Pitfalls of OWL-S —
A Practical Semantic Web Use Case

Steffen Balzer

Dept. of Artifical Intelligence
University of Ulm
Ulm, Germany

balzer@informatik.uni-
ulm.de

ABSTRACT

OWL-S is a combined effort of the Semantic Web and the
Web Service community to facilitate an intelligent service
provisioning on the Semantic Web. The vision of OWL-S
includes automatic service discovery, invocation, composi-
tion, orchestration and monitoring of Web-Services through
their semantic descriptions. In this paper, we investigate
the practical applicability of the current OWL-S specifi-
cation and show that, in spite of the large momentum of
OWL-S, significantly more work needs to be done before
the vision of truly intelligent Semantic Web Services can be-
come true. We therefore study the case of an autonomous
travel agent that helps users with online hotel arrangements.
The aim of our work is twofold: on the one side, we show
step-by-step how a prototypical implementation can be real-
ized based on current semantic technologies around UDDI,
WSDL, and SOAP. On the other hand, we reveal pitfalls
in the current version of OWL-S that severely limit its sup-
port for mechanizing service discovery, configuration, com-
bination and automated execution. Throughout the paper,
we present practical solutions and workarounds to existing
OWL-S shortcomings and hope to therewith further stimu-
late the ongoing work on Semantic Web Services.

Categories and Subject Descriptors: H.4 [Information
Systems Applications]: Miscellaneous

General Terms: Experimentation, Languages
Keywords: OWL-S, Semantic Web Services

1. INTRODUCTION

Web services are Internet-based, distributed modular ap-
plications that provide standard interfaces and communica-
tion protocols aiming at efficient and effective service inte-
gration. In times of the ubiquitous Internet, the Web Service
paradigm is expected to substantially alter the world of mod-
ern business processes. By now web services have started to

Permission to make digital or hard copies of all or part of this work for

Thorsten Liebig

Dept. of Artifical Intelligence
University of Ulm
Ulm, Germany

liebig@informatik.uni-
ulm.de

Matthias Wagner

DoCoMo Communications
Laboratories Europe GmbH
Munich, Germany

wagner@docomolab-
euro.com

show their usefulness in a wide variety of domains includ-
ing applications in business-to-business integration, business
process integration and management, e-sourcing and content
distribution.

In terms of basic information about service providers as
well as service invocation and integration details, web service
advertisements are made available on an Web-wide network
of UDDI registries for Universal Description, Discovery and
Integration [14]. On the basis of the web services Descrip-
tion Language (WSDL) [4], UDDI is designed to function
in a fashion similar to white pages or yellow pages, where
businesses and services can be looked up by name and/or by
standardized service taxonomies. Though UDDI and WSDL
have become the de facto standard in the field they still suf-
fer from conceptual shortcomings: UDDI is limited to key-
word matching and does not support any kind of semantic
matching that would be necessary for a flexible matching
of service advertisements to service requests. On the other
hand, research in the area of the so-called Semantic Web
seeks a solution to this unsatisfying situation. Generally
speaking, the Semantic Web encompasses efforts to pop-
ulate the Web with content having formal semantics and
rich service descriptions. OWL-S [1] is the most prominent
amongst different semantic efforts around UDDI; WSDL and
SOAP that try to enable automated agents to reason about
web service descriptions and to perform intelligent service
discovery, comparison and composition.

In this paper, we study the practical applicability of the
current OWL-S specification through the case of an au-
tonomous travel agent . This paper is organized as follows:
Section 2 briefly introduces the current OWL-S 1.0 stan-
dard. Section 3 sketches the running examples of our paper
and gives further insights into major design issues. Section
4 gives an overview of our testbed implementation. Section
5 highlights the major pitfalls of OWL-S revealed during
prototyping. Here, we address issues concerned with the va-
lidity of OWL-S documents, profile matchmaking and pro-
cess execution. We present workarounds to current OWL-S
shortcomings before we wrap-up our critical discussions in
section 6 and summarize our results in section 7. Finally,
section 8 presents IRS-IT and WSMO as two major related

personal or classroom use is granted without fee provided that copies areapproaches.

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific 2. OWL-S

permission and/or a fee.
ICSOC’04,November 15-19, 2004, New York, New York, USA.
Copyright 2004 ACM 1-58113-871-7/04/001355.00.

OWL-S is an ontology-based approach to the semantic de-
scription of web services that is inspired by other research

this: http://www.daml. i l-s/1.

hasParameter

,,,,, oo _hasinput

hasOutput

" hasPrecondition

hasEffect’

=1 parameterType serv: http://www.daml.org/services/owl-s/1.0/Service.owl

AN
;;;;; owl:subClassOf

lowl:ObjectProperty] ’
........ CompositeProcess

serv:ServiceModel

[owl:unionOf]

realizedBy

SimpleProcess

| expandsTo

Y

ProcessModel

i =1 hasProcess

computedinput

=1 composedOf
,,,,,,,,,,, »b@

,,r"components

-~ components

Figure 1: OWL-S process ontology

in the area of the semantic web that encompasses efforts to
populate the web with content and services having formal
semantics. The ultimate goal of OWL-S is to provide an on-
tology that allows software agents to discover, execute and
compose web services automatically. Currently the struc-
ture of the OWL-S ontology is threefold and consists of a
service profile for advertising and discovering services, a pro-
cess model which gives a detailed description of a service’s
operation and a service grounding which provides details on
how to interoperate with a service via message exchange.
To enable automatic discovery and execution an OWL-S
description must consist of one or more profiles, a process
model and one or more groundings. The following sections
briefly describe the particular elements. For a detailed de-
scription see [1].

2.1 Profiles

In service discovery profiles are applied in two ways. On
one hand, they are used by service providers to publish web
services. These profiles are called advertisements. On the
other hand, profiles are used by a service requester to de-
scribe the web service to be searched for. During discovery
this request is compared with published advertisements to
find suitable services.

The profile class of the OWL-S profile ontology specifies
web service descriptions based on their functional and non-
functional parameters. The functional description is based
on the transformation of data and states during the execu-
tion of a web service. The profile specifies the inputs that
a web service requires, the outputs that it generates, the
preconditions that must hold in order to execute the web
service and the effects that an execution generates. The
results may depend on the execution because of potential
conditional statements. IOPEs® are specified in profiles by
referring to the classes Input, ConditionalOutput, Precondi-
tion and ConditionalEffect of the process ontology (see figure

!combinations of functional parameters are denoted using
their first letters.

1). Therefore, process models can be viewed as an abstrac-
tion of service execution details tailored to discovery.

Non-functional parameters are divided into two sections.
First as semi-structured information intended for human
users that is of no relevance for semantic service discovery
e.g. serviceName, textDescription etc. Second non-functional
parameters can be specified as sub-classes of ServiceParame-
ter to incorporate additional requirements regarding service
capabilities into the discovery process, e.g. the geographic
scope of a web service, security or quality-of-service require-
ments etc.

2.2 Process Models

The Process ontology as shown in figure 1 is used to define
process models that describe the execution of a web service
in detail by specifying the flow of data and control between
the particular methods of a web service. In order to achieve
the results defined in a profile an agent has to execute the
corresponding process model step by step considering all
defined dependencies between I0s and PEs.

The execution graph of a process model can be composed
using different types of processes and control constructs.
OWL-S defines three classes of processes. Atomic processes
(AtomicProcess) are directly executable and contain no fur-
ther sub-processes. From the view of the caller atomic pro-
cesses are executed in a single step which corresponds to
the invocation of a web service method. Simple processes
(SimpleProcess) are not executable. They are used to spec-
ify abstract views of concrete processes by hiding certain
IOPEs. Composite processes (CompositeProcess) are spec-
ified through composition of atomic, simple and compos-
ite processes recursively by referring to control constructs
(ControlConstruct) using the property composedOf. Control
constructs define specific execution orderings on the con-
tained processes.

2.3 Groundings

The previously described profiles and process models serve
as abstract specifications of web service characteristics. The

=1 wsdlOutputMessage

i: 1 wsdllnputMessage

wsdlDocument

wsdllnputs ./

WsdllnputMessageMapList
----<_WsdlInputMessageMap

=1 wsdIMessagePart |
L =1 owlsParameter

A

serv:ServiceGroundng

WsdIGrounding

hasAtomicProcessGrounding

v =1 wsdlOperation
e WsdlAtomicProcessGrounding - WsdlOperationRef

| rdf-first =1 ,owlsProcess | rdfifirst

Namespaces:

this: http://www.daml.org/services/owl-s/1.0/Grounding.owl

serv: http//www.daml.org/services/owl-s/1.0/Service.ow!

proc: http:/mwww.daml.org/services/owl-s/1.0/Process.owl
=1 portType

i gperation

=1 xsITransformation

WsdlOutputMessageMap >~

=1 wsdIMessagePart

é

~1 owlsParameter

4

prochasinput™™=- ... proc:AtomicProcess - =" proc:hasOutput

Figure 2: OWL-S grounding ontology

grounding now enables communication with a concrete web
service by binding abstract IOs of atomic processes to con-
crete message formats.

OWL-S defines exemplarily an ontology for grounding pro-
cess descriptions to WSDL as shown in figure 2 which is
based on three corresponding descriptive elements of OWL-
S and WSDL. Firstly, an atomic process in OWL-S corre-
sponds to a wsdl:operation. Secondly, IOs of an atomic pro-
cess are referred to wsdl:parts of input and output message
definitions in WSDL. Thirdly, the types (i.e. OWL classes) of
I0s in OWL-S correspond to the concept of abstract types
in WSDL. A WsdIGrounding contains one WsdlAtomicPro-
cessGrounding for each atomic process of the corresponding
process model. WsdlOperationRef defines the access to the
web service method using the properties operation and port-
Type. Additionally, the WSDL messages are referenced us-
ing Wsdl{Input|Output}Message.

The mapping of parameter types is defined using rdf:Lists
of Wsdl{Input|Output}MessageMaps. OWL-S considers two
ways of referring the appropriate OWL representations. If
the web service is an “OWL native speaker” the OWL class
representing the parameter type is referred directly by owls-
Parameter. For contemporary web services OWL-S uses
XSLT to convert parameter descriptions from OWL-S to
XML Schema and vice versa.

3. APPLICATION SCENARIO

Making hotel arrangements is an essential part of travel
planning. The internet provides uncountable web sites where
users can search for suitable hotels and make their reserva-
tions. But finding the best offer is still a very time consum-
ing task that must be performed manually. The user has to
query the web using search engines, must pick suitable hits,
query each web site with the users preferences and dates,
pick the best offer and finally make the reservation.

In the application scenario of this work the two most time-
consuming tasks, i.e. discovery and execution of hotel book-
ing web services, are performed automatically by a software
agent. All information needed by this agent will be provided

either by querying the user’s profile or by interacting with
the user during execution. The next two sections describe
in more detail how automated discovery and execution are
realized by the hotel booking agent.

3.1 Service Discovery

The OWL-S profile is the main data structure used for
service discovery. It’s role is twofold. Both service requests
and service advertisements are described as profiles. In order
to search for suitable web services the hotel booking agent
creates a request containing functional and non-functional
properties of the web service looked for and sends it to the
service registry. The service registry compares the request
to the registered advertisements and returns the matching
results. This process is called matchmaking of services. In a
realistic application scenario it must be assumed that an ad-
vertisement does not match a request exactly in most cases.
A web service e.g. that has only registered explicitly for
booking lodgings in general can also be used for booking
hotel rooms. As a consequence, it should appear in the re-
sult set of the query. Such implicit relationships between
profiles can be derived using subsumption. [9] describes the
basic concept how matchmaking can be realized with sub-
sumption. Accordingly, two profiles are compatible, iff their
intersection is satisfiable. On the basis of subsumption re-
lationships between requests and advertisements [9] defines
five different degrees of match. In our application scenario
all specified results in a request must be met by a single ad-
vertisement, because the hotel booking agent is not capable
of composing web services. Thus, only exact and subsume
matches are appropriate. Matches of this kind are called
usable. All remaining matches are called unusable.

The most important non-functional parameter that has
been considered in the scenario is the geographic scope of web
services. E.g. a service for booking hotel rooms in France
is not usable for booking hotel rooms in Germany. A ser-
vice covering all hotels of a specific group world-wide can be
used in both countries. A major observation while defining
the profiles was that functional parameters can depend on
non-functional ones. E.g. no city must be defined to invoke a

booking service of a single hotel because it is already defined
by its location resp. geographic scope. In order to keep the
scenario simple but yet expressive the following inputs have
been considered: ArrivalDate and DepartureDate denote the
beginning and end of the stay. City references the required
hotel location. Customer contains customer information like
address, name etc. CreditCard contains credit card infor-
mation that is used by the agent to pay for transactions.
The only output produced by a successful execution which
is relevant for further tasks is a BookingCode specific to each
booking service. It can be used e.g. to cancel a reservation
again. Preconditions such as “Customer must have a credit
card” are implicitly modeled by inputs. RoomBooked is the
only effect that has been considered. All IOPEs have been
modeled as part of domain-specific OWL ontologies?.

3.2 Service Execution

Very likely, different web services which generate the same
results may differ in their execution. E.g. a booking service
could require to register for a customer account before a
reservation can be made whereas others could require full
customer information for every reservation. The information
how a web service must be executed in detail is provided
by the process model. To be able to execute such a process
model the hotel booking agent must generate a semantically
equivalent execution model by transforming the defined data
flow and control flow with the associated conditions. After
instantiating this model the agent executes it step by step.

To be able to execute an atomic process by invoking a
web service method the agent must first allocate values for
the required parameters and provide appropriate containers
for the results to be returned. All necessary information for
this task is either derived from the agent’s knowledge base
or enquired by interaction with the user. Hereafter, the
agent generates the appropriate messages for communica-
tion with the web service using its grounding definition. As
part of this, the parameter values must be transformed into
semantically lower representations, i.e. XML schema values
in the case of SOAP. After successfully invoking the partic-
ular web service method the agent must process the results
by asserting the generated outputs and specified effects in
its knowledge base.

Figure 3 shows the process model of a virtual HotelKrone-
BookingService as activity diagram with associated control
flow. Aside from the IOs referenced by the profile addi-
tional temporary data has been modeled that is necessary
for a correct execution. The white node represents an agent
activity, that has to be executed to generate suitable in-
puts. Here, the agent asks the user to select the preferred
VacantRoomDescription that includes the VacantRoomCode
required to confirm the booking (not part of the model).

4. SYSTEM ARCHITECTURE

This section gives an overview of the system architecture
that has been used to implement the application scenario.
The design and implementation of the system is based on
the Java programming language using JDK 1.4.2.

4.1 Main Components

Figure 4 shows the static system structure with its main

*http://www.informatik.uni-ulm.de/ki/trap/
ontologies/domain/

.
o (FinavacantroteRoom .. :
e

VacantRoomDescriptionSet
i fCondition: ‘
RegisterAsCustomer ifCondition:

Customer is a
HotelKroneCustomer
VacantRoomCode

[HotelKroneLogin | -

T CreditCard

rrrrrrrrrrrrrrrrr » | ConfirmBooking
\ effect: ‘\‘\\\7
- RoomBooked) »| BookingCode

®

Figure 3: Booking agent process

components. The JBoss® application server provides the
framework for implementing the web services. All web-
services specific communication is performed by the Apache
AXIS web services framework. The OWL documents that
describe the OWL-S ontologies, domain ontologies as well
as the semantic web services are published by an Apache*
web server. The description logics (DL) system RACER [7]
provides the infrastructure and mechanisms to reason about
OWL knowledge. Finally, the booking agent implements the
interactive selection and booking of hotel rooms. It uses the
Jena® semantic web framework to gain graph-based access
to OWL and RDFS documents. Information about the user
is stored and retrieved by the agent in OWL format using
the user profile.

<< dl system >>

RACER

KB

<< application server >> << web server >>

E% JBoss E% Apache

Servi g 4

R:gi’;‘t:vsy ! OWL-S Domain
‘. Ontology Ontology

WSDL

Description| | Web Service W

1 Service
4 Description|
User :
Profile [Booking Agent

<< agent >>

<< rdf system >>

Figure 4: Main components

3http://www. jboss.org
‘http://httpd.apache.org
*http://www.hpl.hp.com/semweb/jena-top.html

4.2 Agent Structure

Figure 5 shows booking agent containing the classes and
packages that are responsible for executing an OWL-S pro-
cess model. The agent’s knowledge base agentKB is managed
by the MainProcess. It is initialized with the user profile at
startup and is used to derive and store parameter values dur-
ing execution. The ProcessExecutionModel class serves as a
facade for the pem package and encapsulates all functionality
required to execute a Semantic Web Service. The MainPro-
cess creates one instance of a ProcessExecutionModel for
each process model. The OWL-S descriptions required to in-
stantiate and execute a process model are maintained in the
serviceKB knowledge base. It is used by an instance of the
RacerParser class during instantiation to generate the exe-
cution graph of the process model. All structural elements
of the execution graph are implemented by the graph pack-
age. The TypeMapperFactory is used by the RacerParser
to create TypeMapper instances that are responsible for the
transformation of parameter values during execution (see
5.3.2). While parsing the process model RacerParser fills
the GoalCache with expected execution results, i.e. certain
outputs and effects. It is used by the ProcessExecution-
Model later to determine successful process execution.

<< agentKB >>
trap.agent. create w| trap.racer read User
MainProcess KnowledgeBase Profile
3 Y
i execute %, use
: y
‘ trap.agent.
pem
' execute _ A
.uE) graph
i ProcessExecutionModel °he°k= cache.
£ GoalCache
=
[}
=]
@ *1m
RacerParser O\(Z}_O
create
A [TypeMapperFactory| [>
v use .-
<< serviceKB >> rd
trap.racer. use
KnowledgeBase |
read
A J A/
g OWL-S
8 Process Web Service
£ Description|
Figure 5: Execution model structure

This section describes the major difficulties and shortcom-
ings of the OWL-S specification that have been revealed dur-
ing the realization of the application scenario. Most of them
were discovered while putting process execution to work. So
the focus is kept mainly on this part.

5.1 Validity of OWL-S Documents

To be able to use the OWL-S ontologies in a practical en-
vironment several corrections had to be done. In order to en-
able their use in DL reasoners like RACER it was necessary

to tailor OWL-S down to OWL DL. Furthermore, changes
in the fundamental model have been made to eliminate se-
mantic inconsistencies and to introduce own concepts. The
OWL [12] and OWL-S 1.0 specifications [3] provide the syn-
tactic and semantic foundations for all corrections.

5.1.1 Syntactic Corrections

This section describes the necessary syntactic corrections
for tailoring OWL-S’ expressiveness down to OWL DL in or-
der to enable their use in DL reasoners that provide sound
and complete inference. This means in particular that lan-
guage constructs of OWL Full must be avoided. However,
the OWL-S ontologies contain both OWL Full constructs
and fundamental syntactic errors®. The correction that are
described consecutively refer to all OWL-S ontologies.

Cardinality constraints in OWL must be defined according
to the RDF Datatyping Schema, i.e. their types must be
specified explicitly. In all cardinality constraints defined in
the OWL-S ontologies these type specifications are missing.

In some places of the OWL-S ontologies rdf:Property is
used instead of owl:ObjectProperty to define properties with
OWL classes as range. However, rdf:Property doesn’t belong
to the allowed vocabulary of OWL DL. Thus, its occurrences
have been replaced with owl:ObjectProperty.

According to the OWL language reference [3], functional
properties must be defined by an additional type qualifica-
tion. Definitions of functional properties just using owl:Fun-
ctionalProperty like practiced in the OWL-S ontologies are
therefore syntactically not correct and must be replaced.

Throughout the OWL-S ontologies further language con-
structs are used that are not allowed in OWL DL, e.g. rdf-
:List, rdf:Resource etc. However, corrections of these con-
structs can not be performed on a syntactic level but only
by altering semantics (see next section).

Finally, it must be mentioned that in the process model
definitions of the examples accompanying OWL-S the con-
struct rdf:parsetype="Collection" to describe sets resp.
lists. This is neither allowed in OWL DL nor OWL Full.
Therefore, in the definitions of the hotel booking process an
own list construct has been used, which will be presented in
the next section.

5.1.2 Semantic Modifications

There are three major reasons which have lead to changes
in the ontological model of OWL-S in the context of our real-
ization. Firstly, like mentioned before, invalid language con-
structs had to be replaced with semantically similar struc-
tures unless a syntactic correction was not possible. Sec-
ondly, modification an extension of the model has been nec-
essary to introduce own concepts. Thirdly, the correction
of semantic inconsistencies defined in the OWL-S ontologies
have caused changes in the model. These modifications are
discussed now in more detail.

All definitions used to replace invalid OWL DL language
constructs have been modelled in the Base ontology”. The
constructs rdf:Literal, rdf:Resource have simply been replaced
with base:Resource and base:Literal. The set of resources de-
noted by rdf:Set has been replaced by a set of OWL instances

5Validity was checked using the OWL Validator from
the University of Manchester (http://phoebus.cs.man.ac.uk:
9999/0WL/Validator).
7http://www.informatik.uni-ulm.de/ki/trap/ontologies/
Base.owl

modelled with base:Set and its property hasSetElement that
links owl: Things to the set. Lists are expressed by the LISP-
like list structure base:List, i.e. a list can be either an empty
list or a non-empty list that consists of a list element and a
rest also representing a list.

Attention must be paid to the fact that in contrast to
OWL Full OWL classes cannot be used as property fillers in
OWL DL which is in particular useful for referencing seman-
tic types in instance definitions. As a consequence, a defi-
nition of profiles and processes as intended by the OWL-S
examples is not feasible anymore. To overcome this problem,
special instances of OWL classes denoting parameter types
have been used as representatives in OWL-S descriptions.
With help of this changes, modelling profiles and processes
as instances can be maintained.

In order to bring the application scenario to work two
own concepts had to be integrated into the OWL-S model.
Firstly, a simple model for representing conditions has been
developed. Secondly, a semantic concept for the bidirec-
tional type mapping has been integrated. These concepts
are discussed in more detail in section 5.3. The fundamen-
tal class for representing conditions is cond:Condition. It
replaces the proc:Condition class that functions as a place-
holder for a future conditional model. proc:Precondition
and proc:Effect are now defined as disjoint subclasses of
cond:Condition. proc:Effect reduces the model to simple con-
ditions by replacing proc:ConditionalEffect. Finally, the range
of the hasEffect property in the profile ontology has been
changed to proc:Effect. Figure 6 shows how the process on-
tology has been modified.

=1 mustEvaluateTo,

cond:Condition
7 L1 derivedFrom ™ <Xsdboolean >

4 ControlConstruct
hasPrecondition ™~ hasEffect 7~

then o ifCondition

base:ﬁrs{//’/ . baserfirst

ProcessComponentList ProcessComponentBag

this: http:/A informatik.uni-ulm. { 1. .owl
base: http://www.informatik.uni-ulm.de/ki/trap/ontologies/Base.owl
cond: http:/www.informatik.uni-ulm.de/ki/trap/ontologies/domain/Condition.owl

Figure 6: Modifications of the process ontology

The type mapping concept has been integrated in a very
simple way. Merely a new attribute named rdfMapping with
the type xsd:anyURland a cardinality of one has been added
to the grounding ontology. This way, the particular RDF
document which describes the type mapping can be bound
to the corresponding WsdIMessageMap.

In the process ontology only the namespace of the ground-
ing has been corrected. In the grounding ontology the data
types of the two attributes operation and wsdlMessagePart
have been modified from xsd:anyURI to xsd:NMTOKEN. Ac-
cording to the WSDL specification [4] the referenced ele-
ments are only unique within the containing definitions and
therefore specified as xsd:NMTOKEN.

Furthermore, another correction can be carried out on the
definition of WsdIMessageMap lists in the grounding ontol-
ogy. Actually, this is no semantic inconsistency, but the
definition can be considerably simplified, due to the fact
that parameter order of an operation can be derived from
its WSDL bindings. Thus, WsdlIMessageMap are bound di-
rectly to their corresponding WsdlAtomicProcessGrounding.
Figure 7 shows the modifications of the grounding ontology
exemplarily for inputs.

=1 owlsParameter

WsdllinputMessageMap

wsdlnput

i

=1 wsdIMessagePart

WsdlAtomicProcessGrounding

=1 wsleperaﬁun%

WsdlOperationRef
Namespaces:

this: hitp://www informatik.uni-ulm_de/ki/trap/ontologies/owl-s/1.0/Grounding.owl
proc: hitp://www.informatik.uni-ulm.de/kiftrap/ontologies/owl-s/1.0/Process.owl

eration
- xsd:NMTOKEN

Figure 7: Modifications of the grounding ontology

5.2 Matchmaking of Profiles

OWL-S does not provide any concrete concepts for publi-
cation and discovery of services. It just claims to be univer-
sally applicable due to its declarative descriptions. But the
requirements of a matchmaking algorithm strongly depend
on the capabilities of the requester and the way functional
and non-functional parameters are modelled. In this sec-
tion we show with a string of examples how modelling al-
ternatives of parameters and requester capabilities influence
matchmaking strategies and vice versa.

5.2.1 Task-oriented Matchmaking

A fundamental problem of defining a whole set of IOPEs
in a request is over-specification. While matching strictly
with IOPEs is practically suitable to enact static workflows
based e.g. on BPELAWS [10] it is cumbersome for agents
that plan their actions dynamically. Even if advertisements
would fulfill the requested task (i.e. OEs) the HotelKrone-
BookingService e.g. would not match in the desired way with
a request that defines the input city because this input pa-
rameter simply is missing in its advertisement. Another
approach that we call task-oriented matchmaking is derived
from AI planning and seems to be more suitable.

The main objective of service discovery is to find services
that fulfill certain tasks, i.e. OEs, under certain circum-
stances, i.e. non-functional parameters. IPs are treated by
the requesting agent afterwards by applying techniques like
regression planning. Thus, the service registry is treated as a
repository of plan operators. In combination with subsump-
tion this leads to significant conceptual advantages. The
problem of over-specified requests disappears, because only
OEs and service parameters are used in requests. Profiles
could be classified automatically in a predefined subsump-
tion-hierarchy of tasks. This hierarchy could also be used for
relaxation of requests as proposed in [2]. If profiles would be
modelled as class terms, even the predefined task-hierarchy
could be omitted.

The OWL-S profile hierarchy® does not establish any con-
nection to web-service parameters. Thus, it must be as-
sumed that classification of services is done manually by the
provider. As a consequence of the lack of automatic clas-
sification, no implicit relationships between properties will
be discovered. Furthermore, inconsistencies can easily be
introduced into the repository by providers.

5.2.2 Matchmaking of Service Parameters

In this section we show how modelling alternatives of ser-
vice parameters influence the matchmaking algorithm. Fig-
ure 8 shows the geographic scope modelled as subsumption
hierarchy. The major advantage here is that subsumption
is sufficient for matchmaking, i.e. a request can simply be
posted as class definition. On the other hand, this variant
can only serve for special “views” on the geographic scope.
It cannot be used for our scenario, because e.g. a request
for hotels in Ulm does not return services that encompass
a wider scope. Here, the subsumption relationship si con-
trary to our intended semantics of a geographic scope. The
subsumption relationship is rather interpreted as located-in
than as is-a relation.

profile:ServiceParameter

N

sparam:GeographicScope

AProfile X
... Wprofile:sParameter
profile:serviceParameter ‘
GeographicScope
’ 2~

v profile:sParameter

Namespaces:

this: http://www.informatik. uni-ulm.
profile: http://www.informatik.uni-ulm.de/ki/trap/ontologies/owl-s/1.0/Profile.owl

sparam: _ http://www.informatik.uni-ulm.de/ki 1. i owl

Figure 8: Geographic scope based on subsumption

A solution to these shortcomings shows figure 9. Here,
the geographic scope is modelled using a transitive prop-
erty. Regions that are contained by another region can eas-
ily be derived with the transitive closure of subRegionOf.
Scope definitions simply refer to existing instances of Re-
gion. However, the tradeoff here is that subsumption on its
own is not sufficient for matchmaking anymore, because sub-
regions first must be derived and then treated in separate
queries.

The main result is, that subsumption can be used effec-
tively in matchmaking to derive polymorphic relationships
of functional parameters. However, for matchmaking of non-
functional parameters special algorithms must be provided.

5.3 Execution of Process Models

During the realization of the execution component two
main shortcomings of OWL-S have been revealed. Firstly,

8http: //www.daml.org/services/owl-s/1.0/
ProfileHierarchy.owl

profile:ServiceParameter
sparam:GeographicScope

VsParameter

. AProfile
) ', SubRegionOf Y serviceParameter
Region >
X

TheGeographicScope

sParameter
,subRegionOf SubRegionOf :

Um |
] America
Namespaces:
this: hitp://www.informatik.uni-ulm ap owl
profile: hitp://www.informatik. uni-ulm.de/kitrap/ontologies/owi-s/1.0/Profile.owl
sparam: _hitp://www.informatik.uni-ulm ap! 1.0/Ser arameter.owl

Figure 9: Geographic scope with transitive roles

OWL-S lacks the specification of a model for representing
conditions. Secondly, the concept of XSL transformations
for mapping data types is not sufficient. These shortcomings
will be described in this section in more detail and some
workarounds will be presented.

5.3.1 Conditional Model

Actually, it should be straight forward to derive and as-
sert conditions in description logics. Conditions could sim-
ply be seen as assertions that exist in the knowledge base
or not. However, the main problem is that conditions often
refer to concrete parameter instances which are not known
before execution. Thus, these instances must be referred to
via variables in the definitions of conditions. However, OWL
does not support the concept of variables. The only solution
is to extend OWL DL by reification of additional concepts in
a similar way as it is done by OWL-S to define the data flow
in a process model. As a consequence, special algorithms
are required to verify such definitions and to derive knowl-
edge from them. Subsumption is not sufficient anymore.
This raises the question of OWL being a suitable formalism
at all for representing procedural knowledge as intended by
OWL-S. Moreover, when deriving conditions from an ABox
implicitly a closed world is assumed. This can potentially
lead to wrong conclusions. Without changing the ABox,
the so called Local Closed World Assumption can be used
as workaround as described in [8]. Furthermore, the asser-
tion of negated conditions requires retraction of knowledge
from the ABox. Once more, the agent does not know which
concrete instances must be considered due to the missing
concept of variables in OWL. Another problem occurs with
the definition of negated conditions. The class-complement
operator — obviously cannot be used due to an inappropri-
ate semantics. Thus, a reified concept must be introduced
therefore, too.

To be able to realize execution anyhow, a simple condi-
tional model has been introduced as shown in figure 6. Con-
ditions are defined as representative instances of Condition.
The property derivedFrom refers to the class description that
subsumes the assertions representing the condition. The at-
tribute mustEvaluateTo is used to define a negated condi-
tion. E.g. set to false, the condition evaluates to true, if no
instances were found, i.e. the condition could not be met.

To evaluate the conditions a hybrid algorithm is used that
first checks with an instance query, if the condition can be
derived from the ABox. After this a potential negation will
be considered.

5.3.2 Datatype Mapping

This section presents a semantically based approach using
so called RDF mappings. XSLTs are not suitable to be used
for transforming data types as intended by OWL-S. XSLT
uses pattern matching rules to identify syntactic structures
in an XML document which are then replaced by others.
This poses no problem while the same serialization is pro-
cessed. Normally, this is the case for output mappings, i.e.
mapping from XML schema definitions to OWL instances.
Changes in the serialization must be considered explicitly in
the stylesheet. In the worst case, every serialization needs
its own stylesheet. This problem occurs with nput map-
pings, i.e. mapping from OWL to XML Schema. The same
OWL model can have many different serializations. E.g. the
fact that relations between instances can be defined nested
or with references leads to an exponentially growing number
of serializations.

To overcome this problem a transformation must be based
on semantics, i.e. not depending on syntactic structures.
Our approach of the so called RDF mappings uses a sim-
ple RDFS ontology for representing semantic relations as
shown in figure 10.

hasXSDType

hasContentType

ArrayType

hasElement

~--(_ComplexType
SimpleType

mapsTo

owl:DatatypeProperty
Namespaces:)

this: hitp//www.informatik.uni-ulm.

Ty rdf

Figure 10: RDF'S type mapping ontology

RDF mappings are defined with the same nested structure
as the XML Schema types they refer to. The RDF property
mapsTo maps a SimpleType to an OWL attribute which be-
longs to the OWL type of the WsdIMessageMap the RDF
mapping is bound to. Thus, RDF Mappings exploit the
fact that every instance of an xsd:SimpleType corresponds
to a filler of an owl:DatatypeProperty. This also clarifies
the use of RDFS. In OWL properties cannot be property
fillers themselves. Figure 11 shows an example RDF map-
ping. It can be seen, that even attributes can be referred
which are indirectly bound to the OWL type. Transforma-
tions based on RDF mappings require four sources of infor-
mation. WSDL documents contain the XML Schema type
definitions. OWL ontologies define the OWL types. RDF
mappings themselves link the two type definitions on a se-
mantic basis. Groundings connect RDF mappings to the
corresponding OWL types.

Due to the use of semantics for type mapping, only one
RDF mapping needs to be defined for an OWL type and
its corresponding XML Schema type. The resulting RDF
document is small, simple and can even be generated semi-
automatically. Unfortunately, the consistency of RDF map-

pings cannot be verified completely on the basis of RDFS
semantics. Thus, they share the same problem with OWL-
S that an adequate verification of definitions based on the
semantics of the representation formalism is not possible.

6. EVALUATION

This sections recalls the major benefits as well as deficits
of OWL-S by discussing those parts of the specification which
are most critical with respect to automatic discovery as well
as execution of Web Services.

6.1 Semantics

In contrast to other conventional approaches (e.g. WSDL,
UDDI, and BPEL4WS) OWL-S has the advantage of pro-
viding a formal semantics for describing Web Services. This
allows for meaningful and rich Service descriptions which
promise to enable automatic discovery and execution of Web
Services. Since OWL-S is (supposed to be) layered on top
of OWL DL it has to adopt its formal Description Logic
foundation. However, this heritage is twofold with respect
to the broad objectives of the OWL-S initiative.

An obvious advantage of the OWL DL layering is the
fact, that that sound and complete inference services can
be used in order to make implicit subsumption relationships
between different advertisements or requests explicitly avail-
able. More concrete, Service provider as well as requester do
not have to explicitly classify their advertisement or request
according to given keywords or schemata; instead their de-
scriptions will be classified automatically.

Unfortunately, OWL-S version 1.0 does not comply with
the OWL DL language specification — even when not taking
into account those obvious syntactical errors which are ty-
pos or were caused due to an incorrect translation from the
language predecessor DAML-S. However, sound and com-
plete reasoning is an important premise in order to achieve
at least a subset of the proposed OWL-S objectives of fa-
cilitating the automation of Web service tasks including au-
tomated Web service discovery, execution, interoperation,
composition and execution monitoring. It is therefore re-
quired to transfer all OWL-S ontologies from OWL Full to
OWL DL. The necessary adaptions and limitations of this
mapping have been discussed in section 5.1.

Another problem of Web Service composition is related
with the lack of variables within OWL. In order to combine
chains of processes of one ore more services, I0s of atomic
processes have to be related with each other. Without being
able to reference particular parameters for describing the
flow of data with help of variables this can not be done in
OWL-S. This seems to be an example showing the limits of
the declarative foundation of OWL-S, namely OWL.

In addition, the OWL-S specification conflicts with the
OWL language semantics in some other ways. A pragmatic
assumption of the profile description is that of a closed
world. However, on the level of concrete profile descrip-
tions roles are not closed (this holds at least for the ex-
amples provided with the specification). In fact this closed
world assumption apparently conflicts with the open world
assumption of the OWL language definition. Beyond that,
parameter types are implicitly assumed to be pairwise dis-
joint without making this assumption explicit in the given
modeling.

The validation of the different parts of the OWL-S speci-
fication also remains as an open issue. As noted above, dy-

<tm:ComplexType rdf:ID="Customer">

<tm:hasXSDType rdf:resource="swsdl_tnsl;#Customer"/>

<tm:hasElement>
<tm:SimpleType rdf:ID="BirthDate">

<tm:hasNestedName>birthDate</tm:hasNestedName>

<tm:hasXSDType rdf:resource="&xsd;#date"/>
<tm:mapsTo
rdf:resource="sbusiness #hasBirthDate"/>
</tm:SimpleType>
</tm:hasElement>

(o.0)

<tm:hasElement>
<tm:SimpleType rdf:ID="City">
<tm:hasNestedName>city</tm:hasNestedName>
<tm:hasXSDType rdf:resource="&xsd;#string"/>

<tm:mapsTo rdf:resource="&business;#hasCity"/>

</tm:SimpleType>
</tm:hasElement>
</tm:ComplexType>

=1 hasBirthDate".

=1hasCit;>“‘“ hippingAddres

RDF Mapping

OWL Type

Figure 11: Example of an RDF-mapping

namic process models with cycles and conditions are outside
the scope of a representation formalism like OWL. Valida-
tion concerning deadlocks or applicability are therfore not
possible within this framework.

6.2 Conceptual Model

A goal of the OWL-S specification is to provide a broad
conceptual model in order not to narrow its applicability.
However, when implementing a concrete scenario this model
showed up to be not sufficient in terms of a straight forward
realization (e.g. see [13]). Matchmaking strongly depends
on the concrete way modeling the service domain. Here,
a more detailed and concrete framework would definitely
simplify and encourage the usage of OWL-S.

The partitioning of Web Services into profiles, process
models and grounding seems to be very valuable with re-
spect to the different phases of finding and execution of Ser-
vices. The disjunction between functional and non-function-
al parameters within profiles is consistent with the princi-
ples known from software techniques. However, an excep-
tion handling within process execution hasn’t been taken
into account.

A clear conceptual shortcoming is that of using XSL trans-
formations for mapping data structures from XML to OWL
and vice versa. A pure syntactical conversion is not feasible
and needs to be replaced by a more sophisticated mapping
like the one presented in section 5.3.2.

Beyond that, automatic composition of Web Services cur-
rently seems to be not practicable with respect to variety of
constructs provided by OWL-S. The resulting process mod-
els would require planing algorithms for non-deterministic,
conditional, hierarchical task networks with loops.

6.3 Practical Applicability

The lack of adequate tools has been one of the major ob-
stacles for a fast and easy implementation of our prototype.
This concerns both fundamental tools for the Semantic Web
and specific tools to create OWL-S descriptions.

Standard ontology editors like OilEd and Protégé lack the
ability of generating “clean” and “trustable” code. Verifi-
cation support of modelled ontologies is still basic. Cre-
ating the descriptions manually using an XML editor has
shown to be much faster for evaluation purposes. In terms

of reasoning support RACER and JENA have proven to be
valuable to integrate ontological knowledge and inference
services into Java. However, only a combination of both
systems has covered all required functionality.

A fundamental problem in specifying OWL-S descriptions
is the enormous complexity of OWL-S the user is exposed
to. Besides OWL Full, OWL DL and the concepts of OWL-
S comprehensive knowledge of WSDL, SOAP and XSLT is
necessary to be able to create OWL-S descriptions. Profes-
sional frameworks for the development of web services like
Axis hide a huge part of their complexity by providing devel-
opment tools. This is not the case with OWL-S. Especially
tools which support the modelling and verification of OWL-
S descriptions on a high semantic level are missing.

7. SUMMARY AND CONCLUSION

This work has clearly shown the potential of using Seman-
tic Web Services to automate complex tasks. However, dur-
ing the realization enormous difficulties have been encoun-
tered especially concerning the implementation of essential
OWL-S concepts. The reason for this is twofold. Firstly,
it is obvious that OWL is not suitable for representing pro-
cesses or procedural knowledge based on formal semantics
due to the missing concept of variables. As a consequence,
essential elements of process models like parameter bindings
and conditions cannot be expressed sufficiently within OWL
semantics. This can only be achieved by reifying additional
formalisms.

Secondly, OWL-S lacks a holistic conceptual model which
could facilitate a rapid and consequent realization of Seman-
tic Web Services. Detailed use cases are needed for guiding
users through implementation. A vertical prototype which
demonstrates techniques for service discovery and execution
for own implementations would be highly desirable.

OWL-S undoubtedly demonstrates its potential concern-
ing the integration of proprietary data on the basis of ontolo-
gies. This could be of relevance in the area of Enterprise Ap-
plication Integration within business boundaries an beyond.
On the restricted basis of only inputs and outputs it would
be conceivable to automate interweaving of web services to
a certain degree. However, it is highly questionable, if OWL
and especially OWL DL is able to provide the foundations

for further reaching ambitions like condition-based service
discovery and execution or composition of web services.

8. RELATED WORK

The Internet Reasoning Service IRS-II [5] is a holistic
Java framework for publishing, locating, composing and ex-
ecuting semantic web services. It is being developed in the
Knowledge Media Institute at the Open University London,
UK. IRS-II distinguishes explicitly between tasks that must
be fulfilled which can be viewed as OWL-S Profiles and con-
crete problem-solving-methods (PSMs) that can be used to
solve specific tasks. Web services containing a single method
are equivalent to PSMs. A likewise notion of OWL-S pro-
cess models is not supported. In IRS-II web services can
be published easily by a “one-click” procedure. IRS-II sup-
ports different service implementation platforms like Java,
Lisp and SOAP. The internal service resp. PSM descrip-
tions are generated automatically by tools using the native
service implementations. The user merely has to assign the
published web service to a specific task that it solves. Form
a conceptual point of view IRS-II is not as complex as OWL-
S. However, all features are implemented in a prototypical
framework which is ready to use. The formal language that
IRS-IT utilizes internally is called Operational Conceptual
Modelling Language (OCML) [11]. It supports the specifi-
cation and operationalization of functions, relations, classes,
instances and rules. Therefore, OCML is more suitable for
representing procedural knowledge than OWL. To be com-
patible to a certain degree with OWL-S IRS-II provides im-
port functionality for OWL-S descriptions.

The Web Service Modelling Framework - WSMF [6] aims
at providing an industry scale framework for semantic web
service discovery, execution and composition. It is a joint
effort of European research projects on the Semantic Web
and Semantic Web Services and consists of three working
groups each contributing to one of the development areas
concerning the ontology and the fundamental conceptual
model (WSMO?) the representation language (WSML'?)
and the execution framework (WSMX'"). WSMF has gained
an enormous momentum in the last half year. A first im-
plementation of the execution framework realizing the core
features was released recently. WSMO is built on four key
concepts: Ontologies, web services, goals and mediators. On-
tologies are used to formally conceptualize properties and
capabilities of web services. Web services are selected — sim-
ilar to IRS-II — based on their capabilities to fulfill certain
goals. In WSMO web services only interact via mediators
which not only translate data representations but also pro-
vide for a seamless integration of process models. WSML
consists of four language definitions with different expressive
power. WSML-FOL is the most expressive language and is
equivalent to first order logic. WSML-DL and WSDM-RL
are representations for description logic and horn logic frag-
ments of FOL. The language with the least expressive power
but therefore the best computational properties is WSML-
Core. It combines language elements from WSML-DL and
WSML-RL while maintaining decidability. Due to the enor-
mous effort put into the formal and conceptual model of Se-
mantic Web Services in WSMO/WSML as well as the aim

9Web Service Modeling Ontology www.wsmo.org
10Web Service Modeling Language www.wsmo . org/wsml
"'Web Service Execution Environment www.wsmo.org/wsmx

to provide a complete execution framework WSMO seems
to be a very promising candidate to proof the feasibility of
Semantic Web Services in realistic scenarios.

9. REFERENCES

[1] A. Ankolekar. OWL-S: Semantic Markup for Web
Services, 2003. http:
//wuw.daml.org/services/owl-s/1.0/owl-s.pdf.

[2] W. Balke and M.Wagner. Cooperative Discovery for
User-centered Web Service Provisioning. In Proc. of
the First Int. Conference on Web Services (ICWS
2003), Las Vegas, USA, 2003.

[3] S. Bechhofer, F. van Harmelen, J. Hendler,

I. Horrocks, D. McGuinness, P. Patel-Schneider, and
L. Stein. OWL Web Ontology Language Reference,
February 2004. W3C Recommendation.

[4] E. Christensen, F. Curbera, G. Meredith, and
S. Weerawarana. Web Services Description Language
(WSDL) 1.1. Technical report, Word Wide Web
Consortium, 2001. http://www.w3c.org/TR/wsdl.

[5] J. D. E. Motta, L.Cabral, and M.Gaspari. IRS-II: A
Framework and Infrastructure for Semantic Web
Services. In Proc. of the 2nd Int. Semantic Web
Conference (ISWC20083), Sanibel Island, USA,
October 2003.

[6] D. Fensel and C. Bussler. The Web Services Modelling
Framework. In Proc. of the NSF-EU Workshop on
Database and Information Systems Research for
Semantic Web and Enterprises, Georgia, USA, April
2002.

[7] V. Haarslev and R. Moller. Description of the Racer
System and its Applications. In Proc. Int. Workshop
on Description Logics (DL-2001), Stanford, USA,
August 2001.

[8] V. Haarslev and R. Moller. Incremental Query
Answering for Implementing Document Retrieval
Services. In Proc. Int. Workshop on Description
Logics (DL-2003), Rome, Italy, September 2003.

[9] L. Li and I. Horrocks. A software framework for
matchmaking based on semantic web technology. In
Proc. of the Twelfth Int. World Wide Web Conference
(WWW 2003), pages 331-339. ACM, 2003.

[10] D. Mandell and S. Mclllraith. Adapting BPEL4WS
for the Semantic Web: The Bottom-Up Approach to
Web Service Interoperation. In Proc. of the Second
Int. Semantic Web Conference (ISWC 2003), Sanibel
Island, FL, USA, 2003.

[11] E. Motta, editor. Reusable Components for Knowledge
Modelling. I0S Press, 1999.

[12] P. Patel-Schneider, P. Hayes, and I. Horrocks. OWL
Web Ontology Language Semantics and Abstract
Syntax, February 2004. W3C Recommendation.

[13] M. Sabou, D. Richards, and S. van Splunter. An
experience report on using DAML-S. In Proc. of the
Workshop on E-Services and the Semantic Web, 2003.

[14] UDDI.org. UDDI Technical White Paper, 2000.
http://wuw.uddi.org/pubs/

Iru UDDI_Technical _White Paper.pdf.

