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Abstract

Good parameter settings are crucial to achieve high performance in many areas of arti-
ficial intelligence (AI), such as propositional satisfiability solving, AI planning, scheduling,
and machine learning (in particular deep learning). Automated algorithm configuration
methods have recently received much attention in the AI community since they replace
tedious, irreproducible and error-prone manual parameter tuning and can lead to new
state-of-the-art performance. However, practical applications of algorithm configuration
are prone to several (often subtle) pitfalls in the experimental design that can render the
procedure ineffective. We identify several common issues and propose best practices for
avoiding them. As one possibility for automatically handling as many of these as possible,
we also propose a tool called GenericWrapper4AC.

1. Introduction

To obtain peak performance of an algorithm, it is often necessary to tune its parameters.
The AI community has recently developed automated methods for the resulting algorithm
configuration (AC) problem to replace tedious, irreproducible and error-prone manual pa-
rameter tuning. Some example applications, for which automated AC procedures led to
new state-of-the-art performance, include satisfiability solving (Hutter, Babić, Hoos, &
Hu, 2007a; Hutter et al., 2017), maximum satisfiability (Ansótegui, Gabàs, Malitsky, &
Sellmann, 2016), scheduling (Chiarandini, Fawcett, & Hoos, 2008), mixed integer program-
ming (Hutter, Hoos, & Leyton-Brown, 2010a; López-Ibáñez & Stützle, 2014), evolutionary
algorithms (Bezerra, López-Ibáñez, & Stützle, 2016), answer set solving (Gebser et al.,
2011), AI planning (Vallati, Fawcett, Gerevini, Hoos, & Saetti, 2013) and machine learn-
ing (Thornton, Hutter, Hoos, & Leyton-Brown, 2013; Feurer, Springenberg, & Hutter,
2015).

Although the usability of AC systems improved over the years (e.g., SpySMAC, Falkner,
Lindauer, & Hutter, 2015), we still often observe fundamental issues in the design and
execution of experiments with algorithm configuration methods by both experts and new
users. The goals of this work are therefore to:

• highlight the many pitfalls we have encountered in AC experiments (run by ourselves
and others);

• present best practices to avoid most of these pitfalls; and
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• propose a unified interface between an AC system and the algorithm it optimizes (the
so-called target algorithm) that directly implements best practices related to properly
measuring the target algorithm’s performance with different parameter settings.

Providing recommendations and best practices on how to empirically evaluate algo-
rithms and avoid pitfalls is a topic of interest cutting across all of artificial intelligence,
including, e.g., evolutionary optimization (Weise, Chiong, & Tang, 2012), algorithms for NP-
complete problems (Gent et al., 1997), and reinforcement learning (Henderson et al., 2018)
to mention only a few. Running and comparing implementations of algorithms is the most
commonly used approach to understand the behaviour of the underlying method (McGeoch,
1987). There is a rich literature on how to best conduct such empirical studies (Hooker,
1995; Gent et al., 1997; Howe & Dahlman, 2002; McGeoch, 2002, 2012), and for some
journals abiding by such guidelines is even mandatory in order to publish research (Dorigo,
2016; Laguna, 2017). Research in AC depends even more on proper empirical methodology
than the rest of artificial intelligence, since AC systems need to automatically evaluate the
empirical performance of different algorithm variants in their inner loop in order to find con-
figurations with better performance. Nevertheless, many of the underlying characteristics
of empirical evaluations still remain the same as for other domains, and our guidelines thus
share many characteristics with existing guidelines and extend them to the setting faced in
AC.

The structure of this work is as follows. First, we provide a brief overview of AC, in-
cluding some guidelines for new users, such as why and when to use AC, and how to set up
effective AC experiments (Section 2). Afterwards, we describe common pitfalls in using AC
systems and recommendations on how to avoid them. We first discuss pitfalls concerning
the interface between AC systems and target algorithms (Section 3), followed by pitfalls
regarding over-tuning (Section 4). Throughout, we illustrate pitfalls by AC experiments on
propositional satisfiability solvers (Biere, Heule, van Maaren, & Walsh, 2009) as a proto-
typical AC example, but insights directly transfer to other AC problems.1 From our own
experiences, we provide further general recommendations for effective configuration in Sec-
tion 5. We end by presenting a package to provide an interface between AC systems and
target algorithms that aims to improve the reliability, reproducibility and robustness of AC
experiments (Section 6).

2. Background: Algorithm Configuration

The algorithm configuration problem can be briefly described as follows: given an algorithm
A to be optimized (the so-called target algorithm) with parameter configuration space Θ,
a set of instances Π, and a cost metric c : Θ × Π → R, find a configuration θ∗ ∈ Θ that
minimizes the cost metric c across the instances in Π:

θ∗ ∈ argmin
θ∈Θ

∑

π∈Π

c(θ, π). (1)

1. For these pitfalls, we do not distinguish between decision and optimization problems as the application
domain of AC. Although configurators usually take into account whether and how the metric to be
optimized relates to runtime, all presented pitfalls can happen in both types of application domain.
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Figure 1: Workflow of Algorithm Configuration

A concrete example for this algorithm configuration problem would be to find a pa-
rameter setting θ ∈ Θ of a solver A for the propositional satisfiability problem (SAT)
(such as glucose, Audemard & Simon, 2009 or lingeling, Biere, 2013) on a set of CNF in-
stances Π (e.g., SAT-encoded hardware or software verification instances) that minimizes
A’s average runtime c. Another example would be to find a hyperparameter setting for a
machine learning algorithm that minimizes its error c on a given dataset (Snoek, Larochelle,
& Adams, 2012; Feurer et al., 2015); in this latter example, c would be validation error,
either measured via k-fold inner cross-validation (giving rise to k instances for algorithm
configuration) or a single validation set (in which case there is just a single instance for
algorithm configuration).

The general workflow of a sequential algorithm configuration procedure (short: configu-
rator) is shown in Figure 1. In each step, the configurator picks a configuration θ ∈ Θ and
an instance π ∈ Π, triggers a run of algorithm A with configuration θ on instance π with
a maximal runtime cutoff κ (and other resource limitations that apply, such as a memory
limit), and measures the resulting cost c(θ, π). As detailed in Section 6, this step is usually
mediated by a target-algorithm specific wrapper. The configurator uses this collected data
about the target algorithm’s performance to find a well-performing configuration, typically
operating as an anytime procedure until its configuration budget is exhausted (e.g., a max-
imal number of target algorithm calls or a time budget)2; when terminated, it returns its
current incumbent, i.e., the best found configuration so far.

2.1 Why and When to Consider AC?

Algorithm configuration should always be considered if (i) the empirical performance of an
algorithm is relevant and (ii) the algorithm has performance-relevant parameters. This is
quite obvious for most empirical studies showing that a new algorithm A establishes a new
state-of-the-art performance on benchmark problem X. However, in this setting it is also
important to tune the parameters of all algorithms to compare against — without this, a
comparison would not be fair because one of the algorithms may only perform best because

2. Alternatively, the termination criterion could be defined as stopping when no (or only little) further
improvement is expected. Although this is a common choice for some other anytime algorithms, such
as gradient descent, we often observe that AC trajectories are step functions with long periods of time
between finding improving configurations, complicating the prediction of whether improvements will still
happen. For these reasons and to enable an efficient use of resources, we chose to treat the budgets as
discussed in the text.
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its parameters were tuned with the most effort (Hooker, 1995). Indeed, as shown several
times in the AC literature, optimized configurations often perform much better than default
ones; in some cases, the default configuration may even be worse than one drawn uniformly
at random (e.g., see Figure 6a).

There are several other advantages of AC compared to manual parameter tuning (cf.
López-Ibáñez, Dubois-Lacoste, Caceres, Birattari, & Stützle, 2016), including:

Reproducibility Automated algorithm configuration is often more reproducible than do-
ing manual parameter tuning. Manual parameter tuning strongly depends on the
experience and intuition of an expert for the algorithm at hand and/or for the given
instance set. This manual procedure can often not be reproduced by other users. If
algorithm developers also make their configuration spaces available (e.g., as the au-
thors of Lingeling, Biere, 2014, and Clasp, Gebser, Kaufmann, & Schaub, 2012, do),
reproducing the performance of an algorithm using AC is feasible.

Less human-time Assuming that a reasonable configuration space is known, applying
algorithm configuration is often much more efficient than manual parameter tuning.
While ceding this tedious task to algorithmic approaches can come at the cost of
requiring more computational resources, these tend to be quite cheap compared to
paying a human expert and are increasingly widely available.

More thoroughly tested Since humans are impatient by nature (e.g., during the devel-
opment of algorithms), they often focus on a rather small subset of instances to get
feedback fast and to evaluate another configuration. Compared to humans, configu-
rators often evaluate (promising) configurations more thoroughly on more instances.

More configurations evaluated Because of similar reasons as above, humans tend to
evaluate far less configurations than most configurators would do.

However, there are also two major limitations of AC, which must be considered:

Homogeneous instances To successfully apply AC, the instances have to be similar
enough such that configurations that perform well on subsets of them also tend to
perform well on others; we call such instance sets homogeneous. If the instances are
not homogeneous, it is harder to find a configuration that performs well on aver-
age; it is even possible that a configurator returns a configuration θ that performs
worse than the default one (although θ may appear to perform better based on the
instances the configurator could consider within its limited budget). Unfortunately,
so far, none of the existing AC tools implement an automatic check whether the given
instances are sufficiently homogeneous. For heterogeneous instance sets, portfolio ap-
proaches (Xu, Hutter, Hoos, & Leyton-Brown, 2008; Kadioglu, Malitsky, Sabharwal,
Samulowitz, & Sellmann, 2011; Malitsky, Sabharwal, Samulowitz, & Sellmann, 2012;
Lindauer, Hoos, Hutter, & Schaub, 2015) or instance-specific algorithm configura-
tion (Xu, Hoos, & Leyton-Brown, 2010; Kadioglu, Malitsky, Sellmann, & Tierney,
2010) provide alternative solutions.

Specialization From the restriction to homogeneous instances, the second limitation of
AC follows: the optimized configurations (returned by a configurator) are always
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specialized to the instance set and cost metric at hand. It is hard to obtain a robust
configuration on a large variety of heterogeneous instances. (In fact, it is not even
guaranteed that a single configuration with strong performance on all instances exists.)

2.2 Setting up AC Experiments

In the following, we describe the typical steps to set up and run AC experiments, and
provide pointers to the pitfalls and best practices discussed later.

1. Define an instance set of interest, which should be homogeneous (see Section 5.3) and
representative of future instances (see Section 5.2);

2. Split your instances into a training and test instances (see Section 5.1); the test
instances are later used to safeguard against over-tuning effects (see Section 4.2);

3. Define the ranges of all performance-relevant parameters giving rise to the configura-
tion space (see Sections 5.6 and 5.7);

4. Implement the interface between your algorithm and the configurator; take Pitfalls
1-4 into consideration (Section 3);

5. Choose your preferred configurator (e.g., ParamILS, GGA++, irace or SMAC ; see
Section 2.3)

6. Define the resource limitations your algorithm (cutoff time and memory limit) and
the configurator (configuration budget) should respect (see Section 5.4);

7. Define your cost metric to be optimized; if the cost metric is runtime, configurators
typically optimize PAR10 as the metric of interest, which is the penalized average
runtime (in CPU seconds) counting runs exceeding the cutoff time κ as 10 · κ; fur-
thermore please consider Pitfalls 2 and 3 (see Section 3.2) and recommendations in
Section 5.8 for runtime optimization; if the cost metric is related to the quality of
the solution, e.g. the error of a model on a dataset, configurators typically minimize
validation error.

8. Run the AC experiments on the training instances and obtain the final incumbent—
consider to use parallel runs (Section 5.5);

9. Evaluate the default configuration and the optimized configuration on the test in-
stances, to obtain an unbiased estimate of generalization performance on new in-
stances, and to assess over-tuning effects (Section 4);

10. Optionally, use further tools to obtain visualizations and gain more insights from the
AC experiments, e.g., CAVE (Biedenkapp, Marben, Lindauer, & Hutter, 2018).

As an exemplary application where AC yields dramatic speedups, we ran SMAC to op-
timize 75 parameters of the configurator Clasp (Gebser et al., 2012) to solve N-Rooks (Man-
they & Steinke, 2014a) instances. We will return to this scenario in more detail in Subsec-
tion 4.2. Here, we used a training set of 484 instances and a test set of 351 instances to
evaluate the best found configurations over time. We used a cutoff of 300 seconds, within
which the default configuration solves 82% of all training instances. Figure 2 reports results
from 16 independent SMAC runs, showing that AC using an adequate setup can robustly
yield large speedups compared to not tuning the algorithm.
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Figure 2: Exemplary application of AC, optimizing 75 parameters of Clasp to solve N-Rooks
problems. At each time step t, we show the penalized average runtime (PAR10) score on
the training set (orange) and test set (green) of the incumbent configuration at time t. I.e.,
at each time step, we take the best configuration found so far (the one the configurator
would return if stopped at that time), ran the algorithm with it on the training and test set
and recorded its PAR10 score. We show the median and quartiles of repeating this process
16 times using different random seeds.

2.3 Approaches for Solving the AC problem

For subproblems of the AC problem that deal neither with instances nor with capped
and censored runs, there exist several approaches in the fields of parameter tuning, hy-
perparameter optimization and expensive black-box optimization. Prominent examples in-
clude Bayesian optimization (Mockus, Tiesis, & Zilinskas, 1978; Shahriari, Swersky, Wang,
Adams, & de Freitas, 2016), sequential parameter optimization (Bartz-Beielstein, Lasar-
czyk, & Preuss, 2010), evolution strategies (Hansen, 2006), and combinations of several
classical search strategies (Ansel et al., 2014).

For solving the full AC problem, there are several configurators. ParamILS (Hutter,
Hoos, Leyton-Brown, & Stützle, 2009) uses local search in the configuration space, em-
ploying a racing strategy to decide which of two configurations performs better without
running both of them on all instances. Recently, Cáceres and Stützle (2017) also proposed
to use variable neighborhood search instead of the iterated local search used in ParamILS.
irace (López-Ibáñez et al., 2016) uses iterative races via F-race (Birattari, Stützle, Pa-
quete, & Varrentrapp, 2002) on a set of sampled configurations to determine the best one.
SMAC (Hutter, Hoos, & Leyton-Brown, 2011) and its distributed version dSMAC (Hutter,
Hoos, & Leyton-Brown, 2012) use probabilistic models of algorithm performance, so-called
empirical performance models (Hutter, Xu, Hoos, & Leyton-Brown, 2014b), to guide the
search for good configurations by means of an extension of Bayesian Optimization (Brochu,
Cora, & de Freitas, 2010). GGA (Ansótegui, Sellmann, & Tierney, 2009) represents pa-
rameters as genes and uses a genetic algorithm with a competitive and a non-competitive
gender; its newest version GGA++ (Ansótegui, Malitsky, Sellmann, & Tierney, 2015) also
uses an empirical performance model for guidance. For a more detailed description of these
algorithms, we refer the interested reader to the original papers or to the report of the
Configurable SAT Solver Challenge (Hutter et al., 2017).

866



Pitfalls and Best Practices for Algorithm Configuration

If the cost metric c is runtime using PAR10 scores, several configurators use an adaptive
capping strategy (Hutter et al., 2009) to terminate slow algorithm runs prematurely to save
time.3 For example, if the maximal cutoff time used at test time is κmax = 5000 seconds
and the best configuration known so far solves each instance in 10 seconds, we can save
dramatically by cutting off slow algorithm runs after κ > 10 seconds instead of running all
the way to κmax. Since κ is adapted dynamically, each target algorithm run can be issued
with a different one.

2.4 The Role of the Target Algorithm Wrapper

As depicted in Figure 1, configurators execute the target algorithm with configurations
θ ∈ Θ on instances π ∈ Π and measure the resulting cost c(θ, π). To be generally applicable,
configurators specify an interface through which they evaluate the cost c(θ, π) of arbitrary
algorithms to be optimized. For a new algorithm A, users need to implement this interface
to actually execute A with the desired configuration θ on the desired instance π and measure
the desired cost metric c(θ, π) (e.g. runtime required to solve a SAT instance or validation
error of a machine learning model).

In order to avoid having to change the algorithm to be optimized, this interface is
usually implemented by a wrapper.4 In the simplest case, the input to the wrapper is just a
parameter configuration θ, but in general AC it also includes an instance π, and it can also
include a random seed and computational resource limits, such as a runtime cutoff κ. Given
these inputs, the wrapper executes the target algorithm with configuration θ on instance π,
and measures and returns the desired cost metric c(θ, π).

3. Pitfalls and Best Practices Concerning Algorithm Execution

In this and the next section, we describe common pitfalls in algorithm configuration and il-
lustrate their consequences on existing benchmarks from the algorithm configuration library
AClib (Hutter et al., 2014a)5. Based on the insights we acquired in thousands of algorithm
configuration experiments over the years, we propose best practices to avoid these pitfalls.

Throughout, we will use the state-of-the-art configurator SMAC (Hutter et al., 2011)
as an example, typically optimizing PAR10. Where not specified otherwise, we ran all
experiments on the University of Freiburg’s META cluster, each of whose nodes shares 64
GB of RAM among two Intel Xeon E5-2650v2 8-core CPUs with 20 MB L3 cache and runs
Ubuntu 14.04 LTS 64 bit.6

3. As a side note, we remark that for model-based methods the internal model needs to handle dynamic
timeouts arising from adaptive capping and PAR10 scores for guiding the search are based on predictions
of that model. Furthermore, evaluations of incumbents for validation purposes are done purely with a
fixed timeout κmax, making PAR10 values comparable across configurators.

4. An alternative to a general wrapper would be a programming language-specific reliable interface for the
communication between configurator and target algorithm (Hoos, 2012), which would make it easier for
users to apply algorithm configuration to new target algorithms. However, the design of such an interface
would also need to consider the pitfalls identified in this paper.

5. See www.aclib.net

6. Data and scripts for the experiments in this paper are available at
http://www.automl.org/best-practices-in-algorithm-configuration/.
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3.1 Pitfall 1: Trusting Your Target Algorithm

Many state-of-the-art algorithms have been exhaustively benchmarked and tested with their
default parameter configuration. However, since the configuration space of many algorithms
is very large, we frequently observed hidden bugs triggered only by rarely-used combinations
of parameter values. For example, Hutter et al. (2010a) reported finding bugs in mixed
integer programming solvers and Manthey and Lindauer (2016) bugs in SAT solvers. Due to
the size of the associated configuration spaces (e.g., 214 parameters and a discretized space
of 1086 configurations in the state-of-the-art SAT solver Riss, Manthey, 2014b), exhaustive
checks are infeasible in practice.

Over the years, the types of bugs we have experienced even in commercial solvers (that
are the result of dozens of person-years of development time) include:

• Segmentation faults, Null pointer exceptions, and other unsuccessful algorithm termi-
nations;

• Wrong results (e.g., claiming a satisfiable SAT instance to be unsatisfiable);

• Not respecting a specified runtime cutoff that is passed as an input;

• Not respecting a specified memory limit that is passed as an input;

• Rounding down runtime cutoffs to the next integer (even if that integer is zero); and

• Returning faulty runtime measurements (even negative ones!)

Effects The various issues above have a multitude of negative effects, from obvious to
subtle. If the algorithm run does not respect its resource limits this can lead to congested
compute nodes (see Pitfall 3) and to configurator runs that are stuck waiting for an endless
algorithm run to finish. Wrongly reported runtimes (e.g., close to negative infinity in one
example) can lead to endless configuration runs when trusted. Rounding down cutoff times
can let configurators miss the best configuration (e.g., when they use adaptive capping to
cap runtimes at the best observed runtime for an instance – if that runtime is below one
second then each new configuration will fail on the instance due to using a cutoff of zero
seconds).

Algorithm crashes can be fairly benign when they are noticed and counted with the
highest possible cost, but they can be catastrophic when not recognized as crashes: e.g.,
when blindly minimizing an algorithm’s runtime the configurator will typically simply find a
configuration that crashes quickly. While this can be exploited to quickly find bugs (Hutter
et al., 2010a; Manthey & Lindauer, 2016), obtaining faulty configurations is typically the
worst possible result of using algorithm configuration in practice. Bugs that lead to wrong
results tend to be discovered by configurators when optimizing for runtime, since (at least for
NP-hard problems) we found that such bugs often allow algorithms to find shortcuts and
thus shorten runtimes. Therefore, blindly minimizing runtime without solution checking
often yields faulty configurations.

Detailed Example In 2012, we used algorithm configuration to minimize the runtime
of the state-of-the-art solver glucose (Audemard & Simon, 2009). We quickly found a
parameter configuration that appeared to yield new state-of-the-art performance on the
industrial instances of the SAT Challenge 20127; however, checking this configuration with

7. http://baldur.iti.kit.edu/SAT-Challenge-2012/
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Figure 3: Difference in test set performance as judged when trusting the target algorithm
(green) and using external solution checking (orange). We plot the penalized average run-
time (PAR10) scores of Glucose v2.1 on the industrial instances from the SAT Challenge
2012, as a function of time spent for configuration, when the configuration process trusted
Glucose v2.1 to be correct. We ran 12 SMAC runs and at each time step show the median
and quartiles of their incumbents’ scores. The green curve computes these scores trust-
ing the solutions Glucose returns, while the orange curve penalizes faulty configurations
with the worst value of 3000 (where faulty configurations are those that yield at least one
wrong result on the test instances; such configurations would, e.g., be disqualified in the
SAT competition). We emphasize that both curves are based on exactly the same set of 12
SMAC runs (which were broken in that they trusted Glucose rather than applying solution
checking) and only differ in their validation.

the authors of Glucose revealed that it led to a bug which made Glucose falsely report some
satisfiable instances as unsatisfiable.8

In Figure 3 we reconstruct this behaviour. We ran SMAC on Glucose v2.1 and evaluated
configurations found over time when trusting Glucose’s correctness at configuration time:
The green curve shows Glucose’s (buggy) outputs on the test instances, whereas the orange
curve scored each configuration using solution checking, and returning the worst possible
score for configurations that returned a wrong solution. After 300 to 3000 seconds, SMAC
found configurations that seemed better when trusting Glucose’s outputs, but that actually
sometimes returned wrong solutions, resulting in the true score (orange curve) going up
(getting worse) to the worst possible PAR10 score.

Best Practice Most of the issues above can be avoided by wrapping target algorithm
runs with a reliable piece of code that limits their resources and checks whether they yield
correct results. Cast differently, the job of this wrapper is to actually measure the cost
function c(θ, π) of interest, which should intuitively heavily penalize any sort of crashes or
bugs that lead to wrong results.

If enough computational time is available, we recommend to first run systems such
as SpyBug (Manthey & Lindauer, 2016) to find bugs in the configuration space, and to

8. The bug in Glucose version 2.1 was fixed after we reported it to the developers, and we are not aware of
any bugs in the newest Glucose version 4.1.
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either fix them or to exclude the faulty part of the configuration space from consideration.
Regardless of whether this is done or not, since it is infeasible to perfectly check the entire
configuration space, we always recommend to check the returned solution of the target
algorithms during the configuration process. For example, for SAT instances, our example
wrapper exploits the standard SAT checker tool routinely used in the SAT competitions to
verify the correctness of runs. For solvers that output unsatisfiability proofs, there are also
effective tools for checking these proofs (Heule, Hunt, & Wetzler, 2014).

3.2 Pitfall 2: Not Terminating Target Algorithm Runs Properly

Given the undecidability of the halting problem, target algorithm runs need to be limited
by some kind of runtime cutoff κmax to prevent poor configurations from running forever.
In many AI communities, it is a common practice to set a runtime cutoff as part of the cost
metric and measure the number of timeouts with that cutoff (e.g., κmax = 5000 seconds
in the SAT race series). In algorithm configuration, the ability to prematurely cut off
unsuccessful runs also enables adaptive capping (see Section 2). Therefore, it is essential
that target algorithm runs respect their cutoff. This pitfall is related to Pitfall 1 as the user
also needs to trust the target algorithm to work appropriately. While for Pitfall 1 we focus
on the returned solution, here we draw attention to the resource limitations.

Effect Consequences of target algorithm runs not respecting their cutoffs can include:

1. If the target algorithm always uses the maximal cutoff κmax and ignores an adapted
cutoff κ < κmax, the configuration process is slowed down since the benefits of adaptive
capping are given up;

2. If the target algorithm completely ignores the cutoff, the configuration process may
stall since the configurator waits for a slow target algorithm to terminate (which, in
the worst case, may never happen);

3. If a wrapper is used that fails to terminate the actual algorithm run but nevertheless
returns the control flow to the configurator after the cutoff time κ, then the slow runs
executed by the configurator will continue to run in parallel and overload the machine,
messing up the cost computation (e.g., wallclock time).

Example The latter (quite subtle) issue actually happened in a recent publication that
compared GGA++ and SMAC , in which a wrapper bug caused SMAC to perform poorly
(Ansótegui et al., 2015). The authors wrote a wrapper for SMAC that tried to terminate
its target algorithm runs (here: Glucose or Lingeling) after the specified cutoff time κ

by sending a KILL signal, but since it ran the target algorithm through a shell (using
subprocess.Popen(cmd, shell=True) in Python) the KILL signal only terminated the
shell process but not the actual target algorithm (which continued uninterrupted until
successful, sometimes for days). When attempting to reproduce the paper’s experiments
with the original wrapper kindly provided by the authors, over time more and more target
algorithms were spawned without being terminated, causing our 16-core machine to slow

870



Pitfalls and Best Practices for Algorithm Configuration

101 102 103 104 105

wallclock time spent for configuration [s]
200

250

300

350

400

PA
R1

0 
on

 te
st

 se
t SMAC with correct wrapper

SMAC with broken wrapper, not terminating unsuccessful runs

Figure 4: Effect of a broken wrapper that does not terminate target algorithm runs properly.
We show PAR10 test set performance for optimizing Cryptominisat with SMAC on Circuit
Fuzz instances, when using a correct and a broken wrapper during configuration, respec-
tively. We show median test performance (measured using a correct wrapper) with quartiles
across 80 runs of SMAC . Not terminating target algorithm runs properly eventually slowed
down the machine affecting runtime measurements.

down and eventually become unreachable. This issue demonstrates that SMAC heavily
relies on a robust wrapper that automatically terminates its target algorithm runs properly.9

To illustrate this issue in isolation, we compared SMAC using a working wrapper and a
broken version of it that returns the control flow to the configurator when the runtime cutoff
is reached, without terminating the target algorithm run process. Figure 4 shows the perfor-
mance achieved when SMAC is run with either wrapper to configure Cryptominisat (Soos,
2014) for penalized average runtime (PAR10) to solve Circuit Fuzz instances (Brummayer,
Lonsing, & Biere, 2012) as used in the CSSC 2014 (Hutter et al., 2017). We executed
80 SMAC runs for each wrapper, with 16 independent parallel runs each on five 16-core
machines. Both SMAC versions performed equally well until too many target algorithm
processes remained on the machines and prevented SMAC from progressing further. Only
on one of the five machines that ran SMAC with the broken wrapper, the runs terminated
after the specified wallclock-limit of 2 days; after an additional day, three of the remaining
machines were still frozen caused by overload and the fourth could not be reached at all.

Best Practice To avoid this pitfall, we recommend to use some well-tested, external piece
of code to reliably control and terminate target algorithm runs.

3.3 Pitfall 3: Slow File System

Related to Pitfall 2, another way to ruin runtime measurements by slowing down a machine
is to overload the used file system. Each target algorithm run typically has to read the given

9. In contrast to SMAC , GGA++ does not require a wrapper; in the experiments by Ansótegui et al.
(2015), GGA++ directly sent its KILL signal to the target algorithm and therefore did not suffer from
the same problem SMAC suffered from, which confounded the paper’s comparison between GGA++
and SMAC . Additionally, there was also a simple typo in the authors’ wrapper for SMAC in parsing
the target algorithm’s output (here: Glucose) that caused it to count all successful runs on unsatisfiable
instances as timeouts. Receiving wrong results for all unsatisfiable instances (about half the instance
set) severely affected SMAC ’s trajectory; this issue was only present in the wrapper for SMAC (and
therefore did not affect GGA++), confounding the comparison between GGA++ and SMAC further.
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problem instance and writes some log files; thus, executing many algorithm configuration
runs in parallel can stress the file system.

Effect Slowdowns caused by an overloaded file system can have a severe impact on run-
time measurements; in particular this is problematic because most algorithm configurators
measure their own configuration budget as wallclock time. Furthermore, these problems
are often not immediately recognizable (because everything runs fine when tested at small
scale) and sometimes only affect parts of a large set of experiments (as the overload might
only happen for a short time).

Example 1 Over the years, we have experienced file system issues on a variety of clusters
with shared file systems when target algorithm runs were allowed to write to the shared
network file system. When executing hundreds (or on one cluster, even thousands) of
algorithm configuration runs in parallel, this stressed the file system to the point where the
system became very slow for all users and we measured 100-fold overheads in individual
target algorithm evaluations. Writing target algorithm outputs to the local file system fixed
these issues.

Example 2 Distributing configuration runs across multiple nodes in a compute cluster
(e.g., in GGA, irace, or dSMAC ) can be error-prone if the configurators communicate via
the file system. In particular, we experienced issues with several shared network file systems
with asynchronous I/O; e.g., on one compute node a file was written, but that file was not
immediately accessible (or still empty) on other compute nodes. Often a second read access
resolved the problem, but this solution can be brittle; a change of parallelization strategy
may in that case yield more robust results.

Example 3 Even when writing target algorithm output to the local file system, we once
experienced 200-fold overheads in target algorithm runs (invocations of sub-second target
algorithm runs hanging for minutes) due to a subtle combination of issues when performing
hundreds of algorithm configuration experiments in parallel. On the Orcinus cluster (part
of Compute Canada’s Westgrid cluster), which uses a Lustre file system, we had made our
algorithm configuration benchmarks read-only to prevent accidental corruption. While that
first seemed like a good idea, it disallowed our Python wrapper to create .pyc bytecode files
and forced it to recompile at every invocation, which in turn triggered a stats call (similar to
ls on the Linux command line) for each run. Stats calls are known to be slow on the Lustre
file system, and executing them for each sub-second target algorithm run on hundreds of
compute nodes in parallel led to extreme file system slowdowns. After testing many other
possible reasons for the slowdowns, removing the read-only condition immediately fixed all
issues.

Best Practice Issues with shared file systems on compute clusters can have subtle reasons
and sometimes require close investigation (as in our Example 3). Nevertheless, most issues
can be avoided by using the faster local file system (typically /tmp/, or even better, a
temporary job-specific subdirectory thereof10) for all temporary files, and by measuring
CPU time instead of wallclock time (at least for sequential algorithms).

10. We note that on some modern Linux distributions, /tmp/ can be a RAM disk and therefore may use
resources allotted to the algorithm runs; in general, we recommend to make the choice about a fast
temporary directory specific to the compute cluster used.
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3.4 Pitfall 4: Handling Target Algorithm Runs Differently

The required functionalities of the target algorithm wrapper differ slightly for different
configurators. For example, SMAC and ParamILS trust the wrapper to terminate tar-
get algorithms, but GGA sends a KILL signal on its own (see also Pitfall 2). Therefore,
sometimes configurators are compared by using different target algorithm calls and mea-
surements. However, if this is not done properly, it can lead to a biased comparison between
configurators.

Effect Calling the target algorithm differently for different configurators can lead to dif-
ferent behaviors of the target algorithm and hence, to different returned performance values
for the same input. If the configurators receive different performance measurements, they
will optimize different objective functions and their runs become incomparable.

Example During the early development of SMAC (before any publication), we used the
same wrappers for ParamILS and SMAC but an absolute path to the problem instance
for one and a relative path for the other. Even this tiny difference lead to reproducible
differences of runtime measurements of up to 20% when optimizing an algorithm imple-
mented in UBCSAT 1.1.0 (Tompkins & Hoos, 2005). The reason was that that version
of UBCSAT stored its callstring in its heap space such that the number of characters in
the instance name affected data locality and therefore the number of cache misses and the
runtime (whereas the number of search steps stayed the same).11 This subtle issue demon-
strates the importance of using the same wrapper for all configurators being compared such
that exactly the same target algorithm calls are used.

Best Practice We recommend to use a single wrapper when comparing configurators
against each other, in order to guarantee that all configurators optimize the same objective.
For studies comparing configurators, it is also paramount to use tried-and-tested publicly
available benchmark scenarios (lowering the risk of typos, etc; see also Footnote 9); our
algorithm configuration benchmark library AClib (Hutter et al., 2014a) provides a very
broad collection of such benchmarks.

4. Pitfalls and Best Practices Concerning Over-Tuning

A common issue in applying algorithm configuration is the over-tuning effect (Birattari,
2004; Hutter, Hoos, & Stützle, 2007b; Birattari & Kacprzyk, 2009; Hutter et al., 2009)
Over-tuning is very related to the concept of over-fitting in machine learning and denotes
the phenomenon of finding parameter configurations that yield strong performance for the
training task but do not generalize to test tasks. We emphasize that over-tuning effects
are not necessarily only related to the set of training instances used, but can also include
the characteristics of the experimental setup such as the resource limitations and bugs in
the solver (see Pitfall 1). To safeguard against over-tuning effects, it is crucial to evaluate
generalization performance (typically, using a set of benchmark instances disjoint from the
benchmarks used for training). In the following, we discuss three pitfalls related to over-
tuning.

11. This issue is fixed in later versions of UBCSAT.
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Figure 5: Optimizing Saps with SMAC on one “quasigroup with holes” instance (QWH)
and different numbers of random seeds. Each line in the left plot shows the median and
quartiles of the estimated training cost and each line in the right plot shows the median
and quartiles of the test cost of Saps over time across 10 runs of SMAC .

4.1 Pitfall 5: Over-tuning to Random Seeds

Many algorithms are randomized (e.g., SAT solvers or AI planners). However, in many
communities, the random seeds of these algorithms are fixed to simulate a deterministic
behavior and to ensure reproducibility of benchmark results.

Effect Ignoring the stochasticity of an algorithm in algorithm configuration by fixing the
random seed can lead to over-tuning effects to this seed, i.e., finding a configuration that
yields good performance with this fixed random seed (or set of seeds) but poor performance
when used with other random seeds. The extreme case is not to only fix the random seed,
but to tune the random seed, which can lead to an even stronger over-tuning effect.12

Example To illustrate over-tuning to a random seed in its purest form, independent of
a difference between training and test instances, we optimized the parameters of the local-
search SAT solver Saps (Hutter, Tompkins, & Hoos, 2002) on a single instance, the only
difference between training and test being the set of random seeds used. We used different
settings of SMAC to handle random seeds: We compared SMAC using a fixed set of 1, 10
or 100 random seeds for each target algorithm run and standard SMAC , which handled the
random seed itself (using a larger number of seeds to evaluate the best configurations).

As a cost metric, we minimized the average number of local search steps (the solver’s
so-called runlength) since this is perfectly reproducible. For the parameter configurations
recommended at each step of each SMAC run, we measured SMAC ’s training cost (as the
mean across the respective sets of seeds discussed above) as well as its test cost (the mean

12. We note that, in principle, one could construct situations where fixing or even optimizing the seed could
lead to good performance if that seed is used in all future experiments and a large number of instances
is available to obtain generalization to other instances. However, we believe that the potential misuse of
tuning seeds outweighs any potential benefits.
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runlength across 1000 fixed random seeds that were disjoint from the sets of seeds used for
configuration) 13.

Figure 5 shows median costs across 10 SMAC runs, contrasting training cost (left)
and test cost (right). On training, SMAC , using 1 seed per evaluation quickly improved
and achieved the best training cost on its one random seed, but its performance does not
generalize to the test seeds. SMAC , using 10 or 100 seeds per evaluation were slower but
generalized better, and standard SMAC was both fast and generalized best by adaptively
handling the number of seeds to run for each configuration.

Best Practice For randomized algorithms, we recommend to tune parameter configu-
rations across different random seeds—most configurators will take care of the required
number of random seeds if the corresponding options are used. If a configuration’s perfor-
mance does not even generalize well to new random seeds, we expect it to also not generalize
well to new instances. Furthermore, the number of available instances is often restricted,
but there are infinitely many random seeds which can be easily sampled. Likewise, when
there are only few test instances, at validation time we recommend to perform multiple runs
with different random seeds for each test instance.

4.2 Pitfall 6: Over-tuning to Training Instances

The most common over-tuning effect is over-tuning to the set of training instances, i.e., find-
ing configurations that perform well on training instances but not on new unseen instances.
This can happen if the training instances are not representative for the test instances; in
particular this is often an issue if the training instance set is too small or the instances are
not homogeneous (Hutter, Hoos, & Leyton-Brown, 2010b; Schneider & Hoos, 2012), i.e., if
there exists no single configuration with strong performance for all instances.

Effect In practice, over-tuned configurations that only perform well on a small finite set
of instances are of little value, because users are typically interested in configurations that
also perform well on new instances. Phrasing this more generally, research insights should
also generalize to experiments with similar characteristics.

Example To illustrate this problem, we studied training and test performance of various
configurations for three exemplary benchmarks (see Figure 6):

Clasp on N-Rooks We studied the runtime of the solver Clasp (Gebser et al., 2012) on
N-Rooks instances (Manthey & Steinke, 2014a), a benchmark from the Configurable
SAT Solver Challenge (CSSC 2014; Hutter et al., 2017). In this case, the runtimes on
the training and test set were almost perfectly linearly correlated, with a Spearman
correlation coefficient of 0.99, i.e., the ranking of the configurations on both sets is
nearly identical; this is also visualized in Figure 6a. This is a very good case for
applying algorithm configuration, and, correspondingly, in the CSSC 2014 algorithm
configuration yielded large improvements for this benchmark.

Lingeling on mixed SAT We reconstructed a benchmark from Ansótegui et al. (2015)
in which they optimized Lingeling (Biere, 2014) on a mixed set of industrial SAT

13. Note that Hutter et al. (2007b) used the median to aggregate across the 1000 seeds, resulting in slightly
lower training and test runlengths.
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instances. Instead of randomly splitting the data into train and test instances, they
first created a training set by removing hard instances (i.e., not solved within the
cutoff time by reference solvers) and used these remaining hard instances as test
instances. Figure 6b shows that SMAC improved the runtime of Lingeling on the
training set but that these improvements did not generalize to the test instances. In
fact, the training and test scores of the optimized configurations (orange squares) are
only weakly correlated (Spearman correlation coefficient of 0.15). The benchmark’s
heterogeneity and the mismatch between training and test set make this benchmark
poorly suited for algorithm configuration.

Clasp on LABS Figure 6c shows another benchmark from the CSSC: configuration of
Clasp on SAT-encoded low autocorrelation binary sequence (LABS) benchmarks (Mu-
grauer & Balint, 2013). This illustrates a rare worst case for algorithm configuration,
in which performance even degrades on the training set, which is possible due to
SMAC ’s (and any other configurator’s) racing approach: the configurator already
changes the incumbent before all training instances have been evaluated, and if a
subset is not representative of the full set this may lead to performance degradation
on the full set.

While we have occasionally observed such strong heterogeneity on instances with
very heterogeneous sources, it was very surprising to observe this in a case where
all instances stemmed from the same instance family. We therefore analyzed this
benchmark further (Hutter et al., 2017), showing that twice as many SMAC runs
with a fivefold larger configuration budget managed to improve training performance
slightly. However, that improvement on the training set still did not generalize to
the test set due to the benchmark’s heterogeneity. (Although visually not apparent
from Figure 6c, for this benchmark, the correlation between scores on training and
test instances was quite low (0.42) for the 20% best-performing randomly sampled
configurations). Again, for such heterogeneous benchmarks we recommend the usage
of portfolio approaches.

Best Practice Over-tuning is often not easy to fully rule out by design, since the effect can
only be measured by assessing test performance after the configuration process completed
(for example by scatter plots, such as in Figure 6). Nevertheless, the following strategies
minimize the risk of over-tuning (see also Section 5):

1. The training instances should be representative of the test instances;

2. The training set should be relatively large (typically hundreds to thousands of in-
stances) to increase the chance of being representative;

3. The instance sets should stem from a similar application, use context, etc., increasing
the likelihood that they have similar structures which can be exploited with similar
solution strategies;

4. If the instance set is heterogeneous, portfolio approaches (Xu et al., 2008; Kadioglu
et al., 2011; Malitsky et al., 2012; Lindauer et al., 2015) or instance-specific algorithm
configuration (Xu et al., 2010; Kadioglu et al., 2010) should be used.
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(a) Clasp on N-Rooks (b) Lingeling on mixed SAT (c) Clasp on LABS

Figure 6: Comparing training and test performance of different configurations to study
whether these performances on both sets are correlated. Green dots indicate randomly
sampled configurations, the black cross marks the performance of the default configuration
of the solver, and orange squares correspond to incumbent configurations of 16 SMAC runs.

4.3 Pitfall 7: Over-tuning to a Particular Machine Type

In the age of cloud computing and large compute clusters, an obvious idea is to use these
remotely-accessible compute resources to benchmark algorithms and configure them. How-
ever, in the end, these remote machines are not always the production systems the al-
gorithms are used on in the end. Geschwender, Hutter, Kotthoff, Malitsky, Hoos, and
Leyton-Brown (2014) indicated in a preliminary study that it is possible in principle to
configure algorithms in the cloud, and that the found configurations perform well on an-
other machine. Unfortunately, recent other experiments showed that this does not hold for
all kinds of algorithms – for example, the performance of solvers for SAT (Aigner, Biere,
Kirsch, Niemetz, & Preiner, 2013) and mixed integer programming (Lodi & Tramontani,
2014; Koch et al., 2011) can depend strongly on the used machine type (including hardware,
operating system and installed software libraries).

Effect Some algorithms are machine-dependent and obtain different results depending on
the hardware they run on. Being unaware of this can ruin both, a successful application
and a comparison of configuration methods, in two ways: Firstly, when configuring on one
system the best found configuration might perform poorly on another system. Secondly, the
ranking of the best found configurations of target algorithms on one system might change
when rerunning the experiments on a different system.

Example An example for such machine-dependent algorithms are SAT solvers that are
often highly optimized against cache misses (Aigner et al., 2013). To study the effect
of different machines, we optimized three SAT solvers from the configurable SAT solver
challenge (Hutter et al., 2017), namely Minisat-HACK-999ED (Oh, 2014), Clasp (Gebser
et al., 2012) and Lingeling (Biere, 2014) on Circuit Fuzz instances (Brummayer et al.,
2012). As different machine types, we used AWS m4.4xlarge instances with 2.4-GHz Intel
Xeon E5-2676 v3 CPUs with 30MB level-3 cache and the META-cluster at the University

877



Eggensperger, Lindauer, & Hutter

AWS META-Cluster
solver Rank PAR10 Rank PAR10

Minisat-HACK-999ED 1 187 2 205
Clasp 2 215 1 193
Lingeling 3 231 3 208

Table 1: Three SAT solvers from the configurable SAT solver challenge on Circuit Fuzz
instances on two different hardware systems.

of Freiburg with 2.6GHz Intel Xeon E5-2650v2 8-core CPUs with 20 MB L3 cache. On both
systems, we ran Ubuntu 14.04 64bit and allowed for a memory limit of 3GB for each solver
run. The binaries were statically compiled such that they are not linked against different
libraries on the different systems. For each solver we ran 12 independent SMAC runs and
validated the cost of the best found configuration for each solver on test instances on the
same system.

Table 1 lists the ranking and the PAR10 scores of the solvers on each machine (showing
the test cost of the configuration performing best on training); we note that the PAR10
scores are only comparable on the same system. In both environments, Lingeling ended
up on rank 3, but the ranks of Clasp and Minisat-HACK-999ED differed between the two
environments: if the AWS cloud would be our environment for running AC experiments,
we would decide for Minisat-HACK-999ED , but this would not be the best choice on the
META-cluster. We note that, since we picked the best of 12 SMAC runs, due to the high
variance of extremal statistics, the exact numbers of this experiments might vary in a rerun.
Since we did not have enough compute resources on AWS for carrying out multiple runs,
to gain additional confidence in our conclusions, we carried out an additional experiment:
we validated the configurations found on AWS on the META-cluster and found that in
that setting the configured Minisat-HACK-999ED performed even worse than Lingeling
and Clasp. Therefore, we conclude that the ranking of configured algorithms depends on
the hardware.

Best Practice We note that this pitfall exists only for machine-sensitive algorithms.
Therefore, we recommend to investigate whether an algorithm at hand has machine-dependent
performance, for example, by validating the performance of various configurations on both
the system used for configuration and the production system.

5. Further Recommendations for Effective Configuration

In the following, we describe recommendations for users of algorithm configuration systems
to obtain parameter configurations that will perform better in production. Some of these
recommendations are rules of thumb, since the involved factors for a successful configuration
can be very complex and can change across configuration scenarios. For general empirical
algorithmics, McGeoch (2012) recommends further best practices, including design, reports
and analysis of computational experiments.
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5.1 Training and Test Sets

As discussed before, following standard practice, we strongly recommend to split the avail-
able instances into a training and a test set to obtain an unbiased estimate of generalization
performance from the test set (Birattari & Kacprzyk, 2009). To obtain trivial parallelization
of randomized configuration procedures, we recommend to run n independent configuration
runs and use the training set to select the best of the n resulting configurations (Hutter
et al., 2012). Only that single chosen configuration should be evaluated on the test set; we
explicitly note that we cannot select the configuration that performs best on the test set,
because that would amount to peeking at our test data and render performance estimates
on the test set biased.

5.2 Representative Instances and Runtime Cutoff

Intuitively, instances for which every parameter configuration times out do not help the
configurator to make progress. One strategy can be to remove these from the training
set. However, this comes with the risk to bias the training set towards easy instances and
should be used with caution. Generally, we therefore recommend to use training instances
for the configuration process that are representative of the ones to be solved later. Using
training instances from a range of hardness can also often help yield configurations that
generalize (Hoos, Kaufmann, Schaub, & Schneider, 2013). If feasible, we recommend to
select instances and runtime cutoffs such that roughly 75% or more of the training instances
used during configuration can be solved by the initial parameter configuration within the
cutoff. We emphasize that – while the configuration protocol may in principle choose to
subsample the training instances in arbitrary ways – the test set should never be touched
and not pre-evaluated to ensure an unbiased cost estimate of the optimized configurations in
the end (see Pitfall 6). To select a good training instance set, Bayless, Tompkins, and Hoos
(2014) proposed a way to quantify whether an instance set is a good proxy for another
instance set. Furthermore, Styles and Hoos (2015) proposed a splitting strategy of the
instances for better scaling to hard instances: They split the instances into a training,
validation and test set to use easy instances during configuration for fast progress and
select a configuration on the harder validation set such that the configuration will perform
well on the hard test set.

5.3 Homogeneous vs Heterogenous Instance Sets

Sometimes configurators are used to obtain well-performing and robust configurations on a
heterogeneous instance set. However, we know from algorithm selection (Rice, 1976; Kot-
thoff, 2014) that often no single configuration exists that performs well for all instances
in a heterogeneous set, but a portfolio of configurations is required to obtain good perfor-
mance (Xu, Hutter, Hoos, & Leyton-Brown, 2011; Kadioglu et al., 2010). Furthermore,
the task of algorithm configuration becomes a lot harder if all instances can be solved best
with very different configurations. Therefore, we recommend to use algorithm configuration
mainly on homogeneous instance sets. Furthermore, the size of the used instance set should
be adjusted accordingly to the homogeneity of the instance set: on homogeneous instance
sets, 50 instances might suffice for good generalization performance to new instances, but
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on fairly heterogeneous instance sets, we recommend to use at least 300 or, if possible, more
than 1000 instances to obtain a robust parameter configuration.

5.4 Appropriate Configuration Settings

To use configurators, the user has to set the budget available for the configurator. If the
configuration budget is too small, the configurator might make little or no progress within it.
In contrast, if the configuration budget is too large, we waste a lot of time and computational
resources because the configurator might converge long before the budget is used up. A good
rule of thumb in our experience is to use a budget that equals at least the expected runtime
of the default configuration on 200 to 1000 instances. In practice, an effective configuration
budget strongly depends on several factors, including heterogeneity of the instance set (more
heterogeneous instance sets require a larger configuration budget) or size of the configuration
space (larger configuration spaces require more time to search effectively, Hutter et al.,
2017). Finally, if the configurator finds better performing configurations quickly, then the
estimate of the total runtime based on the runtime of the default configuration might be
too conservative.

5.5 Efficient Use of Parallel Resources

Some configurators (such as GGA, irace and dSMAC ) can make use of parallel resources,
while others (such as ParamILS and SMAC ) benefit from executing several independent
parallel runs14 (and using the result from the one with the best training set performance;
see, e.g., Hutter et al., 2012). In the special case of GGA, using more parallel resources can
actually improve the adaptive capping mechanism. Given k cores, we therefore recommend
to execute one GGA run with k cores, but k independent ParamILS or SMAC runs with
one core each. While this protocol was not used in early works15, it has been used in more
recent evaluations (Ansótegui et al., 2015; Hutter et al., 2017).

5.6 Reasonable Configuration Space

Another challenge in using algorithm configuration systems is to find the best configuration
space. The user has to decide which parameters to optimize and which ranges to allow. The
optimal set of parameters to configure is often not clear and in case of doubt, we recommend
to add more parameters to the configuration space and to use generous value ranges.

However, we note that unreasonably large configuration spaces are hard to configure
and require substantially larger configuration budgets. For example, the state-of-the-art
SAT solver Lingeling (Biere, 2013) has more than 300 parameters and most of them have
a value range between 0 and 32bit maxint, but most of these parameters are either not
really relevant for optimizing Lingeling ’s runtime or the relevant value ranges are much
smaller. Even though Lingeling can already substantially benefit from configuration we
expect that with a more carefully designed configuration space even better results could be

14. In order to perform k independent runs with ParamILS or SMAC , one should use a different seed
(equivalent to the numRun parameter) for each run.

15. Hutter et al. (2011) only used a single core per run of GGA, but still followed the protocol by Ansótegui
et al. (2009) to race groups of 8 runs in parallel per core; therefore, GGA’s adaptive capping mechanism
was the same in that work as in Ansótegui et al. (2009).
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obtained. Therefore, we recommend to avoid including such parameters and to use smaller
value ranges if corresponding expert knowledge is available.

Nevertheless, configurators have already been successfully applied to such large configu-
ration spaces: GGA++ has been used to optimize over 100 parameters of Lingeling (Ansótegui
et al., 2015), irace has been used to optimize over 200 parameters of the mixed integer pro-
gramming solver SCIP (López-Ibáñez & Stützle, 2014; Achterberg, 2009) and with SMAC ,
we have optimized configuration spaces with over 900 parameters (Lindauer, Hoos, Leyton-
Brown, & Schaub, 2017a).

5.7 Which Parameters to Tune

Parameters should never be part of the configuration space if they change the semantics
of the problem to be solved; e.g., do not tune the allowed memory or parameters that
control whether a run is counted as successful (such as the allowed optimality gap in an
optimization setting). Furthermore, to obtain an unbiased estimate of a configuration’s
performance across seeds one should not include the seed (or parameters with a similar
effect) as a tunable parameter.

5.8 Runtime Metrics

A common cost metric in algorithm configuration is runtime. Obtaining clean runtime
measurements is a problem that is by no means limited to algorithm configuration and
also appears in general empirical algorithmics (McGeoch, 2012). However, in algorithm
configuration, this problem can be even more tricky, because benchmark machines can be
influenced by heavy I/O load on a shared file system created by multiple configuration runs
(see Pitfall 3). Furthermore, other running processes on the same machine can influence the
measurements. The latter issue can be fixed by using processor affinity to bind processes
to a certain CPU. Therefore, we recommend to measure CPU time instead of wallclock
time. However, binding processes does not grant exclusive usage of the assigned cores; thus
other interfering factors such as operation system load and shared caches remain. Also,
CPU time can sometimes be brittle; e.g., its resolution can be insufficient for very short
target algorithm runs, such as milliseconds. We note that algorithm configuration can be
used to optimize runtime at such very small scales, but extreme care needs to be taken
to avoid any pitfalls associated to measuring runtimes. When possible, a better solution
for this case is to measure and optimize elementary operations, such as search steps of
a local search algorithm or MEMS (number of memory accesses, Knuth, 2011); however,
it has to be ensured that such proxy metrics correlate well with runtime. Additionally,
expensive one-time operations, such as downloading files or setting up should not be part
of the measured runtime and need to be ignored, e.g. via the wrapper. Finally, it remains
an open question how robust are different ways to measure runtime and related metrics and
how do they influence algorithm configuration.
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5.9 Monitoring Experiments

Even a well designed experiment can go wrong because of software and hardware issues.
This makes conducting a flawless experiment challenging. However, the risk for falling for
a pitfall can be minimized when carefully monitoring ongoing experiments.

Investigating at the first bad sign can save a lot of time and resources. An unexpectedly
high load on a machine or swapping memory can be signs of misconfigured scripts. More
subtle effects that should also raise one’s attention include the following: (1) the target
algorithm uses much more wallclock time than the CPU time reported to the configurator;
(2) many configurations crash; or (3) there is a large variation between the performances of
independent configuration runs that only differ in their seeds.

We recommend to analyze ongoing experiments with respect to these signs and make use
of automated tools, e.g. CAVE (Biedenkapp et al., 2018), to analyze and visualize experi-
mental results in a common and unified way independently of the underlying configurator
and problem.

5.10 Comparing Configurators on Existing, Open-Source Benchmarks

Although algorithm configuration has been well established for over a decade, nearly every
new paper on this topic uses a new set of benchmarks to compare different configurators.
This makes it harder to assess progress in the field, and every new benchmark could again
suffer from one of the pitfalls described above. Therefore, we recommend to use existing and
open-source algorithm configuration benchmarks that are already well tested and can be
freely used by the community. The only existing library of such benchmarks we are aware
of is the algorithm configuration library AClib (Hutter et al., 2014a), which comprises
326 benchmarks (in version 1.2) based on open-source scripts and allows users to pick
benchmarks from different domains (e.g., mixed integer programming, AI Planning, SAT,
and machine learning) and with different characteristics (e.g., small or large configuration
spaces).

6. A Generic Wrapper: Towards a Reliable and Unified AC Interface

Learning from the pitfalls above, our conclusion is that most of these pitfalls can be either
completely prevented or their risk of occurrence can be substantially reduced by using
a generic wrapper which wraps the executions of all target algorithm runs and has the
following features:

1. Parsing the input arguments provided by the configurator in a uniform way such that
a user only needs to implement a function to translate them into a call of the target
algorithm;

2. Reliably limiting the run’s computational resources (runtime and memory consump-
tion);

3. Measuring the cost metric in a standardized way (for which a user only needs to
implement a function to parse the output of the target algorithm); and

4. Returning the output in a standardized way.
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We note that some pitfalls cannot be tested easily. E.g., the user is still responsible for
domain-dependent solution checking and checking whether the configurator is used as in-
tended. However, if using a wrapper with the features above most pitfalls can be avoided.
To demonstrate the usefulness of such a generic wrapper, and to provide a practical proposal
for avoiding many of the described pitfalls, we implemented such a wrapper and are already
using it in the algorithm configuration library AClib (Hutter et al., 2014a), to wrap 20
different target algorithms.16 To address the pitfalls mentioned above, our generic wrapper
implements the following best practices:

Resource Limitation The tool runsolver (Roussel, 2011) has been used for several years
by the SAT community, in SAT competitions and by many SAT developers, to limit
the runtime and memory consumption of an algorithm run.17 We also use this tool
in the generic wrapper to reliably limit such resources and to measure algorithm
runtimes. This addresses both Pifall 1 (“Trusting Your Target Algorithm”) and Pitfall
2 (“Not Terminating Target Algorithm Runs Properly”).

Solution Checking for SAT One of the exemplary instantiations of the generic wrapper
we provide for SAT solvers implements solution checking to avoid issues of algorithm
correctness (Pitfall 1: “Trusting Your Target Algorithm”).

Writing to $TMPDIR On most high-performance clusters these days, the environment
variable $TMPDIR specifies a temporary directory on a local file system (not on a
shared file system) of a compute node that allows for fast write and read access without
affecting the remaining cluster. If this environment variable is set, the generic wrapper
writes all temporary files (e.g., log files of the runsolver) to this folder. It only copies
these files to a permanent file system in case of a crash of the target algorithm to allow
debugging of these crashes. This addresses Pitfall 3 (“Slow File System”).

Furthermore, the use of the generic wrapper has the following advantages compared to
implementing the same features directly in an algorithm configurator (which is nevertheless
a feasible approach for some use cases):

Fair Comparisons As discussed in Pitfall 4 (“Handling Target Algorithm Runs Differ-
ently”), to compare different configurators, using a uniform wrapper will ensure that
all configurators optimize the same objective function. Even if a wrapper turns out
to have a bug, at least all configurators would be affected in the same way.

Easy Use of Different Configurators So far, most configurators implement different
interfaces to call target algorithms. Therefore, users often implement only one of
the interfaces and have not explored which of the available configurator is in fact
the best one for their configuration problem. Using a generic wrapper (implementing

16. Our package called GenericWrapper4AC is available at https://github.com/automl/

GenericWrapper4AC.
17. The runsolver uses process group IDs to keep track of running processes For example, if the memory

or time limit is exceeded, it traverses the process tree bottom-up to terminate all processes that run.
However, we note that it is possible to bypass this procedure if a process forks itself or starts a process
on a different machine, which can neither be detected nor monitored by the runsolver.
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either a unified interface or several configurator-specific interfaces) will also help users
to easily use several configurators for their target algorithms.

Easier Implementation of New Configurators The implementation of new configura-
tors is not an easy task, mainly because the handling of target algorithm runs may
require many lines of code and is often still brittle. To reduce the burden on config-
urator developers, the generic wrapper can take over some of the functions required
in this setting (e.g., resource limitations). Also, when translating a configurator to
a new programming language, one can ensure that functionalities regarding handling
that target algorithm remain exactly the same.

Open Source and Community Since the generic wrapper is an open-source implemen-
tation, we believe that the community will improve the code base and thus improve
its quality and robustness over time.

Appendix A provides additional details about our generic wrapper, and an example wrapper
for a SAT solver.

7. Conclusion

Empirically comparing algorithms correctly is hard. This is well known and true for almost
every empirical study that involves running third-party code, stochastic algorithms and
computationally expensive computations and therefore also applies to algorithm configura-
tion. Subtle mistakes, such as measuring the wrong metric or running parallel experiments
without meticulous resource management, can heavily bias the outcome. In this work, we
pointed out several pitfalls that can occur in running algorithm configuration experiments
and provide concrete examples of how these can impact results. We found that many of
these pitfalls result from treating the objective function differently in different configurators,
from issues in allocating and monitoring resource consumption, and from various issues con-
cerning over-tuning. To prevent most of these pitfalls we share recommendations and best
practices for conducting algorithm configuration experiments, which we hope to be useful
for both novices and experts. We also provide an open-source implementation of a generic
wrapper that provides a unified interface for the communication between target algorithms
and configurators and for limiting resource consumption.

Acknowledgements
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Appendix A. Details on GenericWrapper4AC

Listing 1 shows an example for how to extend the GenericWrapper4AC to wrap the well-
known SAT Solver MiniSAT (Eén & Sörensson, 2004). Since the output format is stan-
dardized in the SAT community, we already provide a domain-specific generic wrapper,
called SatWrapper, which can parse and verify the SAT solver’s output using standard
tools from the annual SAT competitions. Therefore, SAT solver users only need to imple-
ment one method, which constructs a command line call string for their SAT solver from
the provided input arguments (parameter settings, instance, cutoff time, seed).

1 class MiniSATWrapper ( SatWrapper ) :
2
3 def get command l ine args ( s e l f , runargs , c on f i g ) :
4 cmd = ”min i sat −rnd−seed=%d” %(runargs [ ” seed ” ] )
5 for name , va lue in c on f i g . i tems ( ) :
6 cmd += ” %s=%s” %(name , va lue )
7 cmd += ” %s” %(runargs [ ” i n s t anc e ” ] )
8 return cmd

Listing 1: Example GenericWrapper for SAT Solver MiniSAT , building on our domain-
specific SatWrapper

In the example shown, the command line call of MiniSAT consists of passing the random
seed (Line 4), adding all parameters in the format parameter=value (Lines 5 and 6), and
appending the CNF instance name at the end (Line 7). Importantly, it takes care of all
aspects of handling cutoff times, measuring runtimes, etc, to avoid the pitfalls discussed in
Section 3.

1 class SimpleWrapper ( AbstractWrapper ) :
2
3 def get command l ine args ( s e l f , runargs , c on f i g ) :
4 [ . . . ]
5
6 def p r o c e s s r e s u l t s ( s e l f , fp , e x i t c od e ) :
7 try :
8 resultMap = { ’ s t a tu s ’ : ’SUCCESS ’ , ’ c o s t ’ : f loat ( fp . read ( ) ) }
9 except ValueError :

10 resultMap = { ’ s t a tu s ’ : ’CRASHED’ }
11
12 return resultMap

Listing 2: Example GenericWrapper from scratch

For users of algorithm configuration outside SAT solving, Listing 2 shows an example for
how to write a function process results to parse algorithm outputs. Let us assume that
the target algorithm only prints the target cost to be minimized (similar to the format of
irace, López-Ibáñez et al., 2016). Reading the output of the provided file pointer fp, the
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function builds and returns a dictionary which includes the cost value and a status, which is
either SUCCESS if the target algorithm printed only a single number or CRASHED otherwise.
Other states can be TIMEOUT for using more than the cutoff time κ or ABORT to signal the
configurator to abort the AC experiment because of major issues. Furthermore, the exit
code of the target algorithm run is also provided (but not used in our example). Another
possible functionality that is not shown here is to implement a (domain-specific) method to
verify the target algorithm’s returned solution.

Except these two target algorithm-specific functions, the GenericWrapper4AC handles
everything else, including

• Parsing the input format; native interfaces to ParamILS , ROAR and SMAC are
supported right now, and an additional layer to run GGA(++) and irace is available
as well. (see AClib218 for examples).

• Calling the target algorithm and limiting its resource limits using the runsolver

tool (Roussel, 2011)

• Measuring the CPU time of the target algorithm run (using runsolver)

• Returning the cost of the target algorithm run to the configurator

The GenericWrapper4AC is available at GitHub and can be easily installed via python

setup.py install (including the runsolver) and runs on UNIX systems.
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Hutter, F., Hoos, H., & Stützle, T. (2007b). Automatic algorithm configuration based
on local search. In Holte, R., & Howe, A. (Eds.), Proceedings of the Twenty-second
National Conference on Artificial Intelligence (AAAI’07), pp. 1152–1157. AAAI Press.

Hutter, F., Lindauer, M., Balint, A., Bayless, S., Hoos, H., & Leyton-Brown, K. (2017).
The configurable SAT solver challenge (CSSC). Artificial Intelligence, 243, 1–25.
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