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Abstract

This paper studies the axisymmetric deformations of a nonlinearly hyperelastic tube subjected to axial compression. We

aim at investigating the critical buckling stresses and modes, deriving the analytical solutions for the post-bifurcation
deformations and studying the imperfection sensitivity. For a general isotropic hyperelastic tube, a coupled series-

asymptotic method is utilized to derive two simplified model equations with specified constraints on the tube geometry.

Then, we specialize to the Blatz–Ko material. With greased end conditions, through linear bifurcation analysis, we obtain
the critical stress values and the corresponding mode numbers. The analytical solutions for the post-bifurcation states

are constructed by the multiple scales method. By examining the solution behavior in the post-bifurcation regime, it is
found that a thick tube could be considerably softer than a thin one. The singularities theory is used to consider the

imperfection sensitivity, which reveals the mechanism is the existence of two modes corresponding to the same critical

stress. Numerical solutions are also obtained which confirm the validity of the analytical solutions.
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1. Introduction

Buckling of elastic shell structures has been studied extensively. For example, Koiter [1] (see also [2])
developed an asymptotic approach for studying the post-bifurcation behavior and imperfection sensitiv-
ity of an elastic cylindrical shell under compression. Hutchinson [3] conducted a post-bifurcation analy-
sis for externally pressurized spherical shells. Hunt et al. [4] used the von Karman equations of shells to
characterize localization and periodicity in cylindrical shells. Usually, in most analytical studies, only
geometrical nonlinearity is taken into account. Relatively speaking, few works deal with the post-
bifurcation behavior of shell structures within the framework of finite elasticity, which takes into
account both geometrical and material nonlinearity. One major reason is probably the complexity of the
governing field equations. As mentioned in a review article [5], ‘the equations of motion.for an isotro-
pic hyperelastic solid comprise a formidable system of nonlinear, partial differential equations (PDEs).
The complexity of this system and its potential for generating non-unique solutions for even the sim-
plest boundary-value problems,., overwhelm our ability to solve them generally.’ As a consequence,
most theoretical studies on hyperelastic cylindrical shells in literature were carried out within the frame-
work of linearized theories. By assuming the disturbances superimposed on a finite deformation are
small, governing PDEs can be linearized. Then, it is possible to deduce the bifurcation modes and criti-
cal loads.

The first theoretical study on the bifurcation of an incompressible hyperelastic thick-walled cylindri-
cal tube was given in [6]. More than forty years later, this problem was revisited in [7–9] and some new
results for both axisymmetric and asymmetric buckling instabilities were obtained. Based on the three-
dimensional incremental equations for both thin-walled and thick-walled tubes in [10, 11], numerical
studies were carried out in [12] on deformations of a thick-walled tube under axial loading and external
pressure. For a compressible hyperelastic tube under compression, a linear bifurcation analysis was car-
ried out in [13]. More recently, by using the Stroh formalism, Goriely et al. [14] studied the compression
of a tube composed of an incompressible hyperelastic material. Both buckling modes and barreling
modes were considered by them. In particular, they found the values of the geometric parameters at
which there is a transition between buckling and barreling.

While linear bifurcation analysis can provide many insights, it cannot provide information on the
post-bifurcation behavior (e.g. the answer for the very basic question of the bifurcation type). Actually,
it was mentioned in [14]: ‘It is also enticing to consider the possibility of performing an analytical post-
buckling analysis of the solutions.We leave this daunting task for another day.’ In this paper, we shall
conduct an analytical study on the axisymmetrical post-bifurcation states of a compressible hyperelastic
tube under compression.

It is well known that it is difficult to obtain exact solutions for post-bifurcation states from the
field equations. Usually, one has to resort to the approximate analytical or numerical solutions.
Recently, a methodology of coupled series-asymptotic expansions, which was first developed to study
nonlinear elastic waves (see [15, 16]), has been successfully used in constructing approximate analytical
solutions within the framework of field equations for thin/slender structures composed of hyperelastic
materials (see [17–21]). In this paper, this methodology will be adopted to study the axisymmetric defor-
mations of a compressible hyperelastic tube subjected to uniaxial compression. One of our motivations
is to obtain the analytical post-bifurcation solutions, which have not been obtained before in the current
setting, to the best of the authors’ knowledge. As we shall see, the analytical results reveal many
insights. For example, for the single-mode case it is found that the bifurcation is of the supercritical
pitchfork bifurcations type. For the case of two modes corresponding to one critical stress, there are
eight bifurcated branches (four are supercritical and four are subcritical), which is called an octopus
bifurcation. It appears that such a bifurcation has not been reported before in the context of cylindrical
shells. Another important feature of the present work is that the post-bifurcation solutions are deduced
from the field equations without ad hoc assumptions, which are often used in literature on post-
buckling analysis.

An important issue in shell structures is imperfection sensitivity. With the explicit amplitude equa-
tions, it becomes possible to use the singularities theory to study imperfection sensitivity (see [22, 23]).
One of the important advantages of this analytical approach (it appears that it has not been widely
adopted in engineering literature) is that the qualitative information can be deduced without the need to
make assumptions about the particular form of the imperfection (which is often done in the asymptotic
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approach for studying imperfection sensitivity). The analysis reveals that the mechanism for imperfec-
tion sensitivity is that there are two modes corresponding to a critical load. It is then deduced that usu-
ally a thin tube is imperfection-sensitive while in general a thick tube is not, which is in agreement with
some experimental observations as mentioned in [24].

Experiments on the compression of tubes have also been extensively carried out. One of the interest-
ing experiments was done by Willis [25] (see also [5] for a description). Motivated by this experimental
work, Dorfmann and Haughton [13] studied the incremental equations for a compressible hyperelastic
cylindrical tube compressed at two frictionless ends. It is worth mentioning that a number of experi-
ments on compression of plastic cylindrical tubes has been carried out (see [24, 26, 27]). The present
study is carried out within the framework of three-dimensional field equations of finite elasticity without
an assumption about the form of the displacement field. Since a plastic material may be regarded as a
nonlinear elastic one in a pure loading process, the results in this paper may also provide some qualita-
tive information on the compression of plastic tubes. We also notice that the first bifurcation mode is
axisymmetric for not very thin tubes according to the experiments in [26] (for diameter-to-thickness
ratios of 20, 40, 59.7) and [24] (for diameter-to-thickness ratios between 23 and 52). This is one reason
why we study axisymmetric deformations in this paper.

Cylindrical tubes are commonly used as energy absorbers due to their high stiffness and
strength combined with low weight when subjected to axial load (see [28]). Metallic cylindrical tubes in
automobiles can absorb the kinetic crash energy to limit the damage in a crash. The capability of
absorbing energy depends on the type of buckling mode, which is related to the geometry of the
tube and the boundary conditions. In this paper, another motivation is to study the effect of the
geometry of the tube on the post-bifurcation states. With analytical solutions, this effect can be exam-
ined easily. For energy absorption purposes, one needs the axial stress to be small in the post-
bifurcation regime. Usually, people would think that a thin tube is softer than a thick one. While this is
true up to the bifurcation, we find that in the post-bifurcation regime a thick tube could be softer than
a thin tube.

The structure of this paper is organized as follows. In Section 2, we set up the three-dimensional axi-
symmetric field equations and the traction-free boundary conditions for a general hyperelastic material.
In Section 3, we derive two coupled nonlinear ordinary differential equations (ODEs) by the combined
series-asymptotic expansions method. In Section 4, the tube is further assumed to be composed of a
Blatz–Ko material. In Section 5, with sliding or greased conditions at two ends, linear bifurcation analy-
sis is made to obtain the critical stress values and the corresponding mode numbers. The influences of
the geometrical parameters are also examined in detail in this section. In Section 6, we derive the approx-
imate analytical solutions for the post-bifurcation states. It turns out that this nonlinear bifurcation
analysis can recover the critical stress values and the mode numbers. By using the singularities theory, in
Section 7 the imperfection sensitivity is analyzed. In Section 8, numerical solutions are compared with
the approximate analytical solutions and very good agreement is found. Finally, some concluding
remarks are presented.

2. Field equations

We consider the axisymmetric deformation of a three-dimensional hyperelastic cylindrical tube subjected
to a static axial force at one end with zero axial displacement at the other end. The inner and outer sur-
faces of the tube are traction-free and the end boundary conditions will be considered later. In the stress-
free configuration, the inner and outer radii of the tube are, respectively, a and b, and the length is l. We
take the cylindrical polar coordinates system and denote by (R, Y, Z) and (r, u, z) the coordinates of a
material point of the tube in the reference and current configurations, respectively. The displacements of
a material point can be represented as

U(R,Z) = r(R, Z)� R, Y= u, W (R, Z) = z(R, Z)� Z: ð2:1Þ

We introduce the orthonormal bases associated with the cylindrical coordinates and denote these by
{ER, EY, EZ} and {er, eu, ez} in the reference and current configurations, respectively. Then the defor-
mation gradient tensor F with respect to the bases {ei5Ej} is given by
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For an isotropic hyperelastic material, the strain-energy function F is a function of the three principle
stretches e1, e2 and e3 of the Lagrangian strain tensor E = (1/2)(FT

F 2 I), that is, F = F (e1, e2, e3),
where I is the identity tensor. The conjugate stress tensor is given by

T=
∂F

∂E
ð2:3Þ

with components Tij = ∂F/∂Eji. If the strains are small, it is possible to expand Tij in terms of the strains
up to any order. The formula containing terms up to the third-order material nonlinearity is

Tij =A
(1)

ijklElk +
1

2
A(2)

ijklmnElkEnm +
1

6
A(3)

ijklmnpqElkEnmEqp +O(jEstj4), ð2:4Þ

where

A(1)

ijkl =
∂
2
F

∂Eji∂Elk

j
E= 0, A(2)

ijklmn =
∂
3
F

∂Eji∂Elk∂Enm

j
E= 0,

A(3)

ijklmnpq =
∂
4
F

∂Eji∂Elk∂Enm∂Eqp

j
E= 0

ð2:5Þ

are the incremental elastic moduli, which can be calculated once a specific form of the strain energy func-

tion is given. The formulae for A(1)

ijkl and A(2)

ijklmn can be found in [29]. By a similar procedure, the formula

for A(3)

ijklmnpq can also be deduced. The non-zero elastic moduli are given in the Appendix. From the conju-

gate stress tensor T, the nominal stress tensor S is given by S = TF
T.

For a static equilibrium state of the tube (neglecting the body force), we have the following two field
equations:

∂SRr

∂R
+
∂SZr

∂Z
+
SRr � SYu

R
= 0, ð2:6aÞ

∂SRz

∂R
+
∂SZz

∂Z
+
SRz

R
= 0: ð2:6bÞ

We consider the case where the inner and outer surfaces of the tube are traction-free. Thus, we have
the traction-free boundary conditions

SRr = 0, SRz = 0, at R= a, b: ð2:7Þ

Equations (2.6a) and (2.6b) together with (2.7) provide the governing equations and the
boundary conditions for two unknowns U and W, which compose a complicated coupled nonlinear sys-
tem of PDEs. It is almost formidable to construct exact solutions from those PDEs for the post-
bifurcation states. The aim is to construct explicit approximate analytical solutions (which is also a very
difficult task). For this purpose, we shall adopt an approach involving combined series-asymptotic
expansions to tackle this complicated problem. A similar methodology has been utilized to study non-
linear elastic waves and phase transitions in incompressible materials (see [15, 16, 30]). In the following
section, we shall first nondimensionalize the system to identify relevant small variables and small para-
meters. Then we shall derive the reduced model equations by this method of coupled series-asymptotic
expansions.
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3. Nondimensionalization and series-asymptotic reductions

According to [15], for this kind of axisymmetric problem it is convenient to introduce the
transformation

U =Ru, s=R2: ð3:1Þ

Equation (3.1)1 is introduced based on the observation that U = Rl (l is a constant) for a homoge-
neous deformation induced by axial compression, while (3.1)2 is introduced to eliminate 1/R in (2.6a)
and (2.6b). The length l of the tube is a natural choice to scale the spatial variables. To be consistent with
(2.4), we consider the case where under compression one end of the tube moves a distance up to h with
the constraint of e = h/l being small (h is then a measure of the axial displacement). Thus, we introduce
the following scalings:

s= l2~s, Z = l~z, u=
h

l
~u, W = h~w: ð3:2Þ

After substituting (3.2) into (2.6a), (2.6b) and (2.7), we obtain a dimensionless system, in which two
geometric parameters n0 = a2/l2 and n1 = b2/l2 arise. To use expansion methods to proceed forward,
some restrictions on the geometric parameters have to be imposed. We consider the case where
d=n12n0 = (b+ a)(b2a)/l2 is small such that O(d2) terms can be omitted. We point out that this
implies a small thickness-to-length ratio, but the thickness-to-radius ratio does not need to be small at
this stage.

For convenience of notation, we hereafter drop the tildes (i.e. s means ~s). We note that since 0 � s 2
n0 � d, s 2 n0 is a small variable. If we assume u(s, z) and w(s, z) are sufficiently smooth in s, we can
take the following series expansions of u and w in the neighborhood of s =n0:

u(s, z) = u0(z) + (s� n0)u1(z) + (s� n0)
2u2(z) + (s� n0)

3u3(z) + . . . ,

w(s, z) =w0(z) + (s� n0)w1(z) + (s� n0)
2w2(z) + (s� n0)

3w3(z) + . . . :

(

ð3:3Þ

Remark: Since R=l � ffiffiffiffiffi

n0
p

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n0 + s� n0
p � ffiffiffiffiffi

n0
p

, which can be expanded as a power series of s2n0 for
d/n0 \ 1, there is no need for the above expansions to contain (R=l � ffiffiffiffiffi

n0
p

)
n (n = 1, 2,.) terms.

Substituting (3.3) into the nondimensionalized traction-free boundary conditions (2.7), we obtain the
following four equations:

n0D1(v0)u1 + en0D2(v0)w1 + (z1 + z2)u0 + z2w0z + e
2n0D3(v0)u

2

1
+ en0D4(v0)u1w1

+ en0D5(v0)w
2

1
+ e

2n3
0
(4z1 + 8h1

+
4

3
k1)u

3

1
+ e

2n2
0
4(z1 +h1

+h
4
+ k5)u1w

2

1
+ eD6(v0)

+ e
2
D7(v0) = 0,

ð3:4aÞ

en0D8(v0)u1 +D9(v0)w1 + z3u0z + en0D10(v0)u
2

1
+ en0D11(v0)u1w1 + en0D12(v0)w

2

1

+ e
2n2

0
4(z1 +h1

+h
4
+k5)u

2

1
w1 + e

2n0 4z1 + 8h4
+
4

3
k9

� �

w3

1
+ eD13(v0) + e

2
D14(v0) = 0,

ð3:4bÞ

((3z1 + z2)u1 + 4z1n0u2 + z2w1z) + eD15(v2) + e
2
D16(v2) + d((5z1 + z2)u2

+ 6z1n0u3 + z2w2z + eD17(v3) + e
2
D18(v3)) +O(d

2
) = 0,

ð3:4cÞ

(2z3w1 + z3u0z + n0(4z3w2 + z3u1z)) + eD19(v2) + e
2
D20(v2) + d(4z3w2 + z3u1z

+ n0(6z3w3 + z3u2z) + eD21(v3) + e
2
D22(v3)) +O(d

2
) = 0,

ð3:4dÞ

where vi (i = 0, 1, 2, 3) are the four vectors defined below:
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v0 = (u0,w0), v1 = (u0, u1,w0,w1),

v2 = (u0, u1, u2,w0,w1,w2), v3 = (u0, u1, u2, u3,w0,w1,w2,w3),

�

hj, zj, kj (j = 1,.) are the elastic moduli given in the Appendix and D i (i = 1, . , 22) are operators
on the arguments whose long expressions are omitted. In obtaining (3.4c) and (3.4d), we have neglected
terms higher than O(d2). In this system, there are eight unknowns ui and wi (i = 0, 1, 2, 3) if the above-
mentioned higher-order terms are omitted. The other four equations can be obtained from the field
equations.

Substituting (3.3) into (2.6a) and (2.6b), the left-hand sides of the equations become two series in
s2n0 and all the coefficients of (s2n0)

n (n = 0, 1, 2,.) should be zero. From the coefficients of (s2n0)
0

and (s2n0)
1, four equations with the same eight unknowns are obtained:

n0(8z1u1 + 2(z2 + z3)w1z + z3u0zz) + 8z1n
2

0
u2 + eD23(v1) + e

2
D24(v1) = 0, ð3:5aÞ

8z1u1 + 2(z2 + z3)w1z + z3u0zz + n0(32z1u2 + 4(z2 + z3)w2z + z3u1zz)

+ 24z1n
2

0
u3 + eD25(v2) + e

2
D26(v2) = 0,

ð3:5bÞ

4z3w1 + 2(z2 + z3)u0z + z1w0zz + n0(8z3w2 + 2(z2 + z3)u1z) + eD27(v1)

+ e
2
D28(v1) = 0,

ð3:5cÞ

16z3w2 + 4(z2 + z3)u1z + z1w1zz + n0(24z3w3 + 4(z2 + z3)u2z) + eD29(v2)

+ e
2
D30(v2) = 0:

ð3:5dÞ

Now the governing system (2.6a) to (2.7) has been transformed into a closed system of eight equations
(3.4) and (3.5) with eight unknowns ui and wi (i = 0, 1, 2, 3). A key that the present methodology works
is that a closed finite system can be obtained!

We find that (3.4a) and (3.4b) are two algebraic equations for u1 and w1. By perturbation expansions
in terms of the small parameter e, we can obtain the asymptotic expressions of u1 and w1. Also, it can be
seen that (3.5a) and (3.5c) are two linear algebraic equations for u2 and w2 and (3.5b) and (3.5d) are two
linear algebraic equations for u3 and w3. Another key for the present methodology is that among the
closed system of eight equations six are algebraic equations! As a result, ui and wi (i = 1, 2, 3) can be
expressed in terms of u0 and w0 (their long expressions are omitted here). Substituting these expressions
into (3.4c) and (3.4d) and neglecting O(e3, e2n0, dn0, (d/n0)

2) terms, we can obtain two equations with
two unknowns u0 and w0. It turns out that one of the two equations can be integrated once. As a result,
we have

z1
2 � z2

2

2z1
u0 +

(z1 � z2)z2

2z1
w0z + e(a1u

2

0
+ a2u0w0z + a3w

2

0z) + e
2
(a4u

3

0
+ a5u

2

0
w0z

+ a6u0w
2

0z + a7w
3

0z) + en0
z2(�z1 + z2)

4z1
u2
0z +

z2(�z1 + z2)

2z1
u0u0zz +

�z1
2 + z2

2

2z1
u0zzw0z

�

+
�z1

2 + z2
2

2z1
u0zw0zz

�

+ d
z1

2 � z2
2

8z1
w0zzz + e a8u

2

0z �
(z1 � z2)

2

8z1
u0u0zz

��

+
2z1

2 � z1z2 � z2
2

8z1
u0zzw0z + a9u0zw0zz + a10w

2

0zz + a11u0w0zzz + a12w0zw0zzz

�

+
1

n0

�z1
2 + z2

2

2z1
u0 +

z2(� z1 + z2)

2z1
w0z + e(a13u

2

0
+ a14u0w0z + a15w

2

0z

� �

+ e2(a16u
3

0
+ a17u

2

0
w0z + a18u0w

2

0z + a19w
3

0z

!!

= 0, ð3:6aÞ
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A+
z2(�z1 + z2)

2z1
u0 +

�z1
2 + z2

2

2z1
w0z + e(a20u

2

0
+ a21u0w0z + a22w

2

0z) + e
2
(a23u

3

0

+ a24u
2

0
w0z + a25u0w

2

0z + a26w
3

0z) + en0
�z1

2 + z2
2

4z1
u2
0z + d

 

z1
2 � z2

2

8z1
u0zz

+ e
z2(�z1 + z2)

16z1
u2
0z + a34u0u0zz + a35u0zzw0z +

�z1
2 + z2

2

4z1
u0zw0zz

� �

+
1

n0
(e(a27u

2

0

+ a28u0w0z + a29w
2

0z) + e
2
(a30u

3

0
+ a31u

2

0
w0z + a32u0w

2

0z + a33w
3

0z))

!

= 0, ð3:6bÞ

where A is an integration constant and ai (i = 1, 2, . , 35) are constants dependent on material con-
stants. By considering the resultant force T =

R

2p

0

R b

a
SZzRd R dY acting on a cross-section that is planar

and perpendicular to the axial direction of the tube, we find that

A=
T

2p(b2 � a2)e
=
g(z1

2 + z1z2 � 2z2
2)

2(z1 + z2)e
, ð3:7Þ

where g is the dimensionless engineering stress.
We point out that in deriving the above two asymptotic model equations O(e3, e2n0, d

2, dn0, (d/n0)
2)

terms have been neglected. For them to yield reliable results, we impose that these omitted terms should
be less than 5.5%. Now, we examine the restrictions in terms of the loading and geometrical parameters.

For d2 \ 0.055, (d/n0)
2
\ 0.055 and dn0 \ 0.055, we need, respectively, (b/l)2 2 (a/l)2 \ 0.2234, b/l

\ 1.106(a/l) and ((b/l)2 2 (a/l)2)(a/l)2 \ 0.055. Also, suppose that we impose e \ 0.2 (e can be
regarded as a loading parameter). Then, e3 \ 0.055 automatically. Therefore, e2n0 \ 0.055 implies that
(a/l) \ 1.173. Based on the above analysis, we plot the valid domain of a/l and b/l in Figure 1.

We notice that within this domain we do not need the tube to be very thin (the diameter-to-thickness
ratio can be as small as 20) or slender (the diameter-to-length ratio can be as large as 2.34). For most of
the tubes used in the experiments by [24, 26, 27] the geometrical parameters were in this domain.

4. Governing equations for the Blatz–Ko material

In Section 3, we obtained the governing equations for the axisymmetric deformations of a hyperelastic
tube subjected to uniaxial compression. Once the strain-energy function of a specific hyperelastic mate-
rial is given, we can calculate the corresponding elastic moduli through the formulae presented in the
Appendix. Substituting the elastic moduli into the coefficients of (3.6a) and (3.6b), the model equations
for the specific material can be determined.

In the following discussion, we shall take the Blatz–Ko material as an example. The strain-energy
function of the Blatz–Ko material is

Figure 1. The valid domain of a/l and b/l for the model equations is the one bounded by curves 2, 3 and 4. Curves 1, 2, 3 and 4 are

determined by (b/l)2 2 (a/l)2 = 0.2234, b/l = 1.106(a/l), ((b/l)2 2 (a/l)2)(a/l)2 = 0.055 and b/l = a/l, respectively.
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F(e1, e2, e3) =
m
0

2

1

1+ 2e1
+

1

1+ 2e2
+

1

1+ 2e3
+ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(1+ 2e1)(1+ 2e2)(1+ 2e3)
p

� 5

� �

, ð4:1Þ

where m0 is the shear modulus for infinitesimal deformations. By using the formulae in the Appendix,
the non-zero elastic moduli (defined in (2.5)) of the Blatz–Ko material are

z1 = 3m0
, z2 =m0

, h
1
= �21m

0
, h

2
= �m

0
, h

3
=m

0
,

k1 = 177m0
, k2 = 3m0

, k3 =m0
, k4 = �m

0
:

ð4:2Þ

Substituting (4.2) into (3.6a) and (3.6b) and retaining the original dimensional variables by letting U
=eu0 (aU represents the radial displacement of a material point on the inner surface) and G =ew0z

(which represents the axial strain of a material point on the inner surface), we can obtain the following
governing equations for the Blatz–Ko material:
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ð4:3bÞ

From (4.3a) and (4.3b), we find that the coefficients of these two equations do not depend upon the
material constant m0 and only depend upon the geometrical parameters d and n0.

In the following sections, we study the bifurcations of the governing system of ODEs (4.3a) and (4.3b)
subjected to some proper end boundary conditions.

5. Linear bifurcation analysis with sliding boundary conditions

In this section, we will conduct a linear bifurcation analysis for the coupled ODE system (4.3a) and
(4.3b) with sliding boundary conditions. Without loss of generality, we suppose the length of the tube l
to be 1 in the following discussions.

We assume sliding boundary conditions at the two ends of the tube, which means the shear stresses
on the two end surfaces of the tube are zeros, that is,

SZr = 0 at Z = 0, 1: ð5:1Þ

We also assume that the two end surfaces of the tube keep flat during the deformation, which leads to

WR(R,Z) = 0 at Z = 0, 1, ð5:2Þ

where W is the axial displacement defined in (2.1). Based on the above two equations and adopting the
manipulations introduced in Section 3, we obtain the following reduced boundary conditions:

UZ = 0, GZ = 0 at Z = 0, 1: ð5:3Þ
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We first consider the homogeneous deformation of the elastic tube, that is,

U =Uh, G =Gh for 0� Z� 1, ð5:4Þ

where Uh and Gh are two constants. It is clear that (5.4) satisfy the end boundary conditions (5.3). To
determine Uh and Gh, we substitute (5.4) into (4.3a) and (4.3b) to arrive at two algebraic equations:
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ð5:5bÞ

where r =d/n0. Note that (5.5a) and (5.5b) are both third-order polynomial equations. Thus obtaining
the explicit expressions of Uh and Gh from these two equations may be very complicated. Obviously, Uh

and Gh should be functions of the engineering stress g. As g is a parameter of O(e) (see (3.2) and (5.5b)),
we consider the asymptotic expressions of Uh and Gh in terms of g. By using the regular perturbation
method, we can obtain the following asymptotic expressions for Uh and Gh:

Uh = � 1

4
g � 13

32
g2 � 125

128
g3, Gh = g +

9

4
g2

+
25

4
g3: ð5:6Þ

We note that the asymptotic solutions do not depend on r (as should be the case for a homogeneous
deformation induced by uniaxial compression; thus this can also be regarded as a consistency check for
our approach).

In Figure 2, we show the comparisons of the solutions of (5.5a) and (5.5b) with the homogeneous
solutions of the original exact equations (2.6a), (2.6b) and (2.7). It can be seen that when 20.2 \ g
\ 0.1, they agree with each other very well. Also, through the comparisons of the asymptotic solutions
(5.6) with the solutions of (5.5a) and (5.5b), we find that when jgj \ 0.16, the asymptotic solutions
(5.6) are good approximations of the solutions of (5.5a) and (5.5b).

In addition to the constant solutions, there may also exist nontrivial solutions satisfying (4.3a) and
(4.3b) and the boundary conditions (5.3) when the external force exceeds a critical value. In the follow-
ing, we will determine the critical stress values at which there exist nontrivial solutions. First, we set

U =Uh +DU , G =Gh +DG, ð5:7Þ

Figure 2. Comparisons of the solutions (circles) of (5.5a) and (5.5b) with the homogeneous solutions (triangles) of (2.6a) to (2.7).
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where DU and DG are two small variations. Substituting (5.7) into (4.3a) and (4.3b) and further dropping
the nonlinear terms, we have

c1DGZZ + c2DG + c3DUZZ + c4DU = 0, ð5:8aÞ

c1DUZZ + c5DU + c6DG = 0, ð5:8bÞ

where ci (i = 1, 2,. , 26) in the above equations and the following equations are constants dependent
on Uh, Gh, r and n0.

From (5.3), DU and DG should satisfy the following boundary conditions:

DUZ = 0, DGZ = 0 at Z = 0, 1: ð5:9Þ

To find the critical stress values at which there exist nontrivial solutions of U and G satisfying (4.3a),
(4.3b) and (5.3) is to find the critical stress values at which there exist nontrivial solutions of DU and DG
for the linear system (5.8a) and (5.8b) with the boundary conditions (5.9). We suppose that DU and DG
have the following general forms:

DU(Z) =AelZ , DG(Z) =BelZ , ð5:10Þ

where A, B and l are constants. Substituting (5.10) into (5.8a) and (5.8b), we have the following linear
system:

M1

A

B

� �

=
m11 m12

m21 m22

� �

A

B

� �

= 0, ð5:11Þ

where mij (i, j = 1, 2) are in terms of l, Uh, Gh, r and n0 which are not shown for brevity.
To find nontrivial solutions of (5.8a) and (5.8b), we need Det M1 = 0, which yields the characteristic

equation of the ODE system of (5.8a) and (5.8b),

c3l
4
+c2l

2
+c1 = 0, ð5:12Þ

where ci (i = 1, 2, 3) are constants dependent on ci (i = 1, . , 6). Equation (5.12) is a fourth-order
polynomial equation, thus there are four roots. As (5.12) only depends on the even orders of l, the four
roots can be divided into two pairs. The two roots in each pair are negatives of each other. We can clas-
sify the four roots of equation (5.12) into the following three different cases: (1) there are four real roots;
(2) there are four purely imaginary roots; (3) there are four single complex roots (both the real parts
and the imaginary parts of these complex roots are non-zero). In cases (1) and (2), there may exist two-
fold repeated roots at some special points.

Substituting (5.6) into (5.12), we find that the coefficients of (5.12) depend only on the stress value g
and two parameters r and n0. In derivations of (3.6a) and (3.6b), some restrictions on the geometrical
parameters have been imposed (see Figure 1). On the other hand, to ensure the validity of the asymptotic
expressions of homogeneous solutions (5.6), we require jgj \ 0.16. Under these constraints and through
some calculations, we find that there are two particular stress values gm(\ 0) and gp(. 0) (dependent
on r). According to these two values, as g varies, types of roots of (5.12) can be divided into five cases,
listed in Table 1.

Table 1. Types of roots of (5.12) varying with g.

(i) 20.16\ g\ gm Two different pairs of purely imaginary conjugate roots
(ii) g = gm Two pairs of repeated purely imaginary roots
(iii) gm\ g\ gp Four single complex roots
(iv) g = gp Two pairs of repeated real roots
(v) gp\ g\ 0.16 Four single real roots
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In this paper, we study the compression problem (which implies g \ 0). Then both cases (i) and (ii)
are possible. We first study case (ii) and we will show that this case will not happen in general. In this
case g =gm, we let the two pairs of repeated roots be 6l1i and the solution expressions for (5.8a) and
(5.8b) are given by

DU = (A1 +A3Z) cos (l1Z) + (A2 +A4Z) sin (l1Z),

DG = (B1 +B3Z) cos (l1Z) + (B2 +B4Z) sin (l1Z),

�

ð5:13Þ

where Ai and Bi (i = 1, 2, 3, 4) are real constants.
By substituting (5.13) into (5.8a) and (5.8b) and comparing the coefficients of cos(lZ), sin(lZ),

Zcos(lZ) and Zsin(lZ), we have

A1 = b2B4, A2 = �b2B3, A3 = b1B3, A4 = b1B4,

B1 = b3B4, B2 = �b3B3,
ð5:14Þ

where bi (i = 1, 2, 3) are in terms of Uh, Gh, r, n0 and l1 whose expressions are omitted for brevity. If
we further substitute (5.13) and (5.14) into the boundary condition (5.9), we get a linear system for B3

and B4 and it is easy to find that there are only trivial solutions B3 = B4 = 0 except when b2 = b1b3.
However, this only occurs in a very special circumstance (one needs g =gm but also b2 = b1b3).

In this paper, we shall concentrate on case (i) and in this case we denote the four purely imaginary
roots of (5.12) as

6l1i=6
c2 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2

2
� 4c1c3

q

2c3
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@

1
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1

2

i, 6l2i=6
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2

2
� 4c1c3

q

2c3

0

@

1

A

1

2

i: ð5:15Þ

Without loss of generality, we take both l1 and l2 to be positive. For this case, the solution expressions
for DU and DG can be written as

DU =A1 cos (l1Z) +A2 sin (l1Z) +A3 cos (l2Z) +A4 sin (l2Z),

DG =B1 cos (l1Z) +B2 sin (l1Z) +B3 cos (l2Z) +B4 sin (l2Z),

�

ð5:16Þ

where Ai and Bi (i = 1, 2, 3, 4) are real constants.
By substituting (5.16) into (5.8a) and (5.8b) and comparing the coefficients of cos(liZ) and sin(liZ)

(i = 1, 2), we have

B1 = f (l1)A1, B2 = f (l1)A2, B3 = f (l2)A3, B4 = f (l2)A4, ð5:17Þ

where f(l) = (c1l
2
2 c5)/c6.

Substituting (5.16) into the boundary condition (5.9), and from (5.17), we have

M2(A1 A2 A3 A4 )
T
= 0, ð5:18Þ

where

M2 =

0 l1 0 l2
�l1 sinl1 l1 cos l1 �l2 sinl2 l2 cos l2

0 f (l1)l1 0 f (l2)l2
�f (l1)l1 sinl1 f (l1)l1 cos l1 �f (l2)l2 sinl2 f (l2)l2 cos l2

0

B

B

@

1

C

C

A

:

To find nontrivial solutions of DU and DG, we need

DetM2 = (f (l1)� f (l2))
2l2

1
l2
2
sinl1 sinl2 = 0: ð5:19Þ
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It is easy to see that (5.19) holds in two cases: (i) f(l1) = f(l2); (ii) l1 = np or l2 = np (where n is a
positive integer).

We have tested some parameter values and find that in general f(l1) = f(l2) together with (5.12) can-
not be satisfied. Therefore, in the following we consider the bifurcation points corresponding to l =
npi. In the case of l1 = np or l2 = np, from (5.18), it can be deduced that the solution (5.16) has the
following reduced form:

DU =C1 cos (npZ), DG = f (np)C1 cos (npZ), ð5:20Þ

where C1 is a constant.
Substituting l = npi into (5.12), we have

c3p
4n4 � c2p

2n2 +c1 = 0, ð5:21Þ

which provides the relationship between the critical stress value gc, the mode number n and the geome-
trical parameters r and n0. Actually, substituting the asymptotic expressions of Uh and Gh (see (5.6)) into
the above equation, we have

g3p
4n4 � g2p

2n2 + g1 = 0, ð5:22Þ
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Equation (5.22) explicitly provides the relation between the critical stress value gc, the mode number
n and the geometric parameters r and n0. For given mode number n and n0, it determines the relation
between gc and r. For example, for n0 = 0.1 and 0.22, we show the dependence of these two quantities
for some different mode numbers n in Figure 3. We find that once mode number n is known for a given
n0, the critical stress gc is always a decreasing function of r as can be seen from Figure 3.

ρ ρ

γγ

Figure 3. The plots of gc vs r (a measure of the tube thickness) for mode numbers (a) 3 � n � 8 and (b) 2 � n � 7. The arrow

indicates the direction of increasing of n.
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Also, from Figure 3, we see that two curves can intersect at a particular value of r, in other words,
two bifurcation mode numbers can correspond to the same critical stress value. However, it is not found
that more than two modes can correspond to the same critical stress value. Denote the intersection
point of the nth-mode and kth-mode curves as (r(n, k), gc

(n, k)); we can observe the following pattern in
Figure 3.

For a geometrical parameter r, suppose that the (k + 1) th mode has the smallest critical stress value
jgs

cj (i.e. the first mode number is k + 1). If for a particular r it happens that (gs
c, r) is an intersection

point, then gs
c has to be g(k, k + 1)

c , in other words, it has to be the intersection point of the neighboring-
mode curves. For example, for n0 = 0.1 and r = 0.0784001, the smallest jgs

cj is attained at the seventh-
mode curve. It happens that (gs

c, r) is an intersection point for this particular r, and we can see it is the
intersection point of the seventh-mode and sixth-mode curves. When this happens, from (5.18) we can
deduce that the solution (5.16) has the following reduced form:

DU =C1 cos (kpZ) +C2 cos ((k + 1)pZ),

DG = f (np)C1 cos (kpZ) + f ((k + 1)p)C2 cos ((k + 1)pZ),

�

ð5:23Þ

where Ci (i = 1, 2) are constants.
This observation is very useful, since some interesting phenomena can arise when there are two modes

for the same critical stress. These will be addressed in later sections.
In Figure 3, for a given n0, we can deduce the first mode number from the value of r. Once n0 is given,

we can calculate all r(k, k+ 1) (k = 1, 2, 3,.). One observation from Figure 3 is that for a given r lying
between r(k, k+ 1) and r(k+ 1, k+ 2), jgs

cj is always attained at the (k + 1) th-mode curve. So, the first bifur-
cation mode is determined. We also observe that the difference between r(k, k+ 1) and r(k+ 1, k+ 2) becomes
smaller as r decreases. Thus, for a thin tube it easily happens that two bifurcation modes correspond to
the same critical stress.

Similarly, when the mode number n and r are given, we can determine the relation between gc and n0
from (5.22). This relation is shown in Figure 4 for some different mode numbers n. This figure can be
used to find the first mode number from the value of n0. Denote the intersection point of the nth-mode

and kth-mode curves as (n(n, k)
0

, g(n, k)
c ) and suppose the (k + 1)th mode has the smallest critical stress

value jgs
cj. We can observe the following pattern in Figure 4. For a given n0 lying between n

(k, k + 1)
0

and

n
(k + 1, k + 2)
0

, jgs
cj is attained at the (k + 1)th-mode curve. We also observe that the smallest values of jgs

cj
for each mode number are almost the same (see the horizontal dashed lines in Figure 4). This implies
that for a given r the critical stress has a uniform lower bound gcl for all n0; see Figure 4. In particular,
if both the inner and outer radii of the tube are fixed (then r is fixed), the critical stress has a uniform
lower bound for all different tube lengths. This implies that, when the compression stress is below gcl,
no bifurcation to axisymmetrical modes can take place no matter what the length of the tube is.

0 0.05 0.1 0.15 0.2

0.2

0.175

0.15

0.125

0.1

0.075

0ν

cγ

clγ

(a) ρ = 0.13

0 0.05 0.1 0.15 0.2

0.22

0.2

0.18

0.16

0ν

cγ

clγ

(b) ρ = 0.2

Figure 4. The plots of gc vs n0 (a measure of the tube slenderness) for mode numbers 2 � n � 7. The arrow indicates the

direction of increasing of n.
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Of course, all the conclusions are based on the constraints of the geometrical parameters imposed at
the end of Section 3.

When both n0 and r are given, one can find the first mode number from the curve of the critical stress
by regarding it as a continuous function of the mode number, which is shown in Figure 5 for n0 = 0.1
and r = 0.13. From this figure, we find that the first mode number should be n = 5, which can also be
observed from Figure 3(a) or Figure 4(a).

In the above linear analysis, we have presented some relations between the critical stress value, mode
number and geometrical parameters. In the following section, we will obtain the approximate post-
bifurcation solutions by using the method of multiple scales.

6. Analytical post-bifurcation solutions and discussions

A linear bifurcation analysis can yield the critical loads for bifurcation and the eigenmodes. However,
one has to conduct a nonlinear analysis to understand the post-bifurcation behavior. However, it seems
impossible to find the exact analytical solutions for the complicated coupled nonlinear ODE system
(4.3a), (4.3b) and (5.3). When the external stress is close to the critical stress value gc, as the buckling
amplitude is small, it is possible to find the approximate analytical solutions by perturbation methods.
In this section, some nonlinear bifurcation analyses will be carried out in the vicinity of the bifurcation
points. In other words, we consider the approximate analytical solutions for the post-bifurcation states
governed by the coupled system (4.3a) and (4.3b) with the boundary conditions (5.3) at near-critical
loads.

To proceed with the perturbation method, we first need to introduce a small parameter. Let Uh and
Gh denote the solutions for a homogeneous deformation of (4.3a) and (4.3b) when g = gc; in other
words, Uh and Gh satisfy (5.5a) and (5.5b) with g = gc. For the present problem, we seek the solutions
in the form of the following perturbation expansions:

U =Uh + zU
(0)

+ z2U (1)
+ z3U (2)

+ . . . ,

G =Gh + zG
(0)

+ z2G(1)
+ z3G(2)

+ . . . ,

g = gc +Dg, Dg = z2ĝ,

ð6:1Þ

where z is a small positive parameter representing the amplitude of the difference U 2 Uh and Dg = z2ĝ
is the incremental stress value on gc. The above assumptions imply that the amplitude of U 2 Uh is of

the same order as G 2 Gh and is of order
ffiffiffiffiffiffiffiffiffi

jDgj
p

. This order relation is determined by requiring that ĝ
should appear in the amplitude equation for U(0), which will become clear in the following derivations.

In the following, we use the method of multiple scales with two variables (see [31]) to find the approx-
imate analytical solutions of (4.3a) and (4.3b). We first introduce

Z0 = Z, Z1 = z
2Z: ð6:2Þ

Figure 5. The curve of the critical stress gc as a continuous function of n when n0 = 0.1 and r = 0.13.
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Substituting (6.1) into (4.3a) and (4.3b) and equating the coefficients of the like powers of z to zero,
we obtain a system of equations. As expected, the coefficients of z0 yield (5.5a) and (5.5b) with g = gc,
which are automatically satisfied.

(1) From the coefficients of z, we have

c1G
(0)
Z0Z0

+ c2G
(0)

+ c3U
(0)
Z0Z0

+ c4U
(0)

= 0, ð6:3aÞ

c1U
(0)
Z0Z0

+ c5U
(0)

+ c6G
(0)

= 0: ð6:3bÞ

Note that the above equations are similar to (5.8a) and (5.8b).
One can solve G(0) from the second equation, which is then substituted into the first equation to give

c3U
(0)
Z0Z0Z0Z0

+c2U
(0)
Z0Z0

+c1U
(0)

= 0: ð6:4Þ

The characteristic equation of (6.4) is simply (5.12), as expected. Therefore, the roots are given by (5.15).
Then the solution expressions of U(0) and G(0) are

U (0)
=K1(Z1)e

il1Z0 +K2(Z1)e
il2Z0 +CC, ð6:5aÞ

G(0)
= f (l1)K1(Z1)e

il1Z0 + f (l2)K2(Z1)e
il2Z0 +CC, ð6:5bÞ

where CC denotes the complex conjugate of the previous terms, and K1(Z1) and K2(Z1) are two func-
tions to be determined.

(2) From the coefficients of z2, we have
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2
+ c8G

(0)U (0)
+ c9(G
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2
+ c10G
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Z0
+ c11G

(0)U (0)
Z0Z0

+ c12U
(0)U (0)

Z0Z0
� 1

6
n0(U

(0)
Z0
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2
= 0,

ð6:6aÞ

c1U
(1)
Z0Z0

+ c5U
(1) + c6G

(1) � 2

3
rn0G

(0)
Z0
U (0)

Z0
� 1

24
rn0(U

(0)
Z0
)
2 � 16

9
rn0G

(0)U (0)
Z0Z0

� 2

3
n0(U

(0)
Z0
)
2

� 1

9
rn0U

(0)U (0)
Z0Z0

+ c13(U
(0))

2
+ c14G

(0)U (0) + c15(G
(0))

2
= � 5

4
ĝ:

ð6:6bÞ

From the second equation, G(1) can be expressed in terms of U(1). We substitute the expression into the
first equation to yield an equation for U(1) which gives

U (1)
=M1(Z1)e

il1Z0 +M2(Z1)e
il2Z0 +a1K

2

1
(Z1)e

2il1Z0 +a2K
2

2
(Z1)e

2il2Z0

+a3K1(Z1)K2(Z1)e
i(l1 + l2)Z0 +a4K

�
1
(Z1)K2(Z1)e

i(�l1 + l2)Z0

+CC +a0ĝ +a5K1(Z1)K
�
1
(Z1) +a6K2(Z1)K

�
2
(Z1),

ð6:7Þ

where M1(Z1) and M2(Z1) are two unknown functions, and ai (i = 0, 1, ., 6) are constants related to
Uh, Gh, r and n0. Also, we can obtain the solution expression of G(1):

G(1)
= f (l1)M1(Z1)e

il1Z0 + f (l2)M2(Z1)e
il2Z0 +b1K

2

1
(Z1)e

2il1Z0 +b2K
2

2
(Z1)e

2il2Z0

+b3K1(Z1)K2(Z1)e
i(l1 + l2)Z0 +b4K1(Z1)K

�
2
(Z1)e

i(l1�l2)Z0 +CC

+b0ĝ +b5K1(Z1)K
�
1
(Z1) +b6K2(Z1)K

�
2
(Z1),

ð6:8Þ

where bi (i = 0, 1,., 6) are constants related to Uh, Gh, r and n0.
(3) From the coefficients of z3, we have
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ð6:9aÞ

c1U
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Z0Z0

+ c5U
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(2) � 2
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rn0G
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U (0)
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� 1

9
rn0(16G
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)U (0)
Z0Z0
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3
rn0G

(0)
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+U (0)
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+ c16(U
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3
+ c17G

(0)
(U (0)

)
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(0)
)
2U (0)

+ c19(G
(0)
)
3
+ 2c13U

(0)U (1)
+ c14G

(1)U (0)
+ c14G

(0)U (1)
+ 2c15G

(0)G(1)
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(0)
Z0
U (1)

Z0
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ð6:9bÞ

We can express G(2) in terms of U(2) from the second equation and then substitute the expression into
the first equation to yield an equation for U(2). To remove secular terms, we set M1(Z1) = M2(Z1) = 0
and

s0ĝK1(Z1) + s1K
2

1
(Z1)K

�
1
(Z1) + s2K1(Z1)K2(Z1)K

�
2
(Z1) + i s3

dK1

dZ1
= 0,

t0ĝK2(Z1) + t1K
2

2
(Z1)K

�
2
(Z1) + t2K2(Z1)K1(Z1)K

�
1
(Z1) + i t3

dK2

dZ1
= 0,

8

>

>

<

>

>

:

ð6:10Þ

where si and ti (i = 0, 1, 2, 3) are constants related to Uh, Gh, r and n0.
Substituting K1(Z1) =R1(Z1)e

iu1(Z1) and K2(Z1) =R2(Z1)e
iu2(Z1) into (6.10), we obtain

R1(Z1) =R1(constant), R2(Z1) =R2(constant) ð6:11Þ

and

R1 s0ĝ + s1R
2

1
+ s2R

2

2
� s3

du1

dZ1

� �

= 0, R2 t0ĝ + t1R
2

2
+ t2R

2

1
� t3

du2

dZ1

� �

= 0, ð6:12Þ

which provide the equations for the amplitudes of post-bifurcation solutions when u1 and u2 are deter-
mined. From (6.12), we also have

u1(Z1) =
1

s3
s0ĝ + s1R

2

1
+ s2R

2

2

� �

Z1 +f1, if R1 6¼ 0, ð6:13Þ

u2(Z1) =
1

t3
t0ĝ + t1R

2

2
+ t2R

2

1

� �

Z1 +f2, if R2 6¼ 0, ð6:14Þ

where f1 and f2 are two integration constants.
To summarize, after the above calculations we have obtained the expressions for the first two terms:

U (0)
= 2R1cos(l1Z0 + u1(Z1)) + 2R2cos(l2Z0 + u2(Z1)),

G(0)
= 2f (l1)R1cos(l1Z0 + u1(Z1)) + 2f (l2)R2cos(l2Z0 + u2(Z1))

(

ð6:15Þ

and
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U (1)
=a0ĝ + 2a1cos(2l1Z0) +a5ð ÞR2

1
+ 2a2cos(2l2Z0) +a6ð ÞR2

2

+ 2 a3cos (l1 + l2)Z0 +f1 +f2ð Þ+a4cos (�l1 + l2)Z0 � f1 +f2ð Þð ÞR1R2,

G(1)
=b0ĝ + 2b1cos(2l1Z0 + 2u1(Z1)) +b5ð ÞR2

1
+ 2b2cos(2l2Z0 + 2u2(Z1)) +b6ð ÞR2

2

+ 2 b3cos (l1 + l2)Z0 + u1(Z1) + u2(Z1)ð Þð
+b4cos (l1 � l2)Z0 + u1(Z1)� u2(Z1)ð ÞÞR1R2:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ð6:16Þ

In the above obtained solutions, there are four unknown constants R1, R2, f1 and f2, which can be
determined by the end boundary conditions.

Obviously, at O(1) the end boundary conditions (5.3) are automatically satisfied. At O(z), we need

U (0)
Z0
(0, 0) = 0, G(0)

Z0
(0, 0) = 0, U (0)

Z0
(1, z2) = 0, G(0)

Z0
(1, z2) = 0: ð6:17Þ

To find the nontrivial solutions, we require that at least one of R1 and R2 is non-zero; in other words,
we will discuss the following two cases: (1) one of R1 and R2 is zero; (2) both R1 and R2 are non-zero.

6.1. R1 6¼ 0 and R2 = 0

In this subsection, we discuss the case where one of R1 and R2 equals zero. Without loss of generality,
we let R16¼ 0 and R2 = 0. For this case, there are two unknown constants R1 and f1, which can be deter-
mined by the end conditions (6.17). To satisfy (6.17), from (6.15) and (6.13), we have

sinf1 = 0,

f (l1) sinf1 = 0,

sin l1 +
1

s3
s0ĝ + s1R

2

1

� �

z2 +f1

� �

= 0,

f (l1) sin l1 +
1

s3
s0ĝ + s1R

2

1

� �

z2 +f1

� �

= 0:

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

ð6:18Þ

We note that when (6.18)1 is satisfied, (6.18)2 is automatically satisfied. From (6.18)1, we have

f1 =m1p with m1 = 0,61,62, . . . : ð6:19Þ

Also, when (6.18)3 is satisfied, (6.18)4 is automatically satisfied. We note that (6.18)3 should be satisfied
for any ĝ, and in particular we take ĝ ! 0 (which implies that R1! 0) to obtain sin(l1 + f1) = 0 which
yields that

l1 = n1p with n1 = 1, 2, . . . ð6:20Þ

(we have imposed that l1 . 0). Substituting (6.19) and (6.20) into (6.18)3, we obtain

R2

1
= r1ĝ, ð6:21Þ

where r1 = 2s0/s1. This amplitude equation for R1 can also be obtained by substituting u1 = f1 and
R2 = 0 into (6.12).

We recall that l1i = n1pi is a root of the characteristic equation of (6.4) (i.e. it satisfies (5.12)).
Letting l = npi in (5.12), we recover (5.22), which can be used to determine the relationship between
the critical stress value and the mode number. Thus, the nonlinear bifurcation analysis presented in this
section can recover the results obtained by the linear bifurcation analysis.

Substituting the expressions of u1, f1, l1, R1 into (6.15) and (6.16), we obtain

U ’Uh + 2(�1)
m1(r1Dg)

1=2cos(n1pZ) + a0 + 2a1cos(2n1pZ) +a5ð Þr1ð ÞDg,
G’Gh + 2f (n1p)(�1)

m1(r1Dg)
1=2cos(n1pZ) + b0 + 2b1cos(2n1pZ) +b5ð Þr1ð ÞDg,

(

ð6:22Þ
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which are the analytical expressions for describing the post-bifurcation states when Dg is small.
Similarly, when R1 = 0 and R26¼ 0, the approximate solutions of U and G are given by

U ’Uh + 2(�1)
m2(r2Dg)

1=2cos(n2pZ) + a0 + 2a1cos(2n2pZ) +a6ð Þr2ð ÞDg,
G’Gh + 2f (n2p)(�1)

m2(r2Dg)
1=2cos(n2pZ) + b0 + 2b2cos(2n2pZ) +b6ð Þr2ð ÞDg,

(

ð6:23Þ

where r2 = 2t0/t1, m2 = 0, 61, 62,. and n2 = 1, 2,..
The simple analytical expressions (6.22) and (6.23) can provide both qualitative and quantitative

information on the post-bifurcation states (in general, it is very difficult, if even possible, to deduce qua-
litative information from numerical solutions). Now, we give some discussions. It should be noted that
the information below cannot be deduced from a linear bifurcation analysis.

First, from the expression (6.21) for the amplitude, we see that the sign of r1, which depends on Uh,
Gh, r and n0, determines the nature of the bifurcations. If r1 \ 0, we need Dg = z2ĝ\0 to ensure the
positivity of R2

1
. Thus the bifurcation occurs only when jgj . jgcj, which is a supercritical bifurcation.

Conversely, if r1 . 0, we need Dg = z2ĝ.0 and the bifurcation occurs only when jgj \ jgcj, which is a
subcritical bifurcation. For the geometrical parameters considered here, we find that r1 is always nega-
tive, and thus all bifurcations in the case of R16¼ 0 and R2 = 0 are supercritical.

Also, in the present case we see that the solutions (6.22) and (6.23) contain m1 or m2. Since m1 and m2

can be even or odd, there are two nontrivial solutions for a given mode number. This implies that it is a
supercritical pitchfork bifurcation (see Figure 12).

It is expected that the geometrical parameters have important influences on the post-bifurcation
states. For the energy absorption purpose, usually one would like the structure to be as ‘soft’ as possible
in the post-bifurcation regime. Here, we say that a structure is ‘soft’ if for a reduction of the length of
the tube the end stress is small. The usual thinking is that a thin structure is softer than a thick structure.
However, it may not be true in the post-bifurcation regime. As we shall see below, increasing the thick-
ness of the tube slightly can reduce the stress significantly.

We denote the leading-order amplitudes of U and G as d1 and d2 respectively. It can be seen from
(6.22) and (6.23) that d1 can be described through 2jr1j1/2 or 2jr2j1/2 and d2 through 2f(n1p)jr1j1/2 or
2f(n2p)jr2j1/2 (which are dependent on the geometrical parameters r and n0 and the mode number; please
note that Uh and Gh are dependent on gc, which, in turn, is determined by r and n0 and the mode num-
ber (see (5.22)).

In Figure 6, we plot the curves of d1 and d2 for n0 = 0.1 (corresponding to Figure 3(a)). Please note
that for r(k+ 1,k+ 2) \ r \ r(k,k+ 1) (k = 3, ., 8 for n0 = 0.1) the first mode number is k (see the dis-
cussions above (5.23)). As a result, we only draw the curves corresponding to the kth mode for r in this
interval. From this figure, we find that both d1 and d2 are increasing functions of r for r(k+ 1,k+ 2) \ r
\ r(k,k+ 1). Then, corresponding to the same mode number, it is expected that as the engineering stress
increases the current length of the thicker tube after bifurcation will decrease faster than that of the
thinner tube.
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Figure 6. Plots of d1 and d2 vs r for n0 = 0.1.
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In Figure 7, we give the plots of the current length l of the tube after bifurcation versus the engineering
stress g for two slightly different tube thicknesses (however, the first bifurcation mode is still the same).
In Figure 7, curves are plotted for r = 0.105 and r = 0.135 both of which give the same first bifurca-
tion mode n = 5 as we can see from Figure 6(a). We note that the difference between the two thicknesses
is about 15%. The thinner tube will bulge first at a smaller critical stress jg(1)

c j than that of the thicker
tube (i.e. jg(2)

c j) as expected. After the bifurcations, the two curves intersect at (g*, l*). We observe that
when jg(1)

c j\jgj\jg�j, the engineering stress of the thicker tube is larger than that of the thinner tube for
the same length of the tube, so the thinner tube is ‘softer’. When jgj . jg*j, for the same tube length (or
the same reduction of its original length) the engineering stress in the thicker tube is significantly smaller
than that in the thinner tube. The difference in stress can be large when l is getting smaller. Thus, in this
post-bifurcation regime the thicker tube is softer than the thinner tube. We can see that the geometry
(thickness) of the tube can affect the softness of the tube greatly, and this effect may be useful in design-
ing a tube as an energy absorber.

Remarks:

1. For this case, the amplitude equation obtained from (6.12) is

s0ĝR1 + s1R
3

1
= 0:

For this kind of amplitude equation, it has been shown by the singularities theory in [32] that for
a supercritical bifurcation the structure is imperfection-insensitive and for a subcritical bifurca-
tion it is imperfection-sensitive. Since we have a supercritical pitchfork bifurcation here, the tube
is imperfection-insensitive in the case discussed in this section.

2. Since there are multiple solutions when the external stress exceeds the critical stress value,
we need to calculate the total elastic potential energy to determine which solution has the
smallest value, that is, which is the energetically preferred solution. For the current force-
controlled problem, the asymptotic expression of the total elastic potential energy of the tube is
given by

Figure 7. Plot of the length of the tube l vs the engineering stress g when n0 = 0.1 (full lines are for r = 0.105 and dashed lines are

for r = 0.135).
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By using (6.24), the approximate analytical solutions (6.22) and (6.23) for the post-bifurcation solu-
tions and the algebraic equations (5.5a) and (5.5b) for the trivial solutions, we can calculate the total
potential energy values for nontrivial solutions and the corresponding trivial solutions. For some
parameter values, the results are listed in Table 2.

In Table 2 we find that for each case two nontrivial solutions have the same energy value, which is
less than that of the trivial solution. Then two nontrivial solutions are both the preferred solution.
An unfortunate side is that the present theory is unable to determine whether the solution with
m1 = 1 or that with m1 = 2 is more preferred, although the solution profiles are very different.

6.2. R1 6¼ 0 and R2 6¼ 0

In this subsection, we discuss the case where both R1 and R2 do not equal zero. For this case, there are
four unknown constants R1, R2, f1 and f2, and they can also be determined by the end conditions
(6.17). By using an analysis similar to that in the above section, we can obtain

f1 =m1p, f2 =m2p with m1,m2 = 0,61,62, . . . , ð6:24Þ

l1 = n1p, l2 = n2p with n1, n2 = 1, 2, . . . (n1 6¼ n2) ð6:25Þ

and

s0ĝ + s1R
2

1
+ s2R

2

2
= 0, t0ĝ + t1R

2

2
+ t2R

2

1
= 0: ð6:26Þ

From (6.13), (6.14) and (6.26), we have u1 = f1 and u2 = f2.
Solving the amplitudes equations (6.26), we have

R2

1
= r1ĝ, R2

2
= r2ĝ, ð6:27Þ

where r1 = (t0s2 2 t1s0)/(s1t1 2 s2t2) and r2 = (s0t2 2 s1t0)/(s1t1 2 s2t2).
We note that both l1i = n1pi and l2i = n2pi (n1 6¼ n2) should satisfy the characteristic equation of

(6.4) simultaneously. That is, both n1 and n2 satisfy (5.22). Thus, when both R1 6¼ 0 and R2 6¼ 0, there

Table 2. Total potential energy values scaled by pdm0.

Nontrivial solutions Trivial solution

(1) n0 = 0.1, r = 0.16, g = 20.13 20.0211568 (m1 = 1, 2) 20.0178934
(2) n0 = 0.1, r = 0.13, g = 20.096 20.0112424 (m2 = 1, 2) 20.010141
(3) n0 = 0.1, r = 0.1, g = 20.07 20.0075429 (m2 = 1, 2) 20.0055647
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are two different mode numbers corresponding to the same critical stress value. It should be noted that
this case is a special one, as for it to happen there is a relation between the two geometrical parameters
n0 and r (since both n1 and n2 satisfy (5.22)).

After substituting the expressions of ui, fi, li and Ri (i = 1, 2) into (6.15) and (6.16), we obtain

U ’Uh + 2(�1)
m1(r1Dg)

1=2cos(n1pZ) + 2(�1)
m2(r2Dg)

1=2cos(n2pZ)

+ a0 + 2a1cos(2n1pZ) +a5ð Þr1 + 2a2cos(2n2pZ) +a6ð Þr2ð ÞDg
�2(�1)

m1 +m2 a3cos (n1 + n2)pZð Þ+a4cos (n1 � n2)pZð Þð Þ(r1r2)1=2Dg,
ð6:28aÞ

G’Gh + 2f (n1p)(�1)
m1(r1Dg)

1=2cos(n1pZ) + 2f (n2p)(�1)
m2(r2Dg)

1=2cos(n2pZ)

+ b0 + 2b1cos(2n1pZ) +b5ð Þr1 + 2b2cos(2n2pZ) +b6ð Þr2ð ÞDg
�2(�1)

m1 +m2 b3cos (n1 + n2)pZð Þ+b4cos (n1 � n2)pZð Þð Þ(r1r2)1=2Dg,
ð6:28bÞ

which are the analytical solutions for describing four (m1 = 1, 2 and m2 = 1, 2) post-bifurcation states
for small Dg when both n1 and n2 satisfy (5.22).

Now, we discuss some bifurcation features for this case.
First, from (6.27) we see that we need both r1 \ 0 and r2 \ 0 or both r1 . 0 and r2 . 0, which cor-

respond to a supercritical bifurcation and a subcritical bifurcation, respectively. For the present prob-
lem we find that within the imposed constraint on the geometrical parameters we always have r1 . 0
and r2 . 0. Thus, those solutions given in (6.28) represent subcritical branches.

Also, we note that when n1 and n2 satisfy (5.22) there are also another four post-bifurcation states cor-
responding to R1 6¼ 0 and R2 = 0, and R1 = 0 and R2 6¼ 0, since (6.17) is also satisfied for those cases.
The solution expressions are provided by (6.22) (m1 = 1, 2) and (6.23) (m2 = 1, 2). Each of these four
branches is supercritical, as discussed in the previous section. Thus, in the case of two different modes
corresponding to the same critical stress there are in total eight post-bifurcation states around the bifur-
cation point, four subcritical branches and four supercritical branches. We call such a bifurcation an
octopus bifurcation (see Figure 15).

The study on the imperfection sensitivity for this case, which needs certain tools in singularities the-
ory, is presented in the next section.

Remark: In obtaining the analytical solutions for the above two different cases, we only use the sliding
boundary conditions at O(z). It is easy to verify that the obtained solutions also satisfy the conditions at
O(z2).

7. Imperfection sensitivity for the case of two modes corresponding to a critical stress

Subcritical bifurcation branches occur when two modes correspond to the same critical stress value. The
important feature of a subcritical bifurcation is the imperfection sensitivity. In this section, we will use
singularities theory to study this important issue for this case. We take n0 = 0.1 and r = 0.103995 for
example (correspondingly the two modes are n1 = 5, n2 = 6 and the critical stress is gc = 20.0722086)
and follow the discussions in [22, 23].

In Section 6 we obtained the amplitudes equations (6.21) when R1 6¼ 0 and R2 = 0 and (6.26) when
R1 6¼ 0 and R2 6¼ 0. The amplitudes equations, which include both the trivial solutions and the nontri-
vial solutions of R1 and R2, are given by (see (6.12))

s0ĝR1 + s1R
3

1
+ s2R1R

2

2
= 0, t0ĝR2 + t1R

3

2
+ t2R2R

2

1
= 0: ð7:1Þ

For the parameters chosen above, we find that the non-degeneracy conditions defined in Definition 2.2
[23, p. 423] are satisfied. Then according to Proposition 2.3 in [23, p. 424], the bifurcation problem of
(7.1) with two state variables has the normal form

e1R
3

1
+ pR1R

2

2
+ e2(�ĝ)R1 = 0, qR2R

2

1
+ e3R

3

2
+ e4(�ĝ)R2 = 0, ð7:2Þ

where
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e1 = sgn(s1), e2 = sgn(�s0), e3 = sgn(t1), e4 = sgn(�t0),

p=
t0

t1s0

�

�

�

�

�

�

�

�

s2, q=
s0

s1t0

�

�

�

�

�

�

�

�

t2, p 6¼ e2e3e4, q 6¼ e1e2e4, pq 6¼ e1e3:

From Theorem 2.4 in [23, p. 425], the normal form (7.2) has the following universal unfolding:

e1R
3

1
+ pR1R

2

2
+ e2(�ĝ)R1 = 0, qR2R

2

1
+ e3R

3

2
+ e4(�ĝ�s)R2 = 0, ð7:3Þ

where s is a small parameter representing the imperfection magnitude.
For the chosen r and n0, we find that

e1 = e3 = 1, e2 = e4 = �1: ð7:4Þ

For the above case, a detailed discussion on the bifurcation diagrams with different values of p and q
has been given in [23]. For n0 = 0.1 and r = 0.103995, we find that p = 215.12 and q = 24.71, and
the corresponding unperturbed and perturbed bifurcation diagrams are given in Figures 8 and 9. The
solid lines represent the stable solutions and the dashed lines represent the unstable solutions.

From Figure 9, we find that when s . 0, the real critical stress value is not changed, and so this value
is not imperfection-sensitive. In this case, the stable branch is the supercritical R1-mode. However, with
a further increase of the load (an O(s) amount), this mode also becomes unstable. Then, the tube has to
jump to a state corresponding to a remote stable solution (which cannot be determined by the present
theory). In this sense, we may say that the structure is imperfection-sensitive.

When s \ 0, the real critical stress value becomes

g� = gc � s, ð7:5Þ

whose absolute value is smaller than that of the unperturbed critical stress value. So, this value is imper-
fection-sensitive. Afterwards, when the load increases, the solution goes along the supercritical R2-mode.
However, with a further increase of the load (an O(s) amount), this branch becomes unstable. Then, the
tube has to jump to a state corresponding to a remote stable solution (which cannot be determined by
the present theory). Thus, the tube is imperfection-sensitive.

As discussed in Section 5, for a thin tube it very easily happens that two modes correspond to the
same critical stress. The theory presented here gives the explanation as to why a thin tube is usually
imperfection-sensitive. For a thick tube, only if the two geometrical parameters r and n0 satisfy a

R
1
-mode

R
2
-mode

two-mode

0
trivial −γ̂

Figure 8. Unperturbed schematic bifurcation diagram.
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(b) σ < 0

Figure 9. Perturbed schematic bifurcation diagrams.

46 Mathematics and Mechanics of Solids 20(1)



further relation are there two modes corresponding to the same critical stress. Then, in general, a thick
tube is imperfection-insensitive.

We remark that imperfection sensitivity may not be a bad thing when the tube is used for energy
absorption purposes, since, corresponding to the remote solutions mentioned above, the structure may
be softer. Of course, one has to examine the remote solutions to draw such a conclusion, which will be
left for future investigation.

8. Numerical solutions and graphic results

In Sections 5 and 6, we have determined the critical stress values of gc analytically and obtained the ana-
lytical post-bifurcation solutions by the multiple scales method. To assess the validity of the analytical
results, in this section we use the bifurcation analysis software AUTO (see [33]) to do numerical experi-
ments, and comparisons of the results obtained by two approaches will be made. Some graphic results
will also be presented.

It is relatively straightforward to use AUTO to find the bifurcation points of a system of ODEs with
specific boundary conditions, which can then yield the critical stress values for the present problem.
Some critical stress values gc for the first mode number obtained in Section 5 are compared with those
obtained by AUTO in Table 3. We find that the values obtained from the analytical expressions are very
close to the numerical values (the largest relative error among three cases is about 3%). Thus, (5.22) pro-
vides reliable results for the critical stress values.

To use AUTO to compute post-bifurcation solutions of boundary-value problems could be a nontri-
vial matter. In fact, we intended to get the numerical solutions by AUTO first and then use them to help
us construct the analytical solutions. However, the outcome was not satisfactory since we were not sure
whether AUTO missed a branch of solutions. It turned out the other way around. We obtained the ana-
lytical solutions first to find all the bifurcated branches, which then helped us define the proper ampli-
tude of the solutions in AUTO programs. And finally, AUTO can yield all the post-bifurcation
solutions. The numerical solutions of the third case in Table 3 are plotted in Figure 10.

For the cases listed in Table 3, there is only one mode number corresponding to a critical stress value,
and the analytical solutions of U and G are given by (6.22) when R2 = 0 and (6.23) when R1 = 0. The
solution curves of the third case in Table 3 are plotted in Figure 10. One can see that there is very good
agreement between the numerical solutions obtained by AUTO and the analytical solutions.

Table 3. Comparisons of the critical stress values.

n gc (Numerical) gc (Analytical)

(1) n0 = 0.1, r = 0.16 4 20.125478 20.121826
(2) n0 = 0.1, r = 0.13 5 20.0948662 20.0935275
(3) n0 = 0.1, r = 0.1 6 20.0680846 20.06772

Figure 10. Comparisons of the analytical solutions (solid curves) of U with the numerical solutions (dots) for n0 = 0.1, r = 0.1,

n2 = 6 and g = 20.07.
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By using (2.1) and the analytical expressions of U and G, we can plot the three-dimensional shapes of
the buckled tubes in the current configuration. The buckled shapes corresponding to the cases in Figure
10 are given in Figure 11.

For given n0, r and mode numbers n listed in Table 3, we find that these bifurcations are pitchfork
and supercritical bifurcations. This type of bifurcation is illustrated in Figure 12, which gives the bifur-
cation diagrams for case (3) in Table 3. In this figure, the bifurcation diagrams plotted by using the ana-
lytical solutions of U are compared with the numerical results obtained by AUTO and the amplitude
u(U) is defined by

u(U) =U(0)� Uh: ð8:1Þ

Once again, very good agreement between the analytical solutions and the numerical ones is found.
Those comparisons demonstrate that the simple analytical expressions (6.22) and (6.23) provide reli-

able results for the post-bifurcation states. We note that when we further increase the external stress it is
found that the tube intends to deform with folds.

As we discussed for Figure 3 in Section 5, for the particular value of r at the intersection point, two
modes correspond to the same critical stress value. Two examples are listed in Table 4.

Figure 11. Shapes of the buckled tubes corresponding to the case in Figure 10.
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0

0.05

0.1

0.15
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γ

Figure 12. Pitchfork bifurcation diagrams for n0 = 0.1 and r = 0.1. Full lines are the analytical solutions and circles are the

numerical solutions.

Table 4. The critical stress values when two modes exist.

n gc

(1) n0 = 0.1, r = 0.103995 n1 = 5,n2 = 6 20.0722086
(2) n0 = 0.22, r = 0.115096 n1 = 3,n2 = 4 20.0847745
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For the two cases in Table 4, there are two different modes n1 and n2 corresponding to the same criti-
cal stress value. Unfortunately, AUTO fails to get the bifurcation point and any branch of solutions for
this case (on the other hand, the failure of the numerical approach demonstrates the indispensability of
analytical solutions). Therefore, in the following we shall present some graphic results based on the ana-
lytical solutions.

According to the analytical results in Section 6, there exist eight nontrivial solution branches for the
particular r and n0 when there are two different modes corresponding to the same critical stress value
(two branches corresponding to the unique mode n1, two branches corresponding to the unique mode
n2 and four branches corresponding to two modes n1 and n2). In Figure 13, we plot the four subcritical
post-bifurcation solutions of U by using the corresponding approximate analytical solutions.

Also, by using (2.1) and the analytical expressions of U and G, the shapes of the buckled tubes corre-
sponding to the cases in Figure 13 are given in Figure 14.

As discussed before, the bifurcation corresponding to a unique mode number is a supercritical one
and the bifurcation corresponding to two mode numbers is a subcritical one. Thus, the supercritical and
the subcritical bifurcations can occur simultaneously when two modes correspond to the same critical

Figure 13. Plots of the approximate analytical solutions of U when n0 = 0.1, g = 20.066 and r = 0.103995 (gc = 20.0722086,

n1 = 5 and n2 = 6).

Figure 14. Shapes of the buckled tubes corresponding to the cases in Figure 13 when g = 20.066.
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stress value. The bifurcation diagrams in Figure 15 are plotted by using the approximate analytical solu-
tions of U. This type of bifurcation was called an octopus bifurcation at the end of Section 6 since there
are eight ‘legs’ (branches) around the bifurcation point.

9. Concluding remarks

Linear and nonlinear bifurcation analysis is conducted for the axisymmetric deformations of a hypere-
lastic tube subjected to axial compression. The analytical results reveal many fresh insights, including:

(a) The critical stress has a uniform lower bound (independent of the slenderness) for fixed inner
and outer radii.

(b) For the single-mode case the bifurcation is a supercritical pitchfork bifurcation.
(c) For the case of two modes corresponding to a critical stress the bifurcation is an octopus bifurca-

tion, which is the mechanism for imperfection sensitivity.
(d) An explanation is given as to why a thin tube is usually imperfection-sensitive while a thick tube

is not in general.
(e) In the post-bifurcation regime a thick tube could be considerably softer than a thin one (which

may be useful in designing a tube as an energy absorber).
(f) Within the framework of hyperelasticity fold-like profiles can develop in the post-bifurcation

regime.

The methodology is systematic without ad hoc assumptions and is based on the three-dimensional field
equations of finite deformations (taking into account both geometrical and material nonlinearity). The
method of coupled series-asymptotic expansions is adopted to derive the asymptotic model equations in
a mathematically consistent manner. Then, the method of multiple scales is used to construct the post-
bifurcation solutions at near-critical loads. With the obtained amplitude equations, the singularities the-
ory is used to study the imperfection sensitivity. We believe that the approach presented here is general
and can be used to study other instability phenomena in structures composed of nonlinearly elastic mate-
rials (e.g. the buckling of a thin nonlinearly elastic film on a nonlinearly elastic compliant substrate). We
shall leave these for future investigations.
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Appendix: Incremental elastic moduli

For an isotropic hyperelastic material, the strain-energy function F only depends on the three principle
stretches of the Lagrangian strain tensor E, that is, F = F(e1, e2, e3). Denote Fj = ∂F=∂ejje1 = e2 = e3 = 0:
then in the case where there are no prestresses, F1, F2 and F3 should vanish.

The non-zero first-order incremental elastic moduli can be written as

z1 =A
(1)
1111

=F11, z2 =A
(1)
1122

=F12, z3 =A
(1)
1212

=
1

2
(z1 � z2):

There are only two independent constants among zi.
The non-zero second-order incremental elastic moduli can be written as

h
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1
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2
+ 2h

3
):

There are only three additional non-zero constants among hi.
The non-zero third-order incremental elastic moduli can be written as

k1 =A
(3)
11111111

=F1111, k2 =A
(3)
11111122

=F1112, k3 =A
(3)
11112222

=F1122,

k4 =A
(3)
11112233

=F1123, k5 =A
(3)
11111212

=
1

6
(k1 � k2), k6 =A

(3)
11112323

=
1

2
(k3 � k4),

k7 =A
(3)
11221212

=
1

12
(k1 + 2k2 � 3k3), k8 =A

(3)
11221313

=
1

4
(k2 � k4),

k9 =A
(3)
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1

8
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12121313
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1

24
(k1 � 4k2 + 3k3),
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(3)
11121323

=
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24
(k1 � k2 � 3k3 + 3k4):

There are only four additional non-zero constants among ki.
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