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PITT’S INEQUALITIES AND UNCERTAINTY PRINCIPLE

FOR GENERALIZED FOURIER TRANSFORM

D. V. GORBACHEV, V. I. IVANOV, AND S. YU. TIKHONOV

Abstract. We study the two-parameter family of unitary operators

Fk,a = exp
( iπ

2a
(2〈k〉+ d+ a− 2)

)

exp
( iπ

2a
∆k,a

)

,

which are called (k, a)-generalized Fourier transforms and defined by the a-
deformed Dunkl harmonic oscillator ∆k,a = |x|2−a∆k − |x|a, a > 0, where ∆k

is the Dunkl Laplacian. Particular cases of such operators are the Fourier and
Dunkl transforms. The restriction of Fk,a to radial functions is given by the
a-deformed Hankel transform Hλ,a.

We obtain necessary and sufficient conditions for the weighted (Lp, Lq) Pitt
inequalities to hold for the a-deformed Hankel transform. Moreover, we prove
two-sided Boas–Sagher type estimates for the general monotone functions.
We also prove sharp Pitt’s inequality for Fk,a transform in L2(Rd) with the
corresponding weights. Finally, we establish the logarithmic uncertainty princi-
ple for Fk,a.

1. Introduction

Let Rd be the real space of d dimensions, equipped with a scalar product 〈x, y〉

and a norm |x| =
√

〈x, x〉. The Fourier transform is defined by

F(f)(y) = (2π)−d/2

∫

Rd

f(x)e−i〈x,y〉 dx.

R. Howe [16] found the spectral description of F using the harmonic oscillator
−(∆− |x|2)/2 and its eigenfunctions forming the basis in L2(Rd):

F = exp
( iπd

4

)

exp
(iπ

4
(∆− |x|2)

)

,

where ∆ is the Laplace operator. This representation has been widely used to de-
fine the fractional Fourier transform and Clifford algebra-valued analogues, see [6].

One of the generalizations of the Fourier transform is the Dunkl transform Fk

[10], which is defined with the help of a root system R ⊂ Rd, a reflection group
G ⊂ O(d), and multiplicity function k : R → R+ such that k is G-invariant.
If k ≡ 0, we have Fk = F .

The differential-difference operator ∆k, the Dunkl Laplacian, plays an important
role in the Dunkl analysis, see, e.g., [24]. For k ≡ 0 we get ∆k = ∆.
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S. Ben Säıd, T. Kobayashi, and B. Ørsted [4] defined a-deformed Dunkl-type
harmonic oscillator as follows

∆k,a = |x|2−a∆k − |x|a, a > 0.

Following [16], they constructed a two-parameter unitary operator, the (k, a)-
generalized Fourier transforms,

(1) Fk,a = exp
( iπ

2a
(2λk + a)

)

exp
( iπ

2a
∆k,a

)

in L2(Rd, dµk,a) with a norm

‖f‖2,dµk,a
=

(
∫

Rd

|f(x)|2 dµk,a(x)

)1/2

,

where

λk =
d

2
− 1 + 〈k〉, 〈k〉 =

1

2

∑

α∈R

k(α),

dµk,a(x) = ck,avk,a(x) dx, vk,a(x) = |x|a−2vk(x),

vk(x) =
∏

α∈R

|〈α, x〉|k(α), c−1
k,a =

∫

Rd

e−|x|a/avk,a(x) dx.

If a = 2, (1) recovers the Dunkl transform, and if a = 2 and k ≡ 0 the Fourier
transform. For a 6= 2, (1) is a deformed Fourier and Dunkl operators. In particular,
if a = 1 and k ≡ 0, the operator Fk,a is the unitary inversion operator of the
Schrödinger model of the minimal representation of the group O(N+1, 2), see [20].

The operator Fk,a is a unitary operator, that is, for a > 0, 2〈k〉 + d + a > 2,
it is a bijective linear operator such that for any function f ∈ L2(Rd, dµk,a) the
Plancherel formula holds [4, Th. 5.1]

(2)
∥

∥Fk,a(f)(y)
∥

∥

2,dµk,a
=

∥

∥f(x)
∥

∥

2,dµk,a
.

The main goal of this paper is to prove Pitt’s inequality

(3)
∥

∥|y|−βFk,a(f)(y)
∥

∥

2,dµk,a
≤ C(β, k, a)

∥

∥|x|βf(x)
∥

∥

2,dµk,a
, f ∈ S(Rd),

with the sharp constant

C(β, k, a) = a−2β/a Γ
(

a−1(λk + a/2− β)
)

Γ
(

a−1(λk + a/2 + β)
) ,

and the logarithmic uncertainty principle

(4)

∫

Rd

ln (|x|)|f(x)|2 dµk,a(x) +

∫

Rd

ln (|y|)|Fk,a(f)(y)|
2 dµk,a(y)

≥
2

a

{

ψ
(λk
a

+
1

2

)

+ ln a
}

‖f‖22,dµk,a
,

provided that

0 ≤ β < λk +
a

2
, 4λk + a ≥ 0.

Here and in what follows, Γ(t) is the gamma function, ψ(t) = Γ′(t)/Γ(t) the psi
function, and S(Rd) the Schwartz space.

Inequalities (3) and (4) were proved by W. Beckner [2] for the Fourier transform,
by S. Omri [23] for the Dunkl transform on radial functions, by F. Soltani [26]
for the one-dimensional Dunkl transform, and by the authors [13] for the general
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Dunkl transform. Regarding inequality (3) for the Fourier transform see also
[3, 12, 15, 27].

A study of analytical properties of Fk,a-transform was first conducted in [4].
Very recently, weighted norm inequalities were obtained in [19]. In particular, the
author raises the question on the sharp logarithmic uncertainty principle for Fk,a.

The rest of the paper is organized as follows. In Section 2 we study the a-
deformed Hankel transforms which are the restriction of Fk,a to radial functions.
In particular, we find necessary and sufficient conditions for the Pitt inequalities
with power weights to hold and we obtain sharp Pitt’s inequality in L2.

Section 3 deals with boundedness properties of the a-deformed Hankel transform
of general monotone functions. In this case we improve the range of parameters
in the Pitt inequalities and prove the reverse inequalities. In particular, we obtain
two-sided inequalities of the Boas–Sagher type.

Section 4 is devoted to the proof of inequality (3). To show (3), we use the
following decomposition

(5) L2(Rd, dµk,a) =
∞
∑

n=0

⊕Rd
n(vk,a), Rd

n(vk,a) = Rd
0(vk,a)⊗Hd

n(vk),

where Rd
0(vk,a) is the space of radial function, and Hd

n(vk) is the space of k-spherical
harmonics of degree n. Since Rd

n(vk,a) is invariant under the operator Fk,a, it is
enough to study inequality (3) on Rd

n(vk,a).
In Section 5, we obtain the logarithmic uncertainty principle (4) for Fk,a-

transform, which follows from (3). It is worth mentioning that the Heisenberg
uncertainty principle for Fk,a was proved in [4]. It reads as follows: for d ∈ N,

k ≥ 0, a > 0, and 2λk + a > 0, one has
∥

∥|x|a/2f(x)
∥

∥

2,dµk,a

∥

∥|y|a/2Fk,a(f)(y)
∥

∥

2,dµk,a
≥ (2λk + a)

∥

∥f
∥

∥

2

2,dµk,a
.

The equality holds if and only if the function f is of the form f(x) = Ce−c|x|a for

some a, c > 0. Various uncertainty relations for Fk,a were also studied in [19].
We conclude by Section 6 where we study the uniform boundedness proper-

ties of the kernel Bk,a(y, x) in the integral transform expression Fk,a(f)(y) =
∫

Rd Bk,a(y, x)f(x) dµk,a(x).

2. Fk,a-transform on radial functions

Let λ ≥ −1/2, Jλ(t) be the classical Bessel function of degree λ, and

jλ(t) = 2λΓ(λ+ 1)t−λJλ(t)

be the normalized Bessel function. Let also

b−1
λ =

∫ ∞

0

e−t2/2t2λ+1 dt = 2λΓ(λ+ 1), dνλ(r) = bλr
2λ+1 dr, r ∈ R+.

The norm in Lp(R+, dνλ), 1 ≤ p <∞, is given by

‖f‖p,dνλ =

(
∫

R+

|f(r)|p dνλ(r)

)1/p

.

Moreover, let ‖f‖∞ = supvrair∈R+
|f(r)|.

The Hankel transform is defined as follows

Hλ(f)(ρ) =

∫

R+

f(r)jλ(ρr) dνλ(r).
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It is a unitary operator in L2(R+, dνλ) and H−1
λ = Hλ [1, Chap. 7].

Note that the Hankel transform is a restriction of the Fourier transform on
radial functions if λ = d/2− 1, and of the Dunkl transforms on radial functions if
λ = λk = d/2− 1 + 〈k〉.

Let S(R+) be the Schwartz space on R+. For f ∈ S(R+), we are interested in
the Pitt inequality

(6)
∥

∥ρ−γHλ(f)(ρ)
∥

∥

q,dνλ
≤ cpq(β, γ, λ)

∥

∥rβf(r)
∥

∥

p,dνλ

with the sharp constant cpq(β, γ, λ). Here and in what follows, we assume that
1 < p ≤ q <∞.

L. De Carli [8] showed that cpq(β, γ, λ) is finite if and only if

β − γ = 2(λ+ 1)
( 1

p′
−

1

q

)

and

(7)
(1

2
−

1

p

)

(2λ+ 1) + max
{ 1

p′
−

1

q
, 0
}

≤ β <
2(λ+ 1)

p′
,

where p′ is the Hölder conjugate of p.
The sharp constant cpq(β, γ, λ) is known only for p = q = 2 and γ = β [27, 23]:

c22(β, β, λ) = c(β, λ) = 2−β Γ
(

2−1(λ+ 1/2− β)
)

Γ
(

2−1(λ+ 1/2 + β)
) , 0 ≤ β < λ+ 1.

For a > 0 we denote by Lp(R+, dνλ,a) the space of complex-valued functions
endowed with a norm

‖f‖p,dνλ,a =

(
∫

R+

|f(r)|p dνλ,a(r)

)1/p

, 1 ≤ p <∞,

dνλ,a(r) = bλ,ar
2λ+a−1 dr,

where the normalization constant is given by

b−1
λ,a =

∫ ∞

0

e−ta/at2λ+a−1 dt = a2λ/aΓ
(2λ

a
+ 1

)

.

For 4λ+ a ≥ 0, we define the a-deformed Hankel transform

Hλ,a(f)(ρ) =

∫

R+

f(r)j2λ/a

(2

a
(ρr)a/2

)

dνλ,a(r).

Note that in the paper [4, Sec. 5.5.3] a slightly different definition of the a-
deformed Hankel transform has been used (with a different normalization). We
find our definition more convenient to use.

The Hankel transform Hλ,a is a unitary operator in L2(R+, dνλ,a). Moreover, if
λ = λk, by Bochner-type identity, the Fk,a transform of a radial function is written
by the Hλ,a transform (see [4, Th. 5.21]): for f(x) = f0(r), r = |x|, ρ = |y|, we
have

Fk,a(f)(y) = (Fk,a(f))0(ρ), (Fk,a(f))0(ρ) = Hλ,a(f0)(ρ).

Changing variables

r =
(a

2

)1/a

s2/a, ρ =
(a

2

)1/a

θ2/a, f
((a

2

)1/a

s2/a
)

= g(s),
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we arrive at
∫ ∞

0

rβp|f(r)|p dνλ,a(r) = bλ,a

(a

2

)(βp+2λ)/a
∫ ∞

0

s2βp/a|g(s)|ps4λ/a+1 ds

= b2λ/a

(a

2

)βp/a
∫ ∞

0

s2βp/a|g(s)|ps4λ/a+1 ds

=
(a

2

)βp/a
∫ ∞

0

s2βp/a|g(s)|p dν2λ/2(s)

and
∫ ∞

0

ρ−γq|Hλ,a(f)(ρ)|
q dνλ,a(ρ)

=
(a

2

)−γq/a
∫ ∞

0

θ−2γq/a
∣

∣

∣
Hλ,a(f)

((a

2

)1/a

θ2/a
)
∣

∣

∣

q

dν2λ/2(θ),

where

Hλ,a(f)
((a

2

)1/a

θ2/a
)

= bλ,a

(a

2

)2λ/a
∫ ∞

0

g(s)j2λ/a(θs)s
4λ/a+1 ds

= b2λ/a

∫ ∞

0

g(s)j2λ/a(θs)s
4λ/a+1 ds = H2λ/a(g)(θ).

Therefore,

(8)

∥

∥ρ−γHλ,a(f)(ρ)
∥

∥

q,dνλ,a
∥

∥rβf(r)
∥

∥

p,dνλ,a

=
(a

2

)−(β+γ)/a

∥

∥θ−2γ/aH2λ/a(g)(θ)
∥

∥

q,dν2λ/a
∥

∥s2β/ag(s)
∥

∥

p,dν2λ/a

.

Hence, the sharp constant cpq(β, γ, λ, a) in Pitt’s inequality

(9)
∥

∥ρ−γHλ,a(f)(ρ)
∥

∥

q,dνλ,a
≤ cpq(β, γ, λ, a)

∥

∥rβf(r)
∥

∥

p,dνλ,a

is related to the constant cpq(β, γ, λ) given by (6) as follows

cpq(β, γ, λ, a) =
(a

2

)−(β+γ)/a

cpq

(2β

a
,
2γ

a
,
2λ

a

)

.

Therefore, using the above mentioned results by De Carli, we arrive at the following
two theorems.

Theorem 2.1. Let 4λ+ a ≥ 0 and 1 < p ≤ q < ∞. Pitt’s inequality (9) holds if

and only if

1) β − γ = (2λ+ a)
( 1

p′
−

1

q

)

,

2)
(1

2
−

1

p

)(

2λ+
a

2

)

+
a

2
max

{ 1

p′
−

1

q
, 0
}

≤ β <
2λ+ a

p′
.

Theorem 2.2. Let 4λ+ a ≥ 0 and 0 ≤ β < λ+ a/2. Then Pitt’s inequality
∥

∥ρ−βHλ,a(f)(ρ)
∥

∥

2,dνλ,a
≤ c(β, λ, a)

∥

∥rβf(r)
∥

∥

2,dνλ,a

holds and the constant

c(β, λ, a) = a−2β/a Γ
(

a−1(λ+ a/2− β)
)

Γ
(

a−1(λ+ a/2 + β)
)

is sharp.

Let us now verify that c(β, λ, a) is decreasing with λ.
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Lemma 2.3. If α > 0, then

(10)
Γ(t+ α)

Γ(τ + α)
<

Γ(t)

Γ(τ)
, 0 < t < τ.

Proof. If α = 1/2, the proof of (10) can be found in [27]. To make the paper self-
contained we give the proof for any α > 0. Since the function ψ(t) = Γ′(t)/Γ(t) is
increasing, we have

(Γ(t+ α)

Γ(t)

)′

=
Γ(t + α)

Γ(t)

[Γ′(t+ α)

Γ(t+ α)
−

Γ′(t)

Γ(t)

]

> 0

and Γ(τ+α)
Γ(τ)

> Γ(t+α)
Γ(t)

. �

In this section and in what follows we use the following

Remark 2.1. Let S0(R+) be a set of functions f ∈ S(R+) such that f (n)(0) = 0
for any n ∈ Z+. If f ∈ S0(R+), α ∈ R, β > 0, then rαf(rβ) ∈ S0(R+) and S0(R+)
is dense in Lp(R+, r

α dr). Therefore, when we assume that f ∈ S(R+), we may
additionally assume that f ∈ S0(R+).

3. Boas–Sagher inequalities for general monotone functions

In this section we study boundedness properties of the a-deformed Hankel trans-
form Hλ,a of the general monotone functions. For the classical Hankel transform

Hλ(f)(ρ) =
1

2λΓ(λ+ 1)

∫

R+

f(r)jλ(ρr)r
2λ+1 dr,

similar questions were studied in [9].
A function f of locally bounded variation on [ε,∞), for any ε > 0, is general

monotone, written f ∈ GM , if it vanishes at infinity, and there exist C > 0 and
c > 1 such that, for every r > 0,

(11)

∫ ∞

r

|df(r)| ≤ C

∫ ∞

r/c

|f(u)|
du

u
,

where
∫ b

a
|df(u)| is the Riemann–Stieltjes integral. The GM class strictly includes

the class of monotonic functions. It was introduced in [21] (see also [22]).
By Theorem 1.3 from [9] we have that if 1 < p ≤ q < ∞ and f ∈ GM , then

Pitt’s inequality

(12)
∥

∥ρ−γHλ(f)(ρ)
∥

∥

q,dνλ
≤ c

∥

∥rβf(r)
∥

∥

p,dνλ

holds if and only if

(13) β − γ = 2(λ+ 1)
( 1

p′
−

1

q

)

and
(1

2
−

1

p

)

(2λ+ 1)−
1

p
< β <

2(λ+ 1)

p′
.

It is important to note that the condition on β is less restrictive than the corre-
sponding condition in the general Pitt inequality given by (7).

Moreover, considering general monotone functions allows us to prove the reverse
Pitt inequality. First, we note that if

(14)

∫ 1

0

r2λ+1|f(r)| dr +

∫ ∞

1

rλ+1/2 |df(r)| <∞,
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then Hλ(f)(ρ) is defined as an improper integral (i.e., as lim
a→0, b→∞

∫ b

a
) and continu-

ous for ρ > 0 [9]. The reverse Pitt inequality reads as follows: Let 1 < q ≤ p <∞
and let a non-negative function f ∈ GM be such that condition (14) is satisfied.

Then the inequality

(15)
∥

∥ρ−γHλ(f)(ρ)
∥

∥

q,dνλ
≥ c

∥

∥rβf(r)
∥

∥

p,dνλ

holds provided that conditions (13) and

−
2λ+ 1

p
−

1

p
< β

are satisfied.

Noting that

−
2λ+ 1

p
−

1

p
<

(1

2
−

1

p

)

(2λ+ 1)−
1

p
=

2(λ+ 1)

p′
−

2λ+ 3

2
,

inequalities (12) и (15) imply that if 1 < p <∞, f ∈ GM , f ≥ 0 and (14) holds,

then

(16) c1
∥

∥rβf(r)
∥

∥

p,dνλ
≤

∥

∥ρ−γHλ(f)(ρ)
∥

∥

p,dνλ
≤ c2

∥

∥rβf(r)
∥

∥

p,dνλ

if and only if (13) and

2(λ+ 1)

p′
−

2λ+ 3

2
< β <

2(λ+ 1)

p′
.

A study of two-sided inequalities of type (16) for the classical Fourier transform
has a long history. In the one-dimensional case for monotone decreasing func-
tions the corresponding conjecture was formulated by Boas [5]. He also obtained
some partial results. Boas’ conjecture was fully solved by Sagher in [25]. The
multidimensional case was studied in [14].

We are going to use the above mentioned results to get direct and reverse Pitt’s
inequalities for the a-deformed Hankel transform of the general monotone func-
tions. We assume that 4λ+ a ≥ 0.

Theorem 3.1. Let 1 < p ≤ q <∞ and f ∈ GM . Then Pitt’s inequality
∥

∥ρ−γHλ,a(f)(ρ)
∥

∥

q,dνλ,a
≤ c

∥

∥rβf(r)
∥

∥

p,dνλ,a

holds if and only if

(17) β − γ = (2λ+ a)
( 1

p′
−

1

q

)

and
(1

2
−

1

p

)(

2λ+
a

2

)

−
a

2p
< β <

2λ+ a

p′
.

Proof. First we show that if f ∈ GM , then the function of the type f(αrβ) = g(r)
is also a GM function for any α, β > 0. Indeed, changing variables αuβ = v and
using inequality (11) for f , we get

∫ ∞

r

|dg(u)| =

∫ ∞

(r/α)1/β
|df(v)| ≤ C

∫ ∞

(r/α)1/β/c

|f(v)|
dv

v
= Cβ

∫ ∞

r/c

|g(u)|
du

u
.

Now the proof follows from (8) and the change of variables

(18) r =
(a

2

)1/a

s2/a, ρ =
(a

2

)1/a

θ2/a, f
((a

2

)1/a

s2/a
)

= g(s).
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�

Theorem 3.2. Let 1 < q ≤ p < ∞. Assume that f is a non-negative function

such that f ∈ GM and

(19)

∫ 1

0

r2λ+a−1|f(r)| dr +

∫ ∞

1

rλ+a/4 |df(r)| <∞,

is satisfied. Then the reverse Pitt inequality

(20)
∥

∥ρ−γHλ,a(f)(ρ)
∥

∥

q,dνλ,a
≥ c

∥

∥rβf(r)
∥

∥

p,dνλ,a

holds provided that conditions (17) and

−
2λ + a

p
−

a

2p
< β <∞,

are satisfied.

The proof follows from (8) and (18). Note that condition (19) implies condition
(14) for the function g given by (18). In particular, condition (19) yields that Hλ,a

is defined as an improper integral and Hλ,a(f) ∈ C(0,∞); see [9, Lemma 3.1].
Since

−
2λ+ a

p
−

a

2p
<

(1

2
−

1

p

)(

2λ+
a

2

)

−
a

2p
=

2λ+ a

p′
−

4λ+ 3a

4
,

we obtain the following Boas–Sagher type equivalence.

Corollary 3.3. Suppose that 1 < p <∞, f ∈ GM , f ≥ 0 and (19) holds. Then

c1
∥

∥rβf(r)
∥

∥

p,dνλ,a
≤

∥

∥ρ−γHλ,a(f)(ρ)
∥

∥

p,dνλ,a
≤ c2

∥

∥rβf(r)
∥

∥

p,dνλ,a

if and only if conditions (17) and

(21)
2λ+ a

p′
−

4λ+ 3a

4
< β <

2λ+ a

p′

hold.

Remark 3.1. We note that condition (19) always holds if
∥

∥rβf(r)
∥

∥

p,dνλ,a
<∞ and

β satisfies (21). Indeed, it is easy to check (see, e.g., [14, p. 111]) that any general
monotone function satisfies the following property: there is c > 1 such that

∫ ∞

r

uσ|df(u)| ≤ C

∫ ∞

r/c

uσ−1|f(u)| du, σ ≥ 0.

Then using this and Hölder’s inequality, we get for w(r) =

{

r2λ+a−1, r < 1,

rλ+a/4−1, r ≥ 1,

that
∫ 1

0

r2λ+a−1|f(r)| dr +

∫ ∞

1

rλ+a/4 |df(r)| ≤ C

∫ ∞

0

w(r)|f(r)| dr

≤ C
∥

∥rβf(r)
∥

∥

p,dνλ,a
I,

where

Ip
′

=

∫ ∞

0

r(−β− 2λ+a−1

p
)p′wp′(r) dr.

The latter is bounded under condition (21).
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4. Pitt’s inequality for Fk,a transform in L2

Recall that R ⊂ Rd is a root system, R+ is the positive subsystem of R, and
k : R → R+ is a multiplicity function with the property that k is G-invariant.
Here G is a finite reflection group generated by reflections {σa : a ∈ R}, where σa
is a reflection with respect to a hyperplane 〈a, x〉 = 0.

C. F. Dunkl introduced a family of first-order differential-difference operators
(Dunkl’s operators) associated with G and k by

Djf(x) =
∂f(x)

∂xj
+

∑

a∈R+

k(a)〈a, ej〉
f(x)− f(σax)

〈a, x〉
, j = 1, . . . , d.

The Dunkl kernel ek(x, y) = Ek(x, iy) is the unique solution of the joint eigenvalue
problem for the corresponding Dunkl operators:

Djf(x) = iyjf(x), j = 1, . . . , d, f(0) = 1.

The Dunkl transform is given by

Fk(f)(y) =

∫

Rd

f(x)ek(x, y) dµk(x).

By S
d−1 denote the unit sphere in R

d. Let x′ ∈ S
d−1 and dx′ be the Lebesgue

measure on the sphere. Let

a−1
k =

∫

Sd−1

vk(x
′) dx′, dωk(x

′) = akvk(x
′) dx′,

and

‖f‖2,dωk
=

(
∫

Sd−1

|f(x′)|2 dωk(x
′)

)1/2

.

For λk = d/2− 1 + 〈k〉, we have

(22) c−1
k,a =

∫ ∞

0

e−ra/ar2λk+a−1 dr

∫

Sd−1

vk(x
′) dx′ = b−1

λk ,a
a−1
k .

Let us denote by Hd
n(vk) the subspace of k-spherical harmonics of degree n ∈

Z+ in L2(Sd−1, dωk) (see [11, Chap. 5]). Let Pd
n be the space of homogeneous

polynomials of degree n in Rd. Then Hd
n(vk) is the restriction of ker∆k ∩ Pd

n to
the sphere Sd−1.

If ln is the dimension of Hd
n(vk), we denote by {Y j

n : j = 1, . . . , ln} the real-
valued orthonormal basis Hd

n(vk) in L2(Sd−1, dωk). A union of these bases forms
an orthonormal basis in L2(Sd−1, dωk), which consists of k-spherical harmonics,
i.e., we have

(23) L2(Sd−1, dωk) =
∞
∑

n=0

⊕Hd
n(vk).

For λ > −1, we denote the Laguerre polynomials by

L(λ)
s (t) =

s
∑

j=0

(−1)jΓ(λ+ s+ 1)

(s− j)! Γ(λ+ j + 1)

tj

j!
.
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Set λk,a,n = 2(λk + n)/a. In [4], the authors constructed an orthonormal basis in
L2(Rd, dµk,a)

Φa
n,j,s(x) = γan,j,sY

j
n (x)L

(λk,a,n)
s

(2

a
|x|a

)

e−|x|a/a,

γan,j,s > 0, n, s ∈ Z+, j = 1, · · · , ln,

which consists of the eigenvalues of the operator ∆k,a = |x|2−a∆k − |x|a, a > 0.
This helps to define two-parameter unitary operator Fk,a given by (1).

Note that the system {Φa
n,j,s(x)} is the eigensystem of Fk,a, i.e.,

Fk,a(Φ
a
n,j,s)(y) = e−iπ(s+n/a)Φa

n,j,s(y).

This and (23) imply the decomposition of L2(Rd, dµk,a) given by (5).
To prove Pitt’s inequality, we use the following Bochner-type identity [4] for

functions of the type f(x) = Y i
n(x

′)ψ(r) ∈ S(Rd), x = rx′:

(24) Fk,a(f)(y) = e−iπn/aρnY j
n (y

′)

∫

R+

ψ(r)r−nj2(λk+n)/a

(2

a
(ρr)a/2

)

dνλk+n,a(r)

= e−iπn/aρnY j
n (y

′)Hλk+n,a(ψ(r)r
−n)(ρ), y = ρy′.

We are now in a position to prove inequality (3).

Theorem 4.1. Let λk = d/2 − 1 + 〈k〉, a > 0, 4λk + a ≥ 0, 0 ≤ β < λk + a/2.
For any f ∈ S(Rd), the Pitt inequality

∥

∥|y|−βFk,a(f)(y)
∥

∥

2,dµk,a
≤ C(β, k, a)

∥

∥|x|βf(x)
∥

∥

2,dµk,a

holds with the sharp constant

C(β, k, a) = a−2β/a Γ
(

a−1(λk + a/2− β)
)

Γ
(

a−1(λk + a/2 + β)
) .

Proof. For β = 0 we have C(β, k, a) = 1 and Pitt’s inequality (3) becomes
Plancherel’s identity (2). The rest of the proof follows [13]. Let 0 < β < λk +a/2.
If f ∈ S(Rd), then by (23)

fnj(r) =

∫

Sd−1

f(rx′)Y j
n (x

′) dωk(x
′) ∈ S(R+),

f(rx′) =
∞
∑

n=0

ln
∑

j=1

fnj(r)Y
j
n (x

′),

∫

Sd−1

|f(rx′)|2 dωk(x
′) =

∞
∑

n=0

ln
∑

j=1

|fnj(r)|
2.

Using spherical coordinates, decomposition of L2(Rd, dµk,a) (5), formulas (22) and
(24), we get that

(25)

∫

Rd

|x|2β|f(x)|2 dµk,a(x) = bλk ,a

∫ ∞

0

r2β+2λk+a−1

∫

Sd−1

|f(rx′)|2 dωk(x
′) dr

= bλk ,a

∫ ∞

0

r2β+2λk+a−1

∞
∑

n=0

ln
∑

j=1

|fnj(r)|
2 dr

=

∞
∑

n=0

ln
∑

j=1

∫ ∞

0

|fnj(r)|
2r2β dνλk,a(r),
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Fk,a(f)(y) =
∞
∑

n=0

ln
∑

j=1

e−iπn/aρnY j
n (y

′)Hλk+n,a(fnj(r)r
−n)(ρ),

and

(26)

∫

Rd

|y|−2β|Fk,a(f)(y)|
2 dµk,a(y)

≤

∞
∑

n=0

ln
∑

j=1

∫ ∞

0

∣

∣Hλk+n,a(fnj(r)r
−n)(ρ)

∣

∣

2
ρ−2β+2n dνλk,a(ρ).

By Theorem 2.2 with n ∈ Z+ and 0 ≤ β < λk + n+ a/2, we have

(27)

∫ ∞

0

∣

∣Hλk+n,a(fnj(r)r
−n)(ρ)

∣

∣

2
ρ−2β+2n dνλk,a(ρ)

≤ c2(β, λk + n, a)

∫ ∞

0

∣

∣fnj(r)r
−n

∣

∣

2
r2β+2n dνλk,a(r)

= c2(β, λk + n, a)

∫ ∞

0

|fnj(r)|
2 r2β dνλk,a(r).

Since c(β, λk + n, a) is decreasing with n (see Lemma 2.3), then using (25), (26),
and (27), we arrive at

(28)

∫

Rd

|y|−2β|Fk,a(f)(y)|
2 dµk,a(y)

≤

∞
∑

n=0

ln
∑

j=1

c2(β, λk + n, a)

∫ ∞

0

|fnj(r)|
2r2β dνλk,a(r)

≤ c2(β, λk, a)

∞
∑

n=0

ln
∑

j=1

∫ ∞

0

|fnj(r)|
2r2β dνλk,a(r)

= c2(β, λk, a)

∫

Rd

|x|2β|f(x)|2 dµk,a(x).

�

In the proof of Theorem 4.1 we obtained the following result.

Corollary 4.2. Let n ∈ N, λk = d/2− 1 + 〈k〉, and 0 ≤ β < λk + a/2 + n. Then

Pitt’s inequality for the transform Fk,a holds for f ∈ S(Rd) ∩ Rd
n(vk,a) with sharp

constant c(β, λk + n, a).

5. Logarithmic uncertainty principle for Fk,a transform

Theorem 5.1. Suppose that a > 0, λk = d/2 − 1 + 〈k〉, and 4λk + a ≥ 0. Then

the inequality
∫

Rd

ln (|x|)|f(x)|2 dµk,a(x) +

∫

Rd

ln (|y|)|Fk,a(f)(y)|
2 dµk,a(y)

≥
2

a

(

ψ
(λk
a

+
1

2

)

+ ln a
)

‖f‖22,dµk,a

holds for any f ∈ S(Rd).
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Proof. Let us write inequality (3) in the following form
∫

Rd

|y|−β|Fk,a(f)(y)|
2 dµk,a(y) ≤ c2(β/2, λk, a)

∫

Rd

|x|β|f(x)|2 dµk,a(x),

where 0 ≤ β < 2λk + a. For β ∈ (−(2λk + a), 2λk + a), we define the function

ϕ(β) =

∫

Rd

|y|−β|Fk,a(f)(y)|
2 dµk,a(y)− c2(β/2, λk, a)

∫

Rd

|x|β|f(x)|2 dµk,a(x).

Since |β| < 2λk + a and f, Fk,a(f) ∈ S(Rd), then
∫

|x|≤1

|ln(|x|)||x|βvk,a(x) dx =

∫ 1

0

|ln(r)|rβ+2λk+a−1 dr

∫

Sd−1

vk(x
′) dx′ <∞,

which implies

|y|−β ln(|y|)|Fk,a(f)(y)|
2vk,a(y) ∈ L1(Rd) and ln(|x|)|x|β|f(x)|2vk,a(x) ∈ L1(Rd).

Hence,

(29) ϕ′(β) = −

∫

Rd

|y|−β ln(|y|)|Fk,a(f)(y)|
2 dµk,a(y)

− c2(β/2, λk, a)

∫

Rd

|x|β ln(|x|)|f(x)|2 dµk,a(x)

−
dc2(β/2, λk, a)

dβ

∫

Rd

|x|β|f(x)|2 dµk,a(x).

Pitt’s inequality and Plancherel’s theorem imply that ϕ(β) ≤ 0 for β > 0 and
ϕ(0) = 0 correspondingly, hence

ϕ′(0) = lim
β→0+

ϕ(β)− ϕ(0)

β
≤ 0.

Combining (29) and

−
dc2(β/2, λk, a)

dβ

∣

∣

∣

∣

β=0

=
2

a

{

ψ
(λk
a

+
1

2

)

+ ln a
}

,

we conclude the proof. �

Remark 5.1. In the proof of Theorem 2.1 of the paper [13], sharp Pitt’s inequality
in L2 for the Hankel transform Hλ was proved for λ > −1. Therefore, in Theo-
rems 2.2, 4.1, and 5.1 the conditions 4λ+ a ≥ 0 and 4λk + a ≥ 0 can be replaced
by the condition 2λ+ a > 0 and 2λk + a > 0 respectively.

6. Final remarks

The unitary operator Fk,a on L2(Rd, dµk,a) can be expressed as an integral
transform [4, (5.8)]

Fk,a(f)(y) =

∫

Rd

Bk,a(y, x)f(x) dµk,a(x)

with a symmetric kernel Bk,a(x, y). In particular, B0,2(x, y) = e−i〈x,y〉.
A study of properties of the kernel Bk,a(x, y) and, in particular, the conditions

for its uniform boundedness is an important problem. To illustrate, note that if
|Bk,a(x, y)| ≤M , then the Hausdorff–Young inequality holds:

∥

∥Fk,a(f)
∥

∥

p′,dµk,a
≤M2/p−1

∥

∥f
∥

∥

p,dµk,a
, 1 ≤ p ≤ 2.
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Therefore, it is important to know when

(30) |Bk,a(x, y)| ≤ Bk,a(0, y) = 1, x, y ∈ R
d,

which guaranties the accuracy of the Hausdorff–Young inequality with constant 1.
Moreover, one can define the generalized translation operator, which allows to de-
fine the convolution [24], the notion of modulus of continuity [17, 18], and different
constructive and approximation properties.

If a = 1/r, r ∈ N, 2〈k〉 + d + a > 2, then F−1
k,a(f)(x) = Fk,a(f)(x) [4, Th. 5.3],

i.e., for f ∈ L2(Rd, dµk,a),

f(x) =

∫

Rd

Bk,a(x, y)Fk,a(f)(y) dµk,a(y).

If condition (30) holds, the generalized translation operator is defined by

T t(f)(x) =

∫

Rd

Bk,a(t, y)Bk,a(x, y)Fk,a(f)(y) dµk,a(y), t ∈ R
d.

Similarly, if a = 2/(2r+1), r ∈ Z+, 2〈k〉+d+a > 2, then F−1
k,a(f)(x) = Fk,a(f)(−x)

[4, Th. 5.3], that is,

f(x) =

∫

Rd

Bk,a(−x, y)Fk,a(f)(y) dµk,a(y)

and

T t(f)(x) =

∫

Rd

Bk,a(−t, y)Bk,a(−x, y)Fk,a(f)(y) dµk,a(y), t ∈ R
d.

The operators act in L2(Rd, dµk,a) and ‖T t‖ = 1.
If d = 1, using [4, Sect. 5.4], we can define

Beven

k,a (x, y) =
1

2

[

Bk,a(x, y) +Bk,a(x,−y)
]

.

Then

Beven

k,a (x, y) = j(2k−1)/a

(2

a
|xy|a/2

)

.

For 2k + 1 + a > 2 we have (2k − 1)/a > −1. The inequality |Beven

k,a (x, y)| ≤ 1
holds only when (2k − 1)/a ≥ −1/2 or, equivalently, 2k + a/2 ≥ 1. In this case
the generalized translation operator can be defined by the formula

T t(f)(x) =

∫

Rd

Beven

k,a (t, y)Bk,a(±x, y)Fk,a(f)(y) dµk,a(y), t ∈ R
1.

Proposition. Assume that

2〈k〉+ d+ a > 2.

Inequality (30) may not be true in general.

Cf. [4, Th. 5.11] and [19, L. 2.13]. To prove Proposition, we construct the
following

Example. Let d = 1, 〈k〉 = k ≥ 0, and 2〈k〉 > 1 − a. First, we remark that the
kernel Bk,a can be given by [4, (5.18)]

Bk,a(x, y) = j(2k−1)/a

(2

a
|xy|a/2

)

+
Γ((2k − 1)/a+ 1)

Γ((2k + 1)/a+ 1)

xy

(ai)2/a
j(2k+1)/a

(2

a
|xy|a/2

)

.
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Therefore, if a = 1 and k > 0, we get

Bk,1(x, y) = j2k−1(t)− sign (xy)
(t/2)2

2k(2k + 1)
j2k+1(t), t = 2|xy|1/2.

Let us now investigate when |Bk,1(x, y)| ≤ 1, x, y ∈ R, for different values of k.
Taking into account the known properties of the Bessel function

Jν−1(t) + Jν+1(t) = 2νt−1Jν(t),

Jν−1(t)− Jν+1(t) = 2J ′
ν(t),

we get for ν = 2k that

Bk,1(x, y) =

{

j2k(t), xy ≤ 0,

22kΓ(2k)t1−2kJ ′
2k(t), xy ≥ 0.

Hence, |Bk,1(x, y)| ≤ 1 for xy ≤ 0 and for any k ≥ 0.

Case 0 < k < 1/4. Using asymptotic formula for the derivative of the Bessel
function

J ′
ν(t) = −

√

2

πt

{

sin (t− νπ/2− π/4) +O(t−1)
}

, t→ +∞,

we obtain that the kernel Bk,1(x, y) is not bounded for 0 < k < 1/4, xy > 0, and
is uniformly bounded for k ≥ 1/4, x, y ∈ R.

Case k = 1/4. Using J1/2(t) = (πt/2)−1/2 sin t, we get for xy > 0

B1/4,1(x, y) = 2(cos t− t−1 sin t)

and then maxx,y∈R |B1/4,1(x, y)| ≈ 2.13.

Case 1/4 < k < 1/2. Easy computer calculations show that |Bk,1(x, y)| ≤ Mk

for x, y ∈ R+, where Mk = maxx,y∈R+
|Bk,1(x, y)| > 1 for k ∈ (1/4, k0) and Mk = 1

for k ∈ [k0, 1/2). Moreover, k0 ≈ 0.44. The number k0 can be found from the
condition that the first minimum of the function 22kΓ(2k)t1−2kJ ′

2k(t) for t > 0 is
equal to −1.

Case k ≥ 1/2. For the kernel Bk,1, the following integral representation with a

nonnegative weight holds: [4, (5.17), (5.19)]

Bk,1(x, y) =
Γ(k + 1/2)

Γ(k)Γ(1/2)

∫ 1

−1

jk−1

(
√

2|xy|(1 + sign (xy)u)
)

(1 + u)(1− u2)k−1 du.

Since |jλ(t)| ≤ 1 for t ∈ R and λ ≥ −1/2, then |Bk,1(x, y)| ≤ Bk,1(0, 0) = 1,
x, y ∈ R for any k ≥ 1/2.

We formulate the following

Conjecture. Inequality (30) holds whenever 2〈k〉+ d+ a ≥ 3.

In particular, we expect that if d ≥ 3, then inequality (30) always holds. Cal-
culations above for the case d = 1 and results of the paper [6] for d = 2 show that
the condition 2〈k〉+ d+ a ≥ 3 is only sufficient for (30) to hold.
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Bellaterra, Edifici C 08193 Bellaterra (Barcelona), Spain

E-mail address: stikhonov@crm.cat


	1. Introduction
	2. Fk,a-transform on radial functions
	3. Boas–Sagher inequalities for general monotone functions
	4. Pitt's inequality for Fk,a transform in L2
	5. Logarithmic uncertainty principle for Fk,a transform
	6. Final remarks 
	References

