, J., Nivre, J., and Ahlsén, E., "On the semantics and 
pragmatics of linguistic feedback", Journal of Semantics, 9:1-26, 
1992. 

[3] Schegloff, E., "Discourse as an interactional achievement: Some 
uses of 'uh huh' and other things that come between sentences", 
In D. Tannen [Ed.], Analyzing Discourse: Text and Talk, 71-93, 
Georgetown University Press, 1982. 

[4] Clark, H. H., Using language, Cambridge University Press, 
1996. 

[5] Yngve, V. H., "On getting a word in edgewise", In Papers from 
the Sixth Regional Meeting Chicago Linguistic Society, 567-578, 
Chicago Linguistic Society, 1970. 

[6] Gravano, A., "Backchannel-inviting cues in task-oriented 
dialogue", In Proceedings Interspeech 2009, 1019-1022, 2009. 

[7] Caspers, J., "Local speech melody as a limiting factor in the 
turn-taking system in Dutch", Journal of Phonetics, 31:251-276, 
2003. 

[8] Dhillon, R., Bhagat, S., Carvey, H., and Shriberg, E., "Meeting 
recorder project: Dialog act labeling guide," ICSI Technical 
Report TR-04-002, 2004. 

[9] Ward, N., "Pragmatic functions of prosodic features in non-
lexical utterances", In Proceedings of Speech Prosody 2004, 
325-328, 2004. 

[10] Shriberg, E., et al., "Can prosody aid in the automatic 
classification of dialog acts in conversational speech", Language 
and Speech, 41:439-487, 1998. 

[11] Koiso, H., Horiuchi, Y., Tutiya, S., Ichikawa, A., and Den, Y., 
"An analysis of turn-taking and backchannels based on prosodic 
and syntactic features in Japanese map task dialogs", Language 
and Speech, 41:295-321, 1998. 

[12] Benus, S., Gravano, A., and Hirschberg, J., "The prosody of 
backchannels in American English", In Proceedings ICPhS 
2007, 1065-1068, 2007. 

[13] Cassell, J., "Body language: Lessons from the near-human", In J. 
Riskin [Ed.], Genesis Redux: Essays in the History and 
Philosophy of Artificial Life, 346-374, The University of 
Chicago Press, 2007. 

[14] Edlund, J., Gustafson, J., Heldner, M., and Hjalmarsson, A., 
"Towards human-like spoken dialogue systems", Speech 
Communication, 50:630-645, 2008. 

[15] Ström, N. and Seneff, S., "Intelligent barge-in in Conversational 
Systems", In Proceedings ICSLP 2000, 2000. 

[16] Gustafson, J., Heldner, M., and Edlund, J., "Potential benefits of 
human-like dialogue behaviour in the call routing domain", In 
Perception in Multimodal Dialogue Systems, 240-251, Springer, 
2008. 

[17] Brady, P. T., "A statistical analysis of on-off patterns in 16 
conversations", The Bell System Technical Journal, 47:73-91, 
1968. 

[18] Norwine, A. C. and Murphy, O. J., "Characteristic time intervals 
in telephonic conversation", The Bell System Technical Journal, 
17:281-291, 1938. 

[19] Beattie, G. W., "Turn-taking and interruption in political 
interviews: Margaret Thatcher and Jim Callaghan compared and 
contrasted", Semiotica, 39:93-114, 1982. 

[20] Mertens, P., "The Prosogram : Semi-automatic transcription of 
prosody based on a tonal perception model", In B. Bel and I. 
Marlien [Eds.], Speech Prosody 2004, International Conference 
(SP-2004), 549-552, 2004. 

 
 
 

4


