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Abstract

The success of genome-wide association studies has led to increasing interest in making

predictions of complex trait phenotypes including disease from genotype data. Rigorous

assessment of the value of predictors is critical before implementation. Here we discuss some of

the limitations and pitfalls of prediction analysis and show how naïve implementations can lead to

severe bias and misinterpretation of results.

Introduction

In many species, single nucleotide polymorphism (SNP)-trait associations have been

detected through genome-wide association studies (GWASs). In addition to the discovery of

trait-associated variants and their biological function, there is increasing interest in making

predictions of complex trait phenotypes from genotype data for individuals in plant and
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animal breeding, experimental organisms and human populations. These predictions are

based upon selections of SNPs (or other genomic variants) and estimation of their effects in

a discovery sample, followed by validation in an independent sample with known

phenotypes, and ultimately application to samples with unknown phenotypes (FIG 1).

The validation stage of SNP- prediction analysis will be the main focus of this Perspective.

Incorrect conclusions at this stage may lead to predictors that will not work as well as

inferred or, in the worst case, have no prediction accuracy at all. We organise our

Perspective into limitations and common pitfalls of prediction analysis. The limitations are

partly inherent given the nature of the trait or the data available. These are factors that users

should be aware of but mostly cannot change. The limitations also reflect use of sub-optimal

methodology that could be improved upon. The pitfalls are common mistakes in analysis

that can lead to over-estimation of the accuracy of a predictor or misinterpretation of results,

and we give examples from the literature where these have occurred. We give our opinion

on how best to avoid pitfalls in the derivation and application of SNP based predictors for

practical applications. There are many aspects of risk prediction that are outside the scope of

this article. They include a thorough treatment of the statistical methods that can be used in

the discovery phase1–7, the use of non-genetic sources of information to make predictions or

diagnosis, a full discussion about clinical utility of risk prediction in human medicine and a

discussion about ethical considerations for applications in human populations8.

Limitations of prediction analyses

Limitation 1: Prediction of phenotypes from genetic markers

Variation in complex traits is almost invariably due to a combination of genetic and

environmental factors. A useful quantification of the importance of genetic factors is the

heritability (h2), i.e. the proportion of phenotypic variation in a trait that is due to genetic

factors9 (BOX 1). Assuming that the estimated h2 is a true reflection of the population

parameter, the upper limit of the phenotypic variance explained by a linear predictor (R2)

based on DNA markers such as SNPs is h2 and a genetic predictor can thus never fully

account for all phenotypic variation. This upper limit is only achievable if all genetic

variants affecting the trait are known and their effects are estimated without error. In human

disease genetics, where ‘personalised medicine’ is actively being pursued, this limitation is

not well understood in our opinion and hence we have chosen to highlight it here, even

though it has been pointed out before10, 11.

Environmental risk factors can be added to the genetic predictor, to make a better predictor

of the phenotype. In practice not all environmental factors are identified (and some factors

classified as “environment” may simply be stochastic events12). For example, combining

SNPs and phenotypic predictors, such as body-mass-index and smoking, improved

prediction of age-related-macular degeneration, an eye disease in humans where age is a

major risk factor13. In some circumstances more accurate phenotyping, including the use of

repeated measures, can lead to a more heritable trait. In general, expectations need to be

adjusted accordingly for the application of phenotype or disease prediction in humans.
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Unlike the deterministic genetic tests for fully penetrant Mendelian disorders, genetic

predictions for complex traits will be probabilistic and the value may only be incremental in

clinical decision making. The value of genetic risk prediction may be at a group level rather

than individual level. For example, from a risk predictor for type 1 diabetes (T1D), created

from risk variants known up to 2011, a risk group comprising the top ranked 18% of

individuals would need to be monitored in order to capture 80% of future cases, yet because

T1D is not common (prevalence 0.4%) the probability of disease for individuals in this risk

group is still less than 2%14. Nonetheless, cost-effective public health strategies could result

from use of genetic predictors to identify high-risk strata where disease prevention

interventions should be focussed15, 16. In agriculture, genetic risk prediction is geared

mostly towards selection of breeding stock based on estimates of additive genetic values

(‘estimated breeding values’) in the parent generation with the aim of eliciting changes in

the phenotype of the of the offspring generation on average. That is, the impact of genetic

prediction is naturally at the level of a group rather than an individual.

Limitation 2: Variance explainable by markers

The SNPs included in the genome-wide SNP chips used for identifying SNPs associated

with complex traits are typically not the causal variants for a phenotype – more likely they

may have an association with the trait because they are in linkage disequilibrium (LD) with

one or more causal variants. Since the SNPs on SNP chips are chosen because both their

alleles are common they cannot be in complete LD with a causal variant with one rare allele.

If the variation generated by the causal variants is completely explained by the genotyped

SNPs, then the SNPs potentially can explain all the genetic variation in the trait (i.e. ,

where  is defined as the genetic variation captured by the SNPs, or markers). Sometimes

(e.g.17)  is referred to as "narrow-sense heritability", however in our opinion, the term

"narrow-sense heritability" should be reserved as the definition of the total additive genetic

variance, that is h2 (see refs9, 18).

If a genetic variant is associated with fitness, selection will drive one allele to low

frequency19–21. This is the case even for traits without an obvious connection to fitness. The

larger the effect of a SNP on a fitness the lower the frequencies of the causal alleles are

expected to be22, 23. For example, individual mutations causing severe intellectual disability

in humans are rare24, 25. Therefore, in practice, the SNPs identified as associated in the

discovery population are unlikely to explain all genetic variation (i.e,  < h2) since

contributions to the variance by rare variants may not be tagged by the genotyped

SNPs26–28. For example, for both height and schizophrenia h2 ~ 0.7–0.8 and  ~ 0.5 for

height26 and 0.2–0.3 for schizophrenia29, 30.

The difference between the variance explained by genome-wide significant (GWS) SNPs

( ) and heritability estimate from family studies (h2) has been called the “missing

heritability” and the difference between  and  the “hidden” heritability, so that the

difference between  is the “still missing heritability”, i.e.,  <  < h2. The still

missing heritability may simply reflect genomic variants not well tagged by SNPs. In
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livestock populations, when missing heritability is defined in this way, little is missing with

up to 97% of the heritability captured by common SNPs31, 32, probably because the smaller

effective population size leads to long range LD and hence even rare alleles can be predicted

by a linear combination of SNPs in LD with the causal variant. Even in dairy cattle however,

traits that could reasonably be assumed to be under strong natural selection, such as fertility,

have greater missing heritability31. Moreover, when the SNPs are fitted together with a

pedigree as much as half of the genetic variance is explained by the pedigree and not the

SNPs33. The simplest explanation is that in livestock as in humans some causal variants are

rare and in poor LD with the SNPs.

With the advances in whole genome sequencing technologies, causative mutations will be

present in the data and the proportion of variation that can be captured by the sequence data

is expected to approach h2. In principle, known rare risk variants, if identified, can be

included in the predictor in the same way as common variants; cumulatively their

contribution may be important. Their importance can be assessed by the proportion of

variation they explain. Both the ability to detect an association between a trait and a SNP,

and the value of including the SNP in a predictor, depend on the proportion of variance the

SNP explains. For example, a rare variant with a frequency of 1/1000 in the population and

a relative risk for a disease of 5 will increase the risk of disease by 5-fold for 1 in 1000

people (so from 1% to 5% for a disease with a prevalence of 1%), but such an increase in

risk can also be achieved by the cumulative effect of multiple common variants with smaller

effect size. The contribution of rare variants can be included into a predictor by grouping

them into defined classes of genes31, 32, or by incorporating prior knowledge of functions34.

Limitation 3. Errors in the estimated effects of the markers

The effects of SNPs on a trait must be estimated from a sample of finite size and so the

effects are estimated with some sampling error. If there were only a few loci that affected a

trait, it would be possible to estimate their effects quite accurately, but most complex traits

are controlled by a very large number of largely unknown loci35. Therefore the discovery

stage of estimating the prediction equation may involve a genome-wide panel of millions of

SNPs. The true effects of most SNPs are small and so the accuracy with which these effects

are estimated is low unless a very large discovery sample is used. The correlation between

phenotype and a predictor that uses all SNPs simultaneously in a random mating population

can be expressed as a function of effective population size (or the effective number of

independent chromosome segments which is a function of effective population size),

heritability and the size of the discovery sample (Equation 1, BOX 1)36–38. Specifically,

SNP effects will be better estimated when the sample size of the discovery cohort increases

(Figure BOX1); estimated or predicted effect sizes of rare variants will be difficult to verify

even with large sample sizes.

Limitation 4: Statistical methods in the discovery sample

The least squares prediction or ‘profile scoring’29 method is commonly used for prediction

of genetic risk. Although simple to apply it does not have desirable statistical properties and

an arbitrary p-value threshold is used for the selection of SNPs that go in the predictor.

Moreover, estimation of SNP effects one at a time is not an optimal approach1, 39–44. This is
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because SNP effects are correlated and accounting for LD in the profile scoring method

requires SNP selection on arbitrary thresholds. Methods that model the distribution of SNP

effects40 and the correlation between SNPs in the presence of single as well as multiple

causal variants will be more accurate1, 39–43, 45. In human applications, sometimes only

genome-wide significant SNPs are included in the predictor15, 46–49, yet greater accuracy

results from the use of less stringent thresholds1, 37, 40 and in animal and plant breeding it is

typical to use all available SNPs. Better SNP estimation methods exist and are used in plant

and animal breeding1, 2, 37, 44, 50 and such methods have been proposed for applications to

human data1, 43. They rely on prior assumptions about the distribution of SNP effects in the

genome, and use all data simultaneously. Such Bayesian methods have also been applied to

other species51, and related methodologies derived in computer science have been applied to

disease data in humans4, 52. Ignorance can’t be bliss in this context and it must be best to use

all available genetic and phenotypic information simultaneously. It is outside the scope of

this Perspective to discuss these methods in more detail.

Pitfalls of the analysis

Pitfall 1: Validation and discovery sample overlap

If the correlation (R) between a phenotype and a single SNP in the population is zero (that

is, the SNP is not associated with the trait), the expected value of the squared correlation

(R2) estimated from a sample of size N is 1/(N-1), or approximately 1/N if N is large. Hence,

a randomly chosen ‘candidate’ (but not truly associated) SNP explains 1/N of variation in

any sample. Usually 1/N is small enough not to worry about. However, a set of m

uncorrelated SNPs that have nothing to do with a phenotype of interest would, when fitted

together, explain m/N of variation (due to the summing of their effects). For example, a set

of 100 independent SNPs when fitted together in a regression analysis in a discovery sample

of Nd = 1000 would, on average, explain R2 =10% of phenotypic variance in the discovery

sample under the null hypothesis of no true association.

When the number of SNPs in the predictor is large and the sample size is small, the

discovery R2 can be very high by chance and can be a gross over-estimation of the true

variance explained by the predictor when applied in an independent sample. Also, the

expected R2 in the validation sample for a set of SNPs selected from a discovery sample but

with the effect sizes of the SNPs re-estimated in the validation sample is ~1/Nv, with Nv the

validation sample size. Therefore, to estimate the R2 of a prediction in a new sample, a

prediction equation is estimated in the discovery sample and is tested, without re-estimating

the regression coefficients, in the validation sample (Box 2). Applying the incorrect

validation procedure results in over-estimation of the accuracy of the prediction (or over-

fitting). An example of where over-fitting occurs is when testing the prediction in the

discovery sample, i.e., the same data are used to estimate the effect of SNPs on phenotype

and to make predictions53, 54 . We illustrate the overlap pitfall with examples in dairy cattle,

Drosophila and human populations (FIG 2a-c). . For example, in a GWAS on ~150

sequenced inbred lines of Drosophila54 in which this was done the authors concluded that

6–10 SNPs selected from > 1M SNPs together explained 51–72% of variation in the lines

(depending on the trait analysed). However, a cross-validated Bayesian prediction analysis
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using all genetic markers on the same data found that only 6% of phenotypic variation could

be explained by the predictor51.

A less obvious mistake is to select the most significantly associated SNPs in the entire

sample and to use these to estimate SNP effects and test their prediction accuracy in the

discovery and validation sets55. In this case the variance explained by the SNPs when

applied in the validation sample is inflated. It creates bias and misleading results because the

initial selection step of the SNPs is based upon there being a chance correlation between

these SNPs and the entire sample, so also between the SNPs and any sub-sample. A

prediction equation based on these SNPs will appear to work in the validation sample but

not in a genuinely independent sample. Cross-validation analysis after the initial set of

SNPs has been selected from the entire sample does not mitigate this bias. The pitfall of

SNP selection from discovery and validation samples occurred in a recent study reporting a

genetic predictor of autism56. SNPs putatively associated with autism in multiple biological

pathways were selected based upon p-values from GWAS in the entire data set. Model

selection was subsequently applied using cross-validation to narrow down the number of

SNPs. The authors did follow up with an independent validation sample, and the prediction

accuracy was reduced.

A variation on this pitfall is when a proportion of individuals in the validation sample are

also in the discovery sample and then the bias is proportional to the fraction of the validation

samples that was also in the discovery set (see BOX 2). In practice it might be difficult to

ascertain if any of the validation individuals were also in the discovery set, in particular if

there are only summary statistics (i.e., estimates and standard error of SNP effect and allele

frequencies) available, particularly from public databases. We use cattle data44 to illustrate

the inflation in variance explained by a SNP predictor when the validation sample is

included in discovery steps (Fig 2c)

The remedy to this pitfall is to use external validation. In some cases independent data sets

are not available in which case internal cross-validation is the only option. In cross-

validation it is important to avoid the pitfall of updating the predictor based on results

derived from the validation sample, hence losing the independence of discovery and

validation samples that the strategy has set out to achieve57. Overlap in samples can be

checked as part of quality control (QC) of the prediction pipeline, by estimating pairwise

relatedness using SNP data, but this requires access to full genotype data from both

discovery and validation samples. There are many software tools that can do this, including

PLINK58 and GCTA59.

Pitfall 2: The validation sample

If the validation sample is more closely related to the discovery population than to the target

population, then the prediction accuracy will be over-estimated. In humans, a polygenic

prediction analysis of height in 5,117 individuals from the Framingham Heart Study (FHS;

original and offspring cohorts only) reported a prediction R2 of 0.25 using 10-fold cross-

validation when including all individuals in the analysis60. However, because FHS includes

many related individuals, the authors repeated the analysis restricting the 10-fold cross-

validation samples to individuals with no known close relatives (parent-offspring, sibling, or
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half-sib) in the data set based on pedigree information. In this restricted analysis, the

prediction R2 decreased to 0.15. We caution that cryptic relatedness can still inflate

prediction accuracy even when known close relatives are excluded. To demonstrate this, we

conducted a polygenic prediction analysis of height using 7,434 individuals from the FHS

SHARe data61 (BOX 3). Our results demonstrate that cryptic relatedness, beyond the close

relatives inferred from pedigrees, can inflate prediction accuracy relative to the prediction

accuracy that could be achieved in an independent validation sample.

The remedy of the pitfall described here is to use conventionally unrelated individuals (in

discovery and validation stages). Relatedness can be estimated from SNP data58, 59 and so

close relatives can be excluded based upon observed data. More generally, the validation

population should be representative of the population in which the predictor will ultimately

be applied. In populations with small effective population size, such as some breeds of

livestock, all individuals are related. This does not invalidate the prediction but it does mean

that the same prediction accuracy cannot be expected when the prediction equation is

applied to another population that is less closely related to the discovery population62.

Sometimes the validation population differs from the application (target) population in that

it is much more genetically diverse. For example, the validation (and possibly discovery)

population might include a diverse set of lines of animals or plants. A prediction equation

may work well in this population but less well in an application population that is less

diverse such as commercial strains of a crop62.

Pitfall 3: Population stratification similarity

Another way in which prediction accuracy can be inflated is if the discovery and validation

samples contain similar patterns of population stratification and the eventual target

population is not similarly stratified. For example, this could occur if discovery and

validation samples are independently sampled from a stratified population such as European

Americans63. The question of whether this inflation should be viewed as a pitfall depends on

the ultimate goal of the analysis. If the goal is to conduct prediction in European Americans,

it is entirely appropriate to leverage ancestry information to the fullest extent possible, and

this inflation is not a pitfall (because discovery, validation and target samples are similarly

stratified). On the other hand, if the goal is to assess the prediction accuracy that could be

achieved using less structured application populations, then this inflation is a pitfall. As an

example, we show that population stratification was inflating prediction accuracy in the FHS

analysis (See BOX 3 for details). A more serious problem is when there is confounding

between ancestry and disease status both in discovery and validation case-control samples,

because such spurious association can lead to a predictor of ancestry rather than one of

disease. It was recently suggested that the aforementioned predictor of autism56 suffers from

this pitfall64.

A practical remedy to problems associated with population stratification is to fit ancestry

principal components in the analysis of discovery samples. We note that differential bias

between cases and controls65 can also lead to spurious prediction R2 if discovery and

validation samples exhibit the same differential bias, as could occur when using 10-fold

cross-validation. A remedy for differential bias is to perform stringent quality control and/or
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to validate in a completely independent sample, in lieu of 10-fold cross-validation. One QC

step that can be done is to use the genotyped SNPs that are in the predictor and quantify the

estimated relatedness between the application sample and the discovery and validation

samples, for example in a principal component analysis (PCA)66 or related methods67. If the

application sample is an outlier on the PCA then the prediction accuracy in the target may be

less than expected from the validation procedure.

Pitfall 4: Expectation of equality of R2 and 

Sometimes called the SNP- or chip-heritability, an unbiased estimate of the variance

explained by markers  is achieved by correlating phenotypic similarity between pairs of

individuals with their SNP-based genotypic similarity26, 59, 65. In human populations, the

SNP-heritability is broadly between one-third and one-half of total heritability for traits

studied to date28, 35, 68. A prediction of phenotype based upon the same set of SNPs would

achieve an R2 =  only if the individual SNP effects were estimated without error27. For

example, when a multiple-SNP predictor that used the ‘profile scoring’ method was used for

height61, it achieved an R2 of 10–15% in out-of-sample predictions. Yet Yang et al (2010)26

estimated that all the SNPs together would explain 40–50% of phenotypic variance if their

effects were estimated without error. These results are not inconsistent when the error

associated with the estimate of each SNP effect is appreciated.

With ever-larger sample sizes, the size of the error terms in the SNP effect estimates will be

reduced, and the two statistics will converge to the same value. However, simulations for

human populations suggest that the improvement in trait prediction as sample size increases

depends on the genetic architecture of the trait, in particular how many variants there are

with tiny effect sizes, and that for most common complex genetic diseases the improvement

will be slow and modest even when common SNPs account for a large proportion of

heritability of the traits17. Hence, for applications in human populations to achieve

meaningful and accurate predictions, big data are key and sample sizes of hundreds of

thousands needed and such data sets are starting to become achievable.

Conclusions

We highlighted what we believe are limitations to genetic risk prediction as well as the most

important pitfalls to befall researchers and discussed how these can be avoided. Most

problems occur in the validation stage, when data are not fully independent to those in the

discovery phase, but care is also needed to ensure that the discovery and validation samples

are representative of the population in which the predictor will be applied. Genomic

prediction is already having a major impact in livestock selection programmes37 and has

great potential for applications in plant breeding, preventative medicine strategies and

clinical decision making. However, there are fundamental limitations to the predictive

ability of a genetic predictor (see limitations 1 and 2) and so it is important that expectations

are realistic and that the accuracy of genetic predictors are fairly evaluated. As sample sizes

increase, predictors of genetic risk will have greater clinical utility, particularly in terms of

identification of population strata at increased risk of disease as opposed to accurate

predictive diagnosis for individuals.
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Refer to Web version on PubMed Central for supplementary material.
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Glossary

Heritability The proportion of phenotypic variance attributable to additive

genetic variation.

Estimated

Breeding Value

An estimate of the additive genetic value for a particular trait that an

individual will pass on to descendants.

Linkage

Disequilibrium

The non-random association of alleles at different loci.

Effective

population size

The number of individuals in an idealized population with random

mating and no selection that would lead to the same rate of

inbreeding as observed in the real population.

Polygenic

prediction

analysis

Any analysis method that predicts genetic risk or breeding values

based on the combined contribution of many loci.

Profile scoring A polygenic prediction method for prediction of genetic value or

risk for each individual (a “profile”) in a validation sample

generated from the sum of the alleles they carry weighted by the

association effect size estimated in a discovery sample.

Independent SNPs Independent, uncorrelated SNPs are in linkage equilibrium.

Although the effective number of independent markers in standard

GWAS chips has sometimes been assumed to as large as 200,000

(e.g. ref17), we believe that 60,000 is a more appropriate value, as

analyses of LD29, genomic inflation factors69 and eigenvalues from

principal components analysis70 have consistently produced

estimates close to 60,000 in European populations. Predictions from

theory, based upon random mating populations of a given effective

size and for given genome length, also come to this number36. Thus

the appropriate value for M is approximately 60,000.

Independent

sample

In the context of risk prediction an independent sample means a

sample from the same population but excluding individuals that are

closely related. Necessarily, the individuals in different samples

from the same population will share common ancestors, and indeed

this distant sharing underpins the efficacy of a risk predictor.

Cross-validation To test the validity of a prediction in the absence of an independent

external validation sample, the sample is divided into k independent

subsets (balanced with respect to case-control status in disease
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data). Each of the k subsets is used in turn as a validation sample for

a predictor derived from the remaining k-1 subsets.

Ancestry

principal

components

Principal components derived from the genome relationship matrix

that account for the genetic substructure of the data. In case-control

studies these principal components can reflect genotyping artefacts

such as plate, batch and genotyping centre that could be confounded

with case-control status.

Cryptic

relatedness

Cryptic relatedness is when a sample is thought to comprise

unrelated individuals based on record pedigree relationships but in

fact includes close relatives, for example 2nd cousin or closer.

Conventionally

unrelated

Individuals from that are not closely related, for example more

distantly related than 3rd cousins
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Box 1. Quantifying phenotypic variation explained by SNPs

Quantitative traits

The proportion of phenotypic variance explained (R2) by a predictor of a quantitative trait

formed using estimated effects of all markers depends on the number (M) of independent

measured genomic variants (e.g., SNPs) associated with the trait, the proportion of the

total variance they explain ( ), and the sample size in the discovery sample

(Nd)27, 36, 38. If all marker effects are assumed to come from the same normal

distribution, then approximately

[Equation 1]

Equation 1 holds regardless of the genetic architecture of the trait, but we note that the

(least squares) predictor may be far from optimal.  is usually less than the heritability

estimated from family studies and is sometimes called the SNP-heritability or chip-

heritability, estimated, for example, using GCTA52. Equation 1 is from the supplement of

ref38; when R2 is small it can be ignored from the denominator, otherwise the quadratic

in R2 can be solved. The graph below shows that the sample size must be large in order to

achieve a high R2. If the distribution of marker effects sizes is markedly non-normal,

with some large effects and many very small or zero effects, and if knowledge of this

distribution is used in estimating SNP effects then higher R2 can be achieved61.

In this article we use R2 at the statistic to report efficacy of a predictor or R, the

correlation between phenotype and predictor or accuracy. The sign of the correlation is

important for interpretation of the predictor. In livestock, genetic predictors have been

used for decades (based on pedigree data prior to the availability of genotypic data) and

accuracy (RG,Ĝ) is traditionally used to evaluate utility. RG,Ĝ is the correlation between

true and estimated genetic value (the predictor, which is an estimate of the combined

value of all genetic loci). Since , the RG,Ĝ statistic quantifies the efficacy of a

genetic predictor relative to the best possible genetic predictor.

Disease traits

For disease traits, Nagelkerke’s R2 ( ) has been used in profile scoring analyses,

following Purcell et al29.  is an R2 measure in binary (0–1) outcome data. Application

is usually in case-control validation samples, where the proportion of cases is much

higher than in the population. Alternatively, the area under the receiver operator curve

(AUC) is reported74–76, a statistic with a long tradition of use in determining the efficacy

of clinical predictors. AUC has a desirable property of being independent of the

proportion of cases in the validation sample; one definition of AUC is that a randomly

selected case is ranked higher by the predictor than a randomly selected control. A new

statistic reflecting variance explained on the liability scale ( ), which it can be related to

other statistics such as  and AUC11, has been proposed77. Like any estimate on the

Wray et al. Page 15

Nat Rev Genet. Author manuscript; available in PMC 2014 July 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



liability scale, calculation of  requires specification of disease prevalence in the

population, but allows direct comparison of the variance explained by the predictor to

estimates of heritability from family data and estimates of SNP-heritability from genome-

wide SNP data.
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Box 2. Quantifying prediction accuracy for pitfall 2

When discovery and validation samples are independent

When m SNPs have been selected from a discovery sample, a simple linear predictor in

the validation sample is , with xi = 0,1 or 2 reference alleles of a SNP and b ̂i the

estimated effect size from the discovery sample. In this article we do not concern

ourselves with how b̂i is estimated – there are simple least squares and more complex

Bayesian estimation methods that have been described elsewhere1, 41, 42. We also restrict

ourselves to linear (additive) models. Given a multi-SNP predictor (ŷ), the validation

step is to quantify how much of the variation in trait y is explained by the predictor ŷ. A

regression of y on ŷ fits only a single covariate so the R2 expected by chance is only

1/Nv, where Nv is the validation sample size. If the validation sample is drawn from the

same population as the discovery sample, then a value of R2 > 1/Nv is evidence for real

predictive ability of the predictor. (Software tools output an adjusted R2 that corrects for

the R2 expected by chance). Hence the sample size in the validation stage does not have

to be large to reject the null hypothesis of no association, H0: ρ2 = 0, where ρ2 true value

of R2 in the population. The standard error (SE) of R is approximately  if ρ is

very small, and more generally . In terms of R2, its SE is approximately

 with ρ small. A general and a more complicated exact equation was given by

Wishart (1931)77. Using the exact equations, if ρ2 is 1% or 10%, then SE(R2) for Nv =

100 is 1.9% or 5.6% and for Nv = 500 it is 0.8% and 2.5%.

When discovery and validation samples are the same

In the supplementary material we derive an approximation of R2 (verified by simulation)

when there is no correlation in the population between SNPs and phenotypes, but when m

“associated” SNPs are identified from the same sample (of size N) in which they are

validated as a predictor. The relationship between R2 and N, dependent on m and

assuming M = 100,000 independent genomic variants associated with the phenotype is

plotted below in which m SNPs (m = 10, 100 or 1000) are selected after association

analysis of M = 100,000 uncorrelated SNPs in a sample of unrelated individuals and

applied as a predictor back into the same sample, when there is no correlation between

SNPs and phenotypes. In genome-wide association studies M is large so overestimation

of R2 occurs even for big sample sizes.
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When validation sample overlaps with the discovery sample

If some of the samples in the validation cohort are also in the discovery set then this can

create spurious results. For the samples that overlap, the expected R2 between predictor

and outcome is the same as in the entire discovery sample, because those samples are just

a random sample from the discovery cohort. If the proportion of samples in the discovery

set that are also in the validation cohort is q, then the expected squared correlation

between predictor and outcome in the entire validation cohort is approximately q*R2 +

(1-q)/Nv, with R2 the (spurious) accuracy derived in the supplementary material (see

previous section). The important result is that if samples overlap it is not the proportion

of those samples in the discovery cohort that matters but it is the proportion of the

validation samples that is also in the discovery cohort that determines false accuracy.
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Box 3. Using the Framingham Heart Study (FHS) to illustrate pitfalls of
validation

The FHS is a large cohort study of individuals and their family members measured for a

wide range of traits (particularly related to cardiovascular disease) and with genome-wide

genotypes. A polygenic prediction analysis of height60 showed that including known

related individuals in the analysis inflated R2 (from 0.15 to 0.25) To investigate if genetic

relatedness can still inflate prediction accuracy even when known close relatives are

excluded, we conducted a polygenic prediction analysis of height using 7,434 individuals

from the FHS SHARe data61. We obtained a prediction R2 of 0.13 using 10-fold cross-

validation when restricting to individuals with no known close relatives in the data set

based on known pedigree information. (We fit markers individually whereas in the

original study60 markers were fitted simultaneously via a Bayesian random effects

model, thus it is expected that a slightly higher R2 of 0.15 was reported). We repeated the

analysis restricting to individuals with pairwise relatedness estimated from the SNPs of

less than 0.40, 0.20, or 0.05, and obtained prediction R2 of 0.08, 0.06 and 0.06,

respectively, demonstrating the importance of using the genotype data to identify

relatives rather than accepting recorded family relationships.

We investigated whether population stratification was inflating prediction accuracy in our

FHS analysis, as the prediction R2 of 0.06 was much higher than would be expected from

theory36 or from empirical data on much larger sample sizes61. When repeating the

analysis using a height phenotype that was adjusted for 10 eigenvectors66 of the SNP

derived relationship matrix, once again restricting to individuals with pairwise

relatedness less than 0.40, 0.20, or 0.05, we obtained prediction R2 of 0.06, 0.01 and

0.00, respectively, which were smaller than the prediction R2 obtained using unadjusted

height. The bulk of the reduction came from correcting for the top eigenvector,

representing northwest European vs. southeast European ancestry63, which is strongly

correlated to height (R2=0.05 in FHS data, consistent with other studies78, 79). Thus,

consistent with theory, polygenic prediction analyses of a few thousand unrelated

individuals that do not benefit from population stratification will attain a low prediction

R2 (<0.01). The results of these analyses are summarised in the graph below.
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Figure 1.

Flowchart of SNP-based prediction analysis. There are three stages for the development of a

risk predictor – discovery, validation and application. At each stage data is needed as an

input, a process is applied to the data and a result is generated.
a. At this stage effect sizes estimated from combined discovery and validation samples can

be used.
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Figure 2. Examples of the overlap pitfall: non-independence of discovery and validation samples

a) Human: High R2 can be achieved by chance particularly when sample size is small.

We simulated GWAS data based upon real human genotype data under the null hypothesis

of no association. We used data of 11,586 unrelated European Americans genotyped on

563,212 SNPs 71–73. We randomly sampled N individuals and selected top SNPs for height

at p < 10−5 (red bar) and p < 10−4 (blue bar) to predict the phenotype in the same data. We

also performed association analysis for real height phenotype in 10,000 individuals and

selected top SNPs at p < 10−5 (green bar) and p < 10−4 (purple bar) to predict height

phenotype in the same sample. The graph shows the mean prediction R2 over 100 simulation

replicates. Error bar: standard error of the mean. The number on top of each column is the

mean number of selected SNPs over 100 simulation replicates.

b) Drosophila: An example, illustrating bias when selecting the top SNPs. We downloaded

genotype data of the Drosophila Genetics Reference Panel and simulated phenotypes under

the null hypothesis, i.e., random association between each of the > 1 million SNPs and

phenotype. We repeated the GWAS analysis reported in54, selecting the top 10

independently associated SNPs and predicted the phenotypes of the lines using these 10

SNPs. Since in the simulated data there are only random associations between SNP and

phenotype any prediction power is false and result of over-fitting. By chance, the top SNPs

(in terms of test statistic) explain 57% (R2=57%) of the phenotypic variance between the

inbred lines, from a linear regression of phenotype on predictor. Both phenotype and

predictor have been standardized to normal distribution z-scores (mean of zero and standard

deviation of one).
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c) Dairy Cattle: The impact of leaving the validation cohort in the discovery set, either at

both SNP selection (GWAS) and SNP effect estimation stages, or at the effect size

estimation stage only. Data shown are from 2,732 bulls with ~500K SNPs phenotyped for

average milk yield of their daughters’ milk production. The bulls were split into a discovery

sample (bulls born during or before 2003), Nd = 2,458, and a validation sample (bulls born

after 2003) of Nv= 274.
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