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Abstract. We provide an analytic expression for the variance of ratio of integral functionals
of fractional Brownian motion which arises as an asymptotic variance of Pitman estimators for a
location parameter of independent identically distributed observations. The expression is obtained
in terms of derivatives of a logarithmic moment of the integral functional of limit likelihood ratio
process (LLRP). In the particular case when the LLRP is a geometric Brownian motion, we show that
the established expression leads to the known representation of the asymptotic variance of Pitman
estimator in terms of Riemann zeta-function.
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1. Introduction. The Pitman estimator [17] for the location parameter θ of inde-
pendent random variables (r.v.’s) ξi, i = 1, . . . , n, with a density fθ(x) = f(x − θ) is given
as

(1) θ̂n =

∫∞
−∞ uL

(n)
u du∫∞

−∞ L
(n)
u du

, L(n)
u :=

n∏
i=1

f(ξi − u).

The existence and admissibility of Pitman estimators have been discussed in [18]. The
integrals in (1) exist for sufficiently large n under the condition E |ξi|p < ∞ for some p > 0.
An exposition of some other important properties of Pitman estimators is presented in the
textbook by Borovkov [4] (see also [20]).

The form of a limit distribution (as n → ∞) for the Pitman estimator has been derived
by Ibragimov and Has’minskii [13], [15], who showed that under some regularity assumptions

(2) nγ(θ̂n − θ)
d−→ ζ,

in terms of convergence in distribution, where

ζ =

∫ ∞
−∞ uLu du∫∞
−∞ Lu du

,

Lu is a limit likelihood ratio process, and the parameter γ depends on the form of discontinu-
ities of derivatives of the underlying density fθ(x). In several important cases the structure
of the process

Yu := logLu

has been described in [13], [15], and [16].
Let WH

u , u ∈ R = (−∞,∞), be a fractional Brownian motion with the Hurst parameter
H ∈ (0, 1]. Recall that WH

u is a Gaussian continuous process with

EWH
u = 0, E |WH

u −WH
s |2 = |u− s|2H , u, s ∈ R.
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522 A. NOVIKOV AND N. KORDZAKHIA

In [15] it has been shown that if fθ(x) is a density of Weibull-like distributions, then

(3) Yu = WH
u − 1

2
|u|2H

with H ∈ ( 1
2
, 1] and γ = 1

2
H in (2).

Furthermore, the random variable ζ with Yu specified in (3), for the case H = 1
2
, occurs

as a limit in a change-point problem for a Brownian motion (see [13], [15]) and (see [2]) for
H ∈ [ 1

2
, 1] it occurs in estimation problems of ergodic diffusion processes in [16] and [12],

and for H ∈ (0, 1
2
) it also occurs in [9].

Note that, even in the case of H = 1
2
, the distribution of ζ and expressions for its even

moments (higher than 2) are unknown in the explicit form.
In this paper we only discuss the problem of calculation of variance Var (ζ) for the case

(3) with H ∈ [ 1
2
, 1]. The method developed in this paper employs auxiliary variables (see

section 2) and it potentially can be used for obtaining analytical expressions and numeri-
cal approximations for other limiting processes, for example, when Lu is a geometric Lévy
process.

The special case H = 1
2

in (3) was studied by several authors. In [14], using the
simulation method it was obtained that

Var ζ = 19.5± 0.5.

Golubev [11], using the Feyman–Kac formulae, found an analytical expression for Var (ζ)
in terms of integrals of products of Bessel functions and then, using numerical integration,
obtained

Var ζ = 19.276 ± 0.06.

Rubin and Song [19], using results of [11] and [21], found that

(4) Var ζ = 16Zeta [3] = 19.2329 . . . ,

where Zeta [k] is the Riemann-zeta function.
In this paper we show (see Theorem 2 in section 2) that, for the case H ∈ [ 1

2
, 1]

in (3), the value of Var (ζ) can be expressed in terms of derivatives of the expectation
of log(

∫∞
0

(e−m1uLu + e−m2uL−u) du) with respect to parameters m1 and m2. Further, we
will illustrate the application of this result for the case H = 1

2
, which leads to a relatively

simple derivation of (4).
The following theorem implies the existence of moments of random variable |ζ|2H , and

it counts for its own sake.
Theorem 1. If H >

√
5−1
4

, then the random variable |ζ|2H is exponentially bounded;
i.e., there exists a constant δ > 0 such that1

E exp{δ|ζ|2H} < ∞.

This result and some elements from its proof will be used in the proof of Theorem 2.
Proof. Set

qt =
Lt∫∞

−∞ Lu du
.

Since qt is a probability density function, by convexity argument, using Jensen’s inequality,
for any δ � 0, we have

eδ|ζ|
2H

� cδ +

∫ ∞

−∞
eδ|t|

2H

qt dt

with some constant cδ, (e.g., cδ = 0 for the case H � 1
2
).

1While the paper was in print we managed to improve the result of this theorem, showing that
it is valid for all H > 0.
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Since

(5) {WH
u , u � 0} d

= {WH
−u, u � 0},

the random variable ζ has a symmetric distribution, and hence we have

E eδ|ζ|
2H

� cδ + 2E

∫ ∞

0

eδt
2H

qt dt.

Note ∫ 1

0

eδt
2H

qt dt � eδ
∫ ∞

0

qt dt � eδ.

This implies

E eδ|ζ|
2H

� cδ + 2eδ + 2E

∫ ∞

1

eδt
2H

qt dt.

To estimate qt, note that by Jensen’s inequality

(6)

∫ ∞

−∞
Lu du �

∫ t

0

exp{Yu} du � t exp

{
1

t

∫ t

0

Yu du

}
, t > 0,

and hence

qt �
Lt∫ t

0
Lu du

� 1

t
exp

{
Yt − 1

t

∫ t

0

Yu du

}
, t > 0.

Thus we obtain

E

∫ ∞

1

eδt
2H

qt dt � E

∫ ∞

1

eδt
2H

exp

{
− t2H

2
+

1

t

∫ t

0

(
WH

t −WH
u +

u2H

2

)
du

}
dt

=

∫ ∞

1

exp
{
δt2H − H

2H + 1
t2H

}
E exp

{
1

t

∫ t

0

WH
u du

}
dt,

where the last equation holds due to the Fubini theorem and also due to the equalities

{WH
t −WH

u , u ∈ [0, t]} d
= {WH

t−u, u ∈ [0, t]},
∫ t

0

WH
t−u du

d
=

∫ t

0

WH
u du.

The random process
∫ t

0
WH

s ds is a zero-mean Gaussian process with the variance

Var

∫ t

0

WH
s ds = E

(∫ t

0

WH
s ds

)2

=
1

2

∫ t

0

∫ t

0

[
s2H + u2H − |u− s|2H

]
ds du

=
t2H+2

2H + 2
.

Therefore,

E

∫ ∞

1

eδt
2H

qt dt �
∫ ∞

1

exp

{
δt2H − H

2H + 1
t2H +

1

2t2
Var

∫ t

0

WH
s ds

}
dt

=

∫ ∞

1

exp

{
δt2H − t2H

( H

2H + 1
− 1

2

1

2H + 2

)}
dt,

where the last integral is finite for positive δ such that

δ <
H

2H + 1
− 1

2

1

2H + 2
=

4H2 + 2H − 1

2(2H + 2)(2H + 1)
.

It remains to note that 4H2 + 2H − 1 > 0 when H >
√

5−1
4

= 0.309 . . . .
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524 A. NOVIKOV AND N. KORDZAKHIA

2. The main result. Here we discuss the situation when the process Yu = logLu has
the representation (3) with H ∈ [ 1

2
, 1].

For the proof of Theorem 2 we use the following representation:

(7) Var ζ =
1

2
E

∫∞
−∞ u2Lu du∫∞
−∞ Lu du

.

This representation was proved by Golubev [11] for the case H ∈ [ 1
2
, 1].

It is convenient to use the following parametrized processes:

β1(m) =

∫ ∞

0

e−muLu du, α1(m) =

∫ ∞

0

ue−muLu du,

β2(m) =

∫ ∞

0

e−muL−u du, α2(m) =

∫ ∞

0

ue−muL−u du,

where m � 0 is an auxiliary parameter. Obviously, we obtain

∫ ∞

−∞
Lu du = β1(0) + β2(0),

∫ ∞

−∞
uLu du = α1(0)− α2(0),

αi(m) = − ∂

∂m
βi(m), i = 1, 2,

and

(8) ζ =
α1(0) − α2(0)

β1(0) + β2(0)
.

In view of (5) we also have

(9) α1(0)
d
= α2(0), β1(0)

d
= β2(0).

This implies that the random variable ζ has a symmetric distribution, and hence E (ζ) = 0.
To formulate the main result we use the function

g(m1,m2) := E log(β1(m1) + β2(m2)) = E log

∫ ∞

0

(e−m1uLu + e−m2uL−u) du,

where m1 > 0 and m2 > 0 are auxiliary parameters.
Theorem 2. The function g(m1,m2) is twice continuously differentiable and

Var ζ = 2 lim
m1→0, m2→0

[
∂2g(m1,m2)

∂m2
1

− ∂2g(m1,m2)

∂m1∂m2

]
.

Proof. First note that the function g(m1,m2) is finite

g(m1,m2) � E

∫ ∞

0

(e−m1uLu + e−m2uL−u) du =
1

m1
+

1

m2
< ∞

due to the inequality log x � x, x > 0, and the equality ELu = E (L−u) = 1. Obviously,
g(m1, m2) > −∞ (see (6)).

The variance Var (ζ) = E (ζ2) < ∞ (see Theorem 1), and in view of (8) we have

Var ζ = E

(
α1(0)− α2(0)

β1(0) + β2(0)

)2

= −2E
α1(0)α2(0)

(β1(0) + β2(0))2
+E

α1(0)
2

(β1(0) + β2(0))2

+E
α2(0)

2

(β1(0) + β2(0))2
.(10)

Note that the last two terms are equal due to the property of symmetry (9).
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Further, for m1 > 0, m2 > 0, we have

E

(
α1(m1)− α2(m2)

β1(m1) + β2(m2)

)2

= −2E
α1(m1)α2(m2)

(β1(m1) + β2(m2))2
+E

α1(m1)
2

(β1(m1) + β2(m2))2

+E
α2(m2)

2

(β1(m1) + β2(m2))2
.(11)

To find the first term in the right-hand side of (10), we note that the random functions βi(m)
are continuously differentiable. By direct calculations we obtain

(12) Q(m1,m2) :=
α1(m1)α2(m2)

(β1(m1) + β2(m2))2
= −∂2 log(β1(m1) + β2(m2))

∂m1 ∂m2

for m1 > 0, m2 > 0. Applying the inequality xy � x2 + y2, we have

(13) Q(m1,m2) �
(α1(m1)

β1(m1)

)2

+
(α2(m2)

β2(m2)

)2

.

Now we show that the right-hand side of this inequality is uniformly bounded by an
integrable random variable.

Set

pt(m) =
e−mtLt∫∞

0
e−muLu du

.

Since pt(m) is a probability density function, by the Cauchy–Bunyakovsky inequality we
have (

α1(m)

β1(m)

)2

=

(∫ ∞

0

tpt(m) dt

)2

�
∫ ∞

0

t2pt(m) dt.

To estimate pt(m) we apply the following inequalities:

pt(m) � e−mtLt∫ t

0
e−muLu du

� Lt∫ t

0
Lu du

� Lt

t exp{(1/t) ∫ t

0
(WH

u − u2H/2) du}
and thus obtain∫ ∞

0

t2pt(m) dt �
∫ ∞

0

t exp

{
− t2H

2
+

1

t

∫ t

0

(
WH

t −WH
u +

u2H

2

)
du

}
dt

=

∫ ∞

0

t exp

{
− H

2H + 1
t2H +

1

t

∫ t

0

(WH
t −WH

u ) du

}
dt =: Z.

A similar estimate is valid for the second term (α2(m)/β2(m))2 in (13).
Referring to the proof of Theorem 1, we obtain

EZ =

∫ ∞

0

t exp

{
− t2H

(
H

2H + 1
− 1

2

1

2H + 2

)}
dt < ∞

for the case H � 1
2
. This implies that the random function Q(m1,m2) is uniformly bounded

by the parameter-free integrable random variable Z.
Applying the expectation to both parts of (12) and well-known theorems about differen-

tiability of expectations over parameters, we can conclude that the function g(m1,m2) has
a continuous mixed derivative and

(14) EQ(m1,m2) = E
α1(m1)α2(m2)

(β1(m1) + β2(m2))2
= −∂2g(m1,m2)

∂m1 ∂m2
.

To find the second and third terms in (11) (and, correspondingly, in (10)) a similar consid-
eration is used. One can check by direct calculations that

∂2 log(β1(m1) + β2(m2))

∂m2
1

= − α1(m1)
2

(β1(m1) + β2(m2))2
+

∫ ∞
0

u2e−m1uLu du

β1(m1) + β2(m2)
.
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526 A. NOVIKOV AND N. KORDZAKHIA

This implies

∂2g(m1,m2)

∂m2
1

= E
∂2 log(β1(m1) + β2(m2))

∂m2
1

= −E
α1(m1)

2

(β1(m1) + β2(m2))2
+E

∫∞
0

u2e−m1uLu du

β1(m1) + β2(m2)
.

Similarly one can get

∂2g(m1,m2)

∂m2
2

= E
∂2 log(β1(m1) + β2(m2))

∂m2
2

= −E
α2(m2)

2

(β1(m1) + β2(m2))2
+E

∫∞
0

u2e−m2uLu du

β1(m1) + β2(m2)
.

Combining all of the above equations we obtain

E

(
α1(m1)− α2(m2)

β1(m1) + β2(m2)

)2

= −∂2g(m1,m2)

∂m2
1

− ∂2g(m1,m2)

∂m2
2

+ 2
∂2g(m1,m2)

∂m1 ∂m2

+E

(∫∞
0

u2e−m1uLu du

β1(m1) + β2(m2)
+E

∫∞
0

u2e−m1uLu du

β1(m1) + β2(m2)

)
.

Applying inequality (x− y)2 � 2x2 + 2y2, we have

(
α1(m1)− α2(m2)

β1(m1) + β2(m2)

)2

� 2

(
α1(m1)

β1(m1)

)2

+ 2

(
α2(m2)

β2(m2)

)2

,

where the right-hand side is uniformly bounded by the parameter-free integrable random
variable Z as shown above. Now by Lebesgue’s dominated convergence theorem we obtain

Var ζ = lim
m1→0, m2→0

E

(
α1(m1)− α2(m2)

β1(m1) + β2(m2)

)2

= − lim
m1→0, m2→0

(
∂2g(m1,m2)

∂m2
1

+
∂2g(m1,m2)

∂m2
2

− 2
∂2g(m1,m2)

∂m1 ∂m2

)

+2E

∫∞
0

u2Lu du

β1(0) + β2(0)
.(15)

On the other hand, due to (5), formula (7) can be rewritten as follows:

Var ζ = E

∫∞
0

u2Lu du

β1(0) + β2(0)
.

To complete the proof we need to substitute the last expression into (15), taking into account
the equality

lim
m1→0, m2→0

∂2g(m1, m2)

∂m2
1

= lim
m1→0, m2→0

∂2g(m1,m2)

∂m2
2

,

and then we solve the resulting linear equation with respect to Var (ζ). This completes the
proof of Theorem 2.

Remark. 1. Other forms of the limit process Lu or, equivalently, the process Yu, ap-
pear in the change-point problems for Poisson processes (see, e.g., [7]) and autoregressive
processes [6]. In these settings the authors obtained the representation

(16) Yu = J+
u I{u � 0}+ J−

u I{u < 0},
where J+

u and J−
u are independent Lévy processes with some specific Lévy measures for

jumps.
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The representation (7) holds for the case (16) as well, under the condition

E ezJ
−
u = E e(1−z)J+

u for all z ∈ (0, 1)

(private communication of A. Gushchin, 2011).
2. One can see that the right-hand side of (7) can be written in the form

Var ζ = −1

2
lim
m→0

∂ E log
∫ ∞
−∞ e−mu2

Lu du

∂m
.

Thus, Var (ζ) can be found when the expectation E (log(
∫∞
−∞ e−mu2

Ludu)) is known in the
explicit form as a function of m. To our knowledge there are no results of this kind in
the current literature (besides the trivial case H = 1). However, there are many results
on distributions of integral exponentials of the form

∫∞
0

e−mu+Ju du, where Ju is a Lévy
process; see, e.g., [3], [5], [10], and references therein.

3. Under some additional assumptions, there exist other representations for Var (ζ). For
example, if for some ε > 0

(17) E log

∫ ∞

0

eεuLu du < ∞,

then

(18) Var ζ = lim
m→0

∂2 E log
∫ ∞
−∞ emuLu du

∂m2
.

The proof of this formula can be obtained similarly to the proof of Theorem 2.

3. Calculation of Var (ζ) for the case of H = 1
2
. We present here an elementary

derivation of the explicit formula (4) based on the result of Theorem 2 and the well-known
result on the distribution of the exponential functional of a standard Brownian motion. For
the case under consideration

β1(m) =

∫ ∞

0

eW
1/2
u −(1/2+m)u du

and

P

(
1

β1(m)
< x

)
=

∫ x

0

2(2y)2m

Γ(2m+ 1)
e−2y dy,

i.e., β1(m) has the reciprocal Gamma distribution (see [8]):

(19)
1

β1(m)

d
= Gamma [2m+ 1, 2].

Note that due to the properties of a standard Brownian motion, the random variables β1(m1)
and β2(m2) are independent. To find the function g(m1,m2), first note

E log
1

β1(m)
=

∫ ∞

0

log x
2(2x)2me−2x

Γ(2m+ 1)
dx = Ψ(0, 2m+ 1) − log 2

for any m � 0 (this can be verified using Mathematica), where the function Ψ(n, z) is the
(n+ 1)th derivative of logarithm of the gamma-function Γ(z):

Ψ(n, z) = PolyGamma [n, z] =
dn+1

dzn+1
log Γ(z).

Due to (19) and the fact that the sum of independent Gamma random variables is a random
variable with the distribution Gamma [·, 2], we have

1

β1(m1)
+

1

β2(m2)

d
= Gamma [2m1 + 2m2 + 2, 2],
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and hence

E log

(
1

β1(m1)
+

1

β2(m2)

)
= Ψ(0, 2m1 + 2m2 + 2)− log 2.

Besides,

E log(β1(m1) + β2(m2)) = E log

(
1

β1(m1)
+

1

β2(m2)

)
−E log

1

β1(m1)
−E log

1

β2(m2)

= Ψ(0, 2m1 + 2m2 + 2) −Ψ(0, 2m1 + 1)−Ψ(0, 2m2 + 1) + log 2,

and hence

∂2

∂2m1
E log(β1(m1) + β2(m2)) = 4Ψ(2, 2m1 + 2m2 + 2) − 4Ψ(2, 2m1 + 1),

∂2

∂m1 ∂m2
E log(β1(m1) + β2(m2)) = 4Ψ(2, 2m1 + 2m2 + 2).

Now we are ready to calculate Var ζ using Theorem 2. We have

Var ζ = 2

[
∂2g(m1,m2)

∂m2
1

− ∂2g(m1,m2)

∂m1 ∂m2

]∣∣∣
m1=0,m2=0

= 8Ψ(2, 2) − 8Ψ(2, 1)− 8Ψ(2, 2) = −8Ψ(2, 1).

To complete the derivation of the explicit formula (4) we need to note

Ψ(k, 1) = (−1)k+1k! Zeta [k + 1]

for any k = 1, 2, . . . (see [1, formula 6.4.2]). Thus we have

Var ζ = −8Ψ(2, 1) = 16 Zeta [3].

Remark. One can check that condition (17) does hold, and it is also possible to obtain
the last result using formula (18).

Acknowledgments. The authors thank Yuri Kutoyants for the suggestion to study
the problem of evaluations of asymptotic variances of Pitman estimators. The authors are
indebted to Julia Mishura and Alexander Gushchin for discussions and suggestions which
improved the presentation of the paper.

REFERENCES

[1] M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, 10th Printing, U.S.
National Bureau of Standards, U.S. Government Printing Office, Washington, DC, 1972.

[2] J. Antoch and M. Huskova, Bayesian-type estimators of change points, J. Statist. Plann.
Inference, 91 (2000), pp. 195–208.

[3] J. Bertoin and M. Yor, Exponential functionals of Lévy processes, Probab. Surv., 2 (2005),
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