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Abstract. The "uncertainty principle" is formulated using logarithmic esti-

mates obtained from a sharp form of Pitt's inequality. The qualitative nature

of this result underlies the relations connecting entropy, the Hardy-Littlewood-

Sobolev inequality, and the logarithmic Sobolev inequality.

1. Logarithmic uncertainty

Weighted inequalities for the Fourier transform provide a natural method to
measure uncertainty. For functions on R" the issue is the balance between the
relative sizes of a function and its Fourier transform at infinity. A simple argu-

ment based on a sharp form of Pitt's inequality is used to obtain a logarithmic
estimate of uncertainty.

Theorem 1. For f £ S"(R")

(1) / ln\x\\f(x)\2dx + / ln|i||/(i)|2rff>0 / \f(x)\2dx,
./R" JR" Jr"

D = ¥(n/A)-lnn, ¥(t) = ^[lnY(t)\.

Here S*(Rn) denotes the Schwartz class and the Fourier transform is defined

by

/(£) = / e2«*xf(x)dx.
Jv

Since the individual terms on the left-hand side of the above expression may

be indeterminate on L2(R), this inequality is realized as an a priori limit. The
result follows from Pitt's inequality.

Theorem 2. For f £ S*(Rn) and 0<a<n

(2) I  \H\-a\f(H)\2dt<Ca [  \x\a\f(x)\2dx,
Jv Jv

Ca = na >(tWt)
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1898 WILLIAM BECKNER

Proof of Theorem 1. Since inequality (2) is an equality for a = 0, this expres-

sion can be differentiated as a function of the parameter a at that value to

obtain inequality (1).
Two immediate observations concerning (1): it is dilation invariant and the

left-hand side of the equation is diminished if / is replaced by its equimeasur-

able radial decreasing rearrangement (and similarly for / ). Since the logarithm

is a concave function, one has for ||/||2 = 1

In / \x\2\f(x)\2dx( |i|2|/(f)|2#
Jv Jv

1/2

>Z) = y/(n/A)-lnn

This gives a crude estimate for the Heisenberg-Weyl uncertainty principle:

(3) / \x-x\2\f(x)\2dx [ \i-î\2\f(t)\2dt]     > ¿- /  \f(x)\2dx
Jv Jv J ^n Jr"

where x, £ denote mean values for their respective distributions. A conse-

quence is that ln(zz/4) > y/(n/A) which can be checked using Jensen's inequal-

ity to show that (Inß)Y(ß) > Y'(ß). But in fact logarithmic uncertainty (1)
implies the Heisenberg-Weyl inequality. More precisely, the calculation above

gives for product functions \\f(xk) with ||/||2 = 1

In 16tt
Jr

x\2\f(x)\2dx f\t-i\2\f(t)\2
Jr

di
l'/2

> y/(n/A)-ln(n/A)

Using Gauss' expression for \p from Whitaker and Watson ([17], pp. 247-248)

1
\p(z) -Inz fJo l-e-'

dt<0.

and since the bracket part of the integrand lies between 0 and -1, it follows

that

— < ip(z)-lnz < 0 .
z

The asymptotic limit zz —> oo then gives the value zero on the right-hand side

above and reproduces the classical uncertainty principle in one dimension. By

utilizing the product structure, one obtains the zz-dimensional form (3). Con-

ceptually logarithmic uncertainty can be represented in canonical form as

(ln|ß-ß|> + (ln|P-P|)>C.

Proof of Theorem 2. The argument to calculate Ca is simple and based on

an observation about Young's inequality for convolution on some unimodular

non-compact Lie groups (including Euclidean and nilpotent cases)

\\V*f\\lS(G) ^ \\V\\v(G)\\f\\LP(G)-

For non-negative y/ with 1 < p < oo this inequality is sharp with no extremal

functions. Inequality (2) is dilation invariant and it is improved if / is replaced

by its equimeasurable radial decreasing rearrangement. The inequality is then

equivalent to a convolution inequality  on the multiplicative group R+ . This
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PITT'S INEQUALITY AND THE UNCERTAINTY PRINCIPLE 1899

remark is implemented in two steps: first, by considering the equivalent Stein-

Weiss fractional integral inequality on R"

\ f 1 1 1
/   f^Tz^ñ !„  „.„-„ j^ñf(y)dxdy

1 JR"xR"
(4)

<

\x\a/2 \x-y\"-a \y\a/2'

c.[*i~r(i)/r(!^)]J¿m?ax,

and since / can be taken to be a radial function, the equivalent R+ convolution

inequality is obtained by setting t = \x\, h(t) = |x|"/2/(x) :

(5)

JJm*iw% di\ <- c [rg)r(f)/«t^)] I wop?
with

¥(t) = 1
JS"-1

1   -,,
i+7-2C.

-(n-a)/2

#

where cf¿; denotes normalized surface measure and ¿jj is the first component

of ^ . It is useful to observe that / can be taken to be radial decreasing in (4)

and h can be taken to be symmetric decreasing on R+ so that in addition f
has an inversion symmetry.

Now the comment about Young's inequality above implies that the best con-
stant in (5) is the Lx norm of \p so that

L'(R+) c •(iMiy^m
where Ca is now specified as the best constant in (2). To compute the integral

of y/ , observe that

n"i2 r1 r

n/2)\     Jv

2nn>2

Y(

2ii

1

-(n-a)/2

dt

1

for IjcI = 1. Then

so that

V(R+)
r(f)r(f)
2Y(^)

x-y\n-a   |y|(n+a)/2

-,2

df
t

dy

_ x \2 r(^)
r(^)

C„ = na
Y(^)]2

r(fi±a)_

By retracing the steps of this argument, the remark about Young's inequality and

convolution implies that while Ca is sharp, no extremals exist for inequality

(2).

2. Logarithmic Sobolev inequality

A stronger qualitative implication can be drawn from the logarithmic esti-

mate ( 1 ) which connects the Hardy-Littlewood-Sobolev inequality and the log-

arithmic Sobolev inequality.   As emphasized in [3], the logarithmic Sobolev
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1900 WILLIAM BECKNER

inequality can be interpreted as sharpening the uncertainty principle. For |/|

radial decreasing with U/H2 = 1 and C denoting a generic constant

\f(x)\ <

Then (1) implies

—-JÏ   or   £ln|*|<-ln|/(*)| + C

j f ln|É||/«)|2#> / ln\f(x)\\f(x)\2dx + C.
¿ Jr« Jv

Since the left-hand side is a measure of smoothness, this statement is in fact a
"logarithmic Sobolev inequality". Using the Hardy-Littlewood-Sobolev inequal-
ity, a sharp form of this estimate can be derived.

Theorem 3. For f£<9*(Rn) with ||/||2 = 1

(6) J / to|ÉH/(OI2#> / \rv\f(x)\\f(x)\2dx
¿ Jr" Jr"

+ Bn,

D       ZZ    /zz\     zz. 1
Bn-^^-jlnn-^ln im

Up   to   conformai   automorphism,    extremal functions   are   of the form
A(l + \x\2)-nl2.

Proof. From the sharp Hardy-Littlewood-Sobolev inequality on R" [8]

(7) /       f(x)\x-y\-xg(y)dxdy
Jr"xV

Tin _ n\
A    -7Tn/p'       P        2

ni)

<A

Y(n)

<\\J IILc(R")IIc?IIL'(R") >

i-i

r(f)J

for X — 2n/p', 1 < p < 2 and l/p+l/p' = 1, one obtains another sharp form

of Pitt's inequality:

(8) / \z\nll-l>W)\2dt<Kp[\\ni,t*.)]2,
Jr»

r(*)
r(zz)

i?-i

r(?)j

While (7) is not defined at p = 2, (8) is an equality at this point and so can

be differentiated to produce inequality (6). The conformai invariance of this
inequality is inherited from the Hardy-Littlewood-Sobolev inequality and this

suffices to determine the extremals.

The next step is to relate the estimate (6) to the standard logarithmic Sobolev

inequality for Gaussian measure:

(9)

where

l  \g\2ln\g\dp< /  \Vg\2dp
Jr" Jr"

dp = (2n)-"l2e-x2l2dx ,        \\g\\L>m = l
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PITT'S INEQUALITY AND THE UNCERTAINTY PRINCIPLE 1901

Setting f(x) = (2n)-nlAg(x)e-xll* , one finds from (9) for ||/||2 = 1

^ + Jln(27r)+ / l/l2Inl/l¿x< / \Vf\2dx.
L      H Jr" Jr"

Now this inequality is not dilation-invariant so setting up a variational problem
in terms of a dilation parameter, one finds the estimate

(io)       ^in(^)+^j/|2ln|/iú?x<^lnjrjV/,2^

or equivalently

<">    Wfi)+/^2to^sW,.|{|2|/({)|2<i{'
Using Jensen's inequality the qualitative nature of this last estimate can be ob-
tained from the logarithmic uncertainty principle (1). In addition, there is a
nice interpretation of inequality (10) in terms of entropy and Fisher informa-

tion. For a probability density <p on

functionals respectively by

E(<P) - - I   <pin<pdx,
JR"

Then (10) can be rewritten as

I" denote the entropy and information

1(9) = f  |Vçz|2^x.
Jr* 9

(12) E(tp)+ jln
2nne

1(9) >0

Using the classical entropy inequality for a probability density

E(9)<2™
2ne

Var(<p)

one finds the Cramér-Rao form of the Heisenberg uncertainty inequality (3)

1(f) Var(tp) > zz2,

which demonstrates that the logarithmic Sobolev inequality determines the clas-
sical uncertainty principle.

It is very natural to link fractional integration to logarithmic Sobolev inequal-

ities. This principle was applied in [2] to obtain logarithmic estimates on the
zz-dimensional sphere from the Hardy-Littlewood-Sobolev inequality and prove

corresponding hypercontractive estimates for the heat and Poisson semigroups

on the sphere. Here a simple asymptotic estimate is used to derive the logarith-

mic Sobolev inequality (9) as a consequence of Theorem 3. Replacing estimate

(11) by the analogous estimate implied by (6) and reversing the steps used to

get (11), one finds

(13) Wn+ I  \g\2ln\g\dp< i  |Vs|2¿^
Jv Jv

"'-*-5h(S)-î"(î)-ï'- IM
Lnf)j-;■.(?) *o
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1902 WILLIAM BECKNER

where the L2(dp) norm of g is one. Fix zzz < zz and consider functions g

which are constant in the variables xk , (m+ 1) < k < n . Then

Wn+ [   \g\2ln\g\dp< /   \Vg\2dp
Jr™ Jv"

holds for all zz and it suffices to find the limit of Wn as zz —► oo . Using the

expression for y/ taken from Whitaker and Watson ([17], p. 251)

y/(z) = lnz --2 fJo (t2 + z2)(e2M - 1)
dt,

lim Wn = -- + -ln2;
n—>oo ¿       4

then

(14)

Taking g(xx

-i + iln2+ /   \g\2ln\g\dp< /   \Vg\2dp.
z      ^ Jr1" Jr.™

■ ■ , xm) = Y[h(xk), one has

\\n(jJlj+ J^\h\2ln\h\dp< JjVh\2dp
zzz

and the resulting limit m —> oo produces the one-dimensional logarithmic

Sobolev inequality. Gaussian symmetry or convexity then extends the inequality

to all dimensions.

3. Entropy and the Fourier transform

The calculations for the logarithmic Sobolev inequality illustrate that entropy

and the class L log L are central to developing geometric and probabilistic in-

formation from sharp function space estimates. The logarithmic estimate (1)

is maximized on the class Ç(R") = {/ £ S*(R") : /, / non-negative radial de-

creasing functions}. For this class one observes that (1) implies for ||/||2 = 1

- / ln|/(x)||/(x)|2¿x- / ln\f(Ç)\\f(Ç)\2dÇ>C.
Jr" Jr"

Such an estimate holds in general on J/^R") with the best value of C being

attained for Gaussian functions. This result was given in [1] by differentiating

the sharp Hausdorff-Young inequality at p = 2 .

Theorem 4. For f £ ^(R") with \\f\\2 = 1

(15) - / ln\f(x)\\f(x)\2dx- f ln|/(^)||/(0|2^>^(l-ln2).
Jr" Jr" ¿

For problems where Gaussian structure has an intrinsic role, it is always use-

ful to make explicit the interplay between different realizations determined by

Gaussian and Lebesgue measures. Here the entropy estimate for the Fourier

transform produces a surprising strengthening of the logarithmic Sobolev in-

equality using only a simple change of variables.
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PITT'S INEQUALITY AND THE UNCERTAINTY PRINCIPLE 1903

Theorem 5. For g £ L2(dp), dp = (27r)-"/2exp(-x2/2)¿x and \\g\\2 = 1

(16) /  \g\2ln\g\dp+ [ \g\2ln\g\dp< [ \Vg\2dp
Jr» Jr» Jr»

where g is defined by a linear action on g in terms of the standard representation

of the Hermite polynomials {H„} for the Gaussian measure dp:   Hn(xk) =
inH„(xk).

Proof. Set /(x) = 2"/4g(2v/zr'*)exp(-;r|x|2);then

M) = 2"'4g(2VïÇ)exp(-n\Ç\2).

Substitute these forms in equation (15). Using the fact that for the one-dimen-

sional harmonic oscillator with N denoting the number operator corresponding
to the measure dp,

then this spectral relation is realized as

(17) i /  \x\2\g(x)\2dp + j f  \i\2\g(t)\2dp = %+ f  \Vg\2dp
t Jr" *» Jr» ¿     Jr»

and inequality (16) is obtained.

Theorem 4 may be regarded as stating the Hausdorff-Young inequality for
entropy

£(|/|2) + £(|/|2)>zzln(|)

where ||/||2 = 1. Using the classical inequality that relates entropy to variance

for a probability density, one finds as in [1] that the sharp Hausdorff-Young

inequality implies the Heisenberg uncertainty principle (3)

ln(¿)2 < In [Faz-d/l2)] + In [var(\f\2)   .

The context of this interplay between the Hausdorff-Young inequality and the
standard representation of quantum mechanics has contributed to the interest
in "sharp constants".

Remarks. 1. The logarithmic uncertainty inequality (1) is not sharp for Gaus-

sian functions, but interestingly it is asymptotically sharp on this class. For

Gaussian functions

/ ln|x||/(x)|2äfx+ / ln\Ç\\f(Ç)\2 dÇ = [<p(n/A) -Inn + ß(n/2)] í \f\2dx
Jr» Jr» Jr»

where
/■' tx'x

and ß(x) -• 0 as x -» oo .

2. The nature of the sharp zz-dimensional constant Dn for logarithmic uncer-

tainty is determined by the Euclidean product structure. Using the arithmetic-

geometric mean estimate

ln|x| > In yfñ + - ^ln|xfc| ,
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1904 WILLIAM BECKNER

it follows that D„ > In zz + DX which gives the correct asymptotic growth. From

the previous integral representations for y/, one finds that y/'(z) > l/z which

can be used to check this lower bound for D„ .

3. Inequality (10) first appeared in Weissler's paper on the heat-diffusion
semigroup [15]. The simple argument using dilation invariance occurs in the
author's research note "Entropy and Sobolev Inequalities" written in 1983 as

does the interpretation in terms of Fisher information and entropy (12) and the

strengthened logarithmic Sobolev inequality (16) obtained from the entropy
inequality for the Fourier transform. The proof there for (16) used a differ-

entiation argument applied to sharp estimates for the Hermite semigroup. A

recent paper by E. Carlen [J. Funct. Anal. 101 (1991), 194-211] develops sim-
ilar results. Weissler conjectured that inequality (10) might be obtained from

Nirenberg's form of the Sobolev inequalities with sharp constants. In one di-

mension this argument can be carried out using variational inequalities in Lieb
[8] and Nagy [Acta Sei. Math. (Szeged) 10 (1941), 64-74].

4. In view of Theorem 4, it is natural to ask what information can be obtained

by taking the limit of the sharp Hausdorff-Young inequality near Lx. In this

case one simply recovers the classical inequality relating entropy to variance for

a probability density.
5. The background for Pitt's inequality, especially the form (8), in terms of

the Hardy-Littlewood and Paley theorems for Fourier coefficients is described
in Zygmund [18]. The Stein-Weiss integral (4) arises in the analysis of com-

plementary series representations for the Lorentz group. A broader framework

for representing the uncertainty principle is given in Folland's recent treatise [4]

(also see chapter 12 in [12]). Inequalities in the context of the Heisenberg group

will be discussed in a forthcoming paper. In extending weighted inequalities to

more geometric manifolds, it becomes evident that Pitt's inequality and the
uncertainty principle are quantitative statements about the dilation structure of
the manifold.
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