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ABSTRACT 

 
The growth of pits in 209 nm thick Al films in chloride solutions with and without dichromate ions was 

examined using image analysis of the growing pits to determine pit current density. In pure chloride solutions, the 

pit current density decreased at high potentials after reaching a maximum value, and then was almost independent of 

applied potential. A hysteresis in the pit current density-potential behavior was observed during downward stepping 

of the potential from high values. This is a result of a combination of supersaturation of the pit electrolyte followed 

by salt film formation, and changes in mass transport from hydrogen bubbles that increase convection and lift the 

remnant passive film away from the dissolving surface. In solutions containing dichromate ions, the corrosion and 

repassivation potentials shifted in the noble direction, and rather large metastable pits formed at the open circuit. A 

large concentration of dichromate ions was needed to inhibit pit growth. In dichromate solutions, subsequent pit 

growth at higher potentials often initiated at the edge of the open-circuit pits. The rate of pit growth was lower for 

these pits because the remnant passive film layer was not easily lifted up at these sites, and thus created a barrier for 

mass transport away from the dissolving pit edge. 

 

Introduction 

 

Pits in thin metallic films (on the order of tens or hundreds of nanometers in thickness) 

deposited on inert substrates penetrate through the metal layer in a fraction of a second.
1-4

 They 

then grow outward with the active pit area perpendicular to the substrate and increasing pit 

radius. Since the aspect ratio (pit radius to depth) of pits in thin films is large, they may be 

considered to be two-dimensional. The 2D pits in thin films grow in a steady-state fashion with a 

constant pit depth equal to the metal film thickness, instead of the ever-increasing pit depth of 

pits in bulk samples. As a result, the pit current density, determined by analysis of images of the 

growing pit, is constant with time and independent of pit size at a given pit growth potential. The 

pitting process is simplified by limiting the metal dimension in one direction. Furthermore, since 

the pit depth can be carefully controlled by the thin film deposition process, it is possible to 

probe pits having a range of steady-state thicknesses, down to very small values. These pits are 

2D steady-state analogs to very small pits in bulk samples. By studying pits in increasingly 

thinner metallic films, it is possible to simulate the growth of extremely small pits in bulk 
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samples. This approach thereby overcomes the problem that very small pits in bulk samples 

quickly become large. 

The first study of pitting in thin films used pure Al films about 150 nm in thickness in 0.1 

M NaCl.
1
 The potential was raised slowly until pitting initiated, and then was held at the pitting 

potential. Single pits were formed in this fashion, and the natural variation in pitting potential 

provided a range of applied potential. The anodic pit current density was determined using 

analysis of images of growing pits and Faraday's law to relate the pit perimeter velocity to anodic 

pit current density. The pit current density generally increased with applied potential, reaching 

what seemed to be a limiting current density at the high potential region where the pits were very 

round in shape. This indicated that the pits at the high potentials were under mass-transport 

control, growing with a salt film in equilibrium with a saturated solution at the active pit surface. 

Pits in the lower potential region where the pit current density varied approximately linearly with 

potential were suggested to be growing under ohmic or mixed ohmic/charge-transfer control. 

This system is revisited in the present study, and somewhat different results were obtained. 

The current density-potential (i-E) relation was determined for pits in Ni-20Fe films with 

a range of thickness.
2 

The limiting current density and the slope, di/dE, in the lower potential 

region were both found to increase as the film thickness decreased. Furthermore, a critical 

potential and current density were found for each film thickness below which pit growth could 

not be maintained and the pits repassivated. A model was developed to describe the i-E curves, 

and their variation with thickness. It was suggested that a barrier to mass transport existed at the 

pit surface because the limiting pit current densities were lower than what would be predicted by 

simple mass transport models. The undermined passive film, which is not lifted up by hydrogen 

bubbles as in the case of Al, was offered as being the transport barrier. The behavior in the lower 

potential region was modeled using a potential component calculation. Ohmic, charge-transfer, 

and concentration considerations were all found to be important, with ohmic potential drops 

becoming the dominating factor as the film thickness increased. Using the assumption presented 

above, that pits in thin films are steady-state analogs to small pits in bulk samples, one could 

consider that similar limitations to growth hold for deepening 3D pits. 

The 2D pit growth technique was also used to study the remarkable pitting resistance of 

some of sputter-deposited Al binary alloys.
3
 The influence of the passive film on the pitting 

process was shown to be minor compared to the effect of the ennoblement of the pit dissolution 

process by alloying. Higher potentials were needed to generate a large enough pit current density 

to sustain the critical environment needed to prevent repassivation in alloyed films. The stability 

of pits can be seen to result from a cascading chain of causality: potential→pit current 

density→local environment→repassivation. 

The effect of film thickness (or pit depth) on repassivation of pits in Al films ranging in 

thickness from 10 nm to 43 µm was studied. The repassivation potential first decreased as 

thickness increased from 10 to 435 nm, and then increased as the film thickness increased 

further. Mass-transport and ohmic resistance both increase as the metal film thickness increases, 

but the former enhances pit stability and the latter destabilizes pitting in this system. Pit 

repassivation, and thus stability, are strongly influenced by mass transport considerations for pits 

in very thin films, even though dissolution at low potentials is not under pure mass-transport 

control. Ohmic effects become increasingly important as the film thickness increases. 

In the current investigation, the full pit polarization curve was determined over a wide 

range of potentials for pits in Al thin films. The influence of dichromate ions dissolved in the 

chloride solution was also examined. Previous work has shown that chromate ions reduce the 



tendency for pitting in Al, and the amount of chromate required to have an effect depends on the 

amount of chloride present and the aspect of pitting corrosion under study.
5-7

 The growth rate of 

large pits through Al foils up to 0.2 mm in thickness in 0.01 M NaCl was not affected unless 0.1 

M NaCrO4 was added, a 10:1 chromate:chloride ratio.
5 

The pitting potential of Al was found to 

increase only if the chromate:chloride ratio was about 1:1.
6
 Metastable pitting of Al was strongly 

reduced when the chromate:chloride ratio was only about 0.01.
7
 So, the amount of chromate 

needed to affect pitting seems to increase as the scale of the pits increases. In this work the 

effects of different dichromate to chloride ratios in 0.1 and 1.0 M chloride solutions on the pit 

growth of 2D pits in 209 nm thick Al films were investigated. 

 

Experimental 

 

Al films were deposited onto glass substrates at a thickness of 209 nm by direct current 

magnetron sputtering from a 99.999% pure Al target in a tool with a base pressure of about 2 × 

10
-7 

Torr. The electrochemical cell was assembled using a backing plate to hold the Al thin film 

sample against a polytetrafluoroethylene o-ring at the bottom of a polymethylmethacrylate cell 

(Fig. 1). The exposed area was 0.82 cm
2
. A Pt counter electrode and a saturated calomel 

reference electrode completed the three-electrode cell. The electrolyte was unstirred and open to 

air. A quartz sleeve in the cell cover allowed for insertion of an optical probe for recording 

images of the growing pits on videotape, similar to what was done in previous investigations.
1-4

 

The potential was controlled by front panel operation of an EG&G PAR 273 potentiostat. 

It was scanned at 1 mV/s from the open-circuit potential until a pit initiated as indicated by a 

sharp increase in the current, and the observation of a pit through the video system. The potential 

was held at the pitting potential, and images of the growing pits recorded. Two different 

approaches were then utilized for subsequent control of the potential. In the first, the potential 

was increased (in the noble direction) sequentially in increments of varying size. This is the 

"step-up" approach. The hold time at each potential was long enough to record sufficient images 

of the growing pits for subsequent analysis, and varied from 10 to 120 s depending on the rate of 

pit growth. Since 2D pits in thin films grow at steady state, the extent of prior growth has no 

effect, and thus, the hold time at a given potential does not affect the growth. 

In the second potential-controlling approach, called "step-down," the potential was 

stepped directly to a high potential after pit initiation, followed by sequential stepping to 

increasingly less noble values, with the steps long enough to capture images of the growing pit. 

In some of the step-up experiments, the potential step direction was reversed to combine step-up 

and step-down measurements in the same run. 

 

 



 
 

 
Fig. 1. Schematic drawings of the experimental setup and of the nature of two-dimensional pit growth in thin 

films. 

 

 

 
 

 
Fig. 2. Video image of a pit growing in a 209 nm thick Al film in 1.0 M NaCl at an applied potential of 450 mV 

SCE. 

 

The anodic pit current density was determined by analysis of the images of the growing 

pits as described previously.
1-4

 The amount of hydrogen evolved during thin film pit growth 

increases with increasing film thickness.
4
 For the 209 nm thick samples, the pit perimeter was 

sufficiently obscured by hydrogen bubbles that automated image analysis was not possible. 

Figure 2 is an image of a pit growing in 1.0 M NaCl solution. The tops of the bubbles reflect the 

incident light and show up bright, and slightly out of focus since the bubble top was above the 

metal film surface, which was in focus. Bubbles were seen to decorate much of the perimeter, 

and also were left in the interior of the pit on the glass substrate as the edge moved away during 

pit growth. As described previously, it is possible in this case to determine the pit current density 

using Faraday's law and manual assessment of the pit wall velocity on the monitor during 

playback after an experiment.
4
 Several measurements were made at different locations on the pit 

perimeter and an average was taken. In most cases, the measured pit velocities at different points 

of the same pit were very close. In other experiments, however, there were certain regions along 

a pit wall that exhibited a slower rate of dissolution, and an undermined passive film remnant 



was visible near those regions. Measurements made at these locations were not averaged and are 

reported and discussed separately. 

 

Results and Discussion 

 

Chloride solutions.—The pit current density for pits in 209 nm thick Al films in 0.1 and 

1.0 M NaCl is given in Fig. 3 and 4, respectively, as a function of applied potential. The data 

points on these curves represent average values at each potential from several different 

experiments. Although the curves show average data, they reproduce the trend observed in 

individual experiments very well. This is discussed in detail later. In both figures, the pit current 

densities determined by stepping the potential in the noble direction are separated from those 

determined in experiments in which the potential was stepped down in the active direction.  

 

 

 
 

 
Fig. 3. Average anodic pit current density as a function of applied potential for pits in 209 nm thick Al films 

in 0.1 M NaCl. 

 

 

 
 

 
Fig. 4. Average anodic pit current density as a function of applied potential for pits in 209 nm thick Al films 

in 1.0 M NaCl. 

 



Furthermore, the downward-stepped experiments were divided into those that started at very 

high potentials and those starting at or below a peak value in the upward-stepping curve (+200 

and −400 mV saturated calomel electrode (SCE) for the 0.1 and 1.0 M NaCl solutions, 

respectively). In both solutions, the upward and downward curves converge in the low potential 

region just above the repassivation potentials, which on average are −726 and −806 mV SCE for 

the 0.1 and 1.0 M NaCl solutions, respectively. These repassivation potentials are similar to 

those reported earlier.
4
 It has been suggested previously that thin film pits are under ohmic or 

mixed ohmic/ charge-transfer control at potentials closest to the repassivation potentials where 

the i-E curves are almost linear.
1-4

 The coincidence of the upward- and downward-stepping 

polarization curves further support the notion of ohmic or mixed ohmic/charge-transfer control in 

this region. In fact, ohmic influences likely dominate charge-transfer effects. 

The data for the 0.1 M solution, Fig. 3, are different from those reported previously for 

somewhat thinner Al films in the same solution.
1
 In that first work on pit growth in thin films, 

pits were maintained at the breakdown potential, and only one current density was determined 

for each sample at the breakdown potential for that sample. This approach promotes the 

formation of a single pit, but limits the amount of data that can be obtained compared to the 

approach of stepping to multiple potentials in one experiment with a single sample. Data 

reported in the earlier work suggested that a limiting current density of about 30 A/cm
2
 was 

reached at about −580 mV SCE in 0.1 M NaCl.
1
 Figure 3 indicates a limiting current density of 

about 80 A/cm
2
 at potentials in the range of −200 to + 200 mV SCE during upward-stepping of 

the potential in 0.1 M NaCl. The pit current density is thus higher for the thicker films used in 

this study despite the previous finding that limiting current densities decrease as the film 

thickness  increases  for  pits  in  NiFe  films.
2
  At  higher potentials, the current density is seen 

to decrease markedly to about 20 to 30 A/cm
2
. This decrease is observable in a single experiment 

and is quite noticeable on the videotape during viewing as a decrease in the velocity of the pit 

perimeter. Given the high dissolution rates in the high-current region, only very brief pauses (10 

s) were possible at each potential in that range. (At  100 A/cm
2
, the pit perimeter velocity is 

about 30 µm/s, or 3 mm/s on the video monitor considering the  100 times magnification used.) 

Nonetheless, the decrease in current density at high applied potentials is obvious. At potentials 

above about 300 mV SCE the current density is again found to be rather independent of applied 

potential, but at the much lower value of 20-30 A/cm
2
, which is close to the limiting current 

density found in the earlier work. 

Similar behavior is observed for the case of 1.0 M NaCl solution (Fig. 4). A limiting 

current density of about 80-100 A/cm
2
 is exhibited in the potential range of about −625 to −325 

mV SCE for the upward-stepping experiments Compared to the 0.1 M NaCl solution, higher pit 

current densities are obtained at lower potentials in the more concentrated solution because the 

solution conductivity and thus the slope of the i-E curve are higher. A decrease in the current 

density is observed at high potentials for the upward-stepped experiments, but it is gradual and 

certainly not as sharp as that seen for the 0.1 M NaCl solution. 

The pit current densities determined during downward-stepping of the potential in both 

solutions are somewhat different to those found during upward-stepping. In 0.1 M NaCl, a large 

hysteresis is seen for samples stepped downward from potentials above 200 mV, with the current 

density being lower in the mid-potential region during downward stepping. The current density is 

practically independent of applied potential over a very wide range, and similar to the high-

potential value of about 20 A/cm
2
. In contrast, no hysteresis is observed for samples stepped 

down from potentials below 200 mV SCE. If anything, the current densities measured in the 



range of 0 to 200 mV SCE were higher than those found during upward stepping. However, in 

the lower potential region, the upward-and downward-stepped experiments exhibit similar 

current densities for samples stepped down from potentials below 200 mV SCE. 

A much smaller hysteresis is observed in the 1.0 M NaCl solution. The current density 

values increase slowly during the step-down experiments from the high potential range to around 

−575 mV SCE in a fashion that is almost identical to the slow decrease observed in the upward-

stepping experiments. Since this slope is gradual, and no sharp decrease is observed in the 

upward-stepping experiments, only a small hysteresis is observed. In the range of −575 to −350 

mV SCE, the pit current density measured during downward-stepping is slightly lower than that 

measured during upward-stepping. At potentials below −600 mV, the current-density/potential 

relationship is similar for all conditions. 

It should be noted that the points shown in Fig. 3 are average values obtained from 

several experiments. The gradual change in current density for the 1.0 M NaCl solution in the 

range of −300 to 0 mV SCE is really an artifact of this averaging. Most experiments exhibited a 

sharper increase or decrease in current density, but the value at which the transition occurred 

varied over a wide range from experiment to experiment. In some step-down experiments, in 

fact, the current density stayed at the high potential value all the way back to low potentials 

without increasing. By averaging many runs, this variation is smoothed out, so that Fig. 4 is not 

perfectly representative of the i-E relationship. It should be clear, however, that most downward-

stepping experiments in 1.0 M NaCl exhibited an increase in current density above the high-

potential current values. 

The decrease in current density at high potentials and hysteresis upon downward-stepping 

can be explained by either a supersaturation of the electrolyte and precipitation of a salt film on 

the sample surface, or changes in the effects of hydrogen bubbles as a function of potential. Most 

likely, both influences are important in this case. 

Supersaturation and salt film precipitation phenomena in artificial pit electrodes have 

been described by Isaacs and Newman.
8
 Salt films often will not precipitate on a dissolving 

metal surface until the solution adjacent to the surface supersaturates to a concentration well 

above the saturation concentration that is in equilibrium with the salt film after it forms. As a 

result, the rate of dissolution, i.e., the pit current density, can be much larger just before the salt 

film forms compared to afterward. Supersaturation leads to a hysteric pit polarization curve 

because the salt film, once formed, remains in equilibrium with the saturation concentration 

solution during downward scanning until a transition potential at which the salt film dissolves 

and the pit is no longer under diffusion control. If the whole observed drop in current density 

were due to supersaturation, it would be possible to determine the extent of supersaturation from 

the ratio of the current densities just before and just after the drop. For the 0.1 M NaCl case, this 

would indicate a supersaturation concentration of about 2.5 times the saturation value. Assuming 

a saturation concentration for A1Cl3 of 3.1 M,
9
 the supersaturation concentration would be 

estimated at 7.7 M according to this line of thought. Since the decrease in potential for the 1.0 M 

NaCl case was gradual, it is difficult to make the same assessment of supersaturation. The higher 

bulk chloride concentration also needs to be considered. Assuming current densities before and 

after salt film precipitation of 80 and 40 A/cm
2
, respectively, a supersaturation concentration of 

5.9 M is obtained. Given the shape of the curves, however, there is more error associated with 

this estimation. 

Furthermore, it is likely that the whole decrease in current density is not a result of 

supersaturation. As mentioned, differences in hydrogen evolution will affect the pit current 



density. It is interesting to note that hydrogen bubbles form at the dissolving pit walls in these 

thin film pits even at very high applied potentials. Assuming a pit pH of 3,
10

 the reversible 

potential for the hydrogen evolution reaction would be −421 mV SCE.
11

 Hydrogen bubbles have 

been observed at applied potentials as high as 600 mV SCE; no bubbles were seen in any 

experiment at potentials above 600 mV SCE. The resistance associated with concentration of the 

current density into the microband electrode that forms the active pit wall results in considerable 

infrared drop (up to 1 V) throughout the whole potential range examined, which permits the 

formation of hydrogen gas on the pit wall even at applied potentials as high as 600 mV SCE. 

There is clear evidence that hydrogen bubbles formed in Al pits affect the local mass transport 

conditions and the pit current density. For the case of pits in NiFe thin films where no hydrogen 

evolution is observed, it was shown that the undermined passive film is not lifted away from the 

dissolving pit surface as in the case of Al pits, resulting in an additional barrier to mass 

transport.
2
 The presence of hydrogen bubbles certainly enhances the mass transport in the case of 

Al by lifting this passive film remnant away from the surface. The observation that higher 

limiting current densities are observed for the thicker Al films in this study compared to that 

observed previously
1
 may be a result of the larger film thickness and the corresponding larger 

amount of total hydrogen generated. The more hydrogen gas generated, the more effective it 

would be at both lifting the passive film remnant and also enhancing convection. Enhanced 

convection leads to an increase in the limiting current density via a decrease in the diffusion 

layer thickness. 

As the applied potential, and thus the pit wall potential are increased, there will 

eventually be a decrease in the rate of hydrogen evolution. The pit wall potential must be much 

lower than the applied potential because of the very large IR drop, but its value is not clearly 

known at any point along the polarization curve. However, if the hydrogen evolution reaction 

decreases sufficiently as the potential is increased, the pit current density would decrease as a 

result of less convection and lifting of the passive film remnant. Hydrogen bubbles are still seen 

at the pit edge in a portion of the high potential region (400 to 600 mV SCE) so the decrease in 

current cannot be fully explained by elimination of the hydrogen reaction, and it is likely that salt 

film precipitation does take place when the current density drops. On the other hand, it is also 

likely that the extent of hydrogen evolution is less on the salt-covered surface compared to the 

actively dissolving Al pit wall. So, the act of precipitating a salt film might effectively decrease 

the hydrogen evolution current and thus further reduce the current beyond the reduction 

associated with supersaturation and precipitation. The fact that a hysteresis is observed supports 

the notion of supersaturation and precipitation. However, as described above, most downward-

stepping experiments in 1.0 M NaCl exhibited an increase in potential above the high-potential 

limiting current value, and not a true hysteresis as expected for salt film covered electrodes. This 

type of increase would support the mechanism of hydrogen evolution variations, which might be 

reversible. However, it is also possible that the salt film on the walls of these thin film pits is 

easilydisrupted in the high chloride solution. This disruption might result from the hydrogen 

bubbles themselves. If the salt film is removed during step-down experiments in the potential 

region where supersaturation is observed during step-up experiments, the current would increase 

back to the values measured during the step-up tests. 

In summary, the current density decrease and associated hysteresis observed for pits in Al 

thin films in chloride solutions appears to be mostly due to supersaturation of the electrolyte and 

precipitation of a salt film. Some influence of a potential-dependent hydrogen evolution reaction 

on the mass-transport near the pit wall is also likely. 



 

Dichromate-containing solutions.—In dichromate-containing solutions, the open-circuit 

potential is ennobled so that pits form at open circuit upon immersion of the electrode. Chromate 

is an oxidizing agent since the reversible potential for chromate reduction to Cr(III) oxide in 

neutral solution is in the range of 192 to 334 mV SCE, depending on the form of the oxide." The 

oxidizing power of chromates initiates pits at open circuit, but these pits are essentially 

metastable pits in that in most cases they do not continue to grow. However, they can achieve a 

diameter on the order of 1.0 mm. Such pits do not form at open circuit in chromate-free chloride 

solutions. Even small pits in the thin film samples can be easily seen during an experiment 

because they are transparent and show up in the video system as bright spots if illuminated by 

transmitted light only. Optical and scanning electron micrographs of a sample that was simply 

immersed for 3 min in 0.1 M NaCl + 0.5 M Na2Cr2O7 are shown in Fig. 5. With illumination by 

incident light, the pit appears dark. The irregular shape of this pit is similar to that of pits that are 

typically seen growing under potentiostatic control at potentials just above the repassivation 

potential. Earlier publications have shown images of such pits, which are quite different in nature 

from the pits with smooth edges that grow at higher potentials.
1 

The center of the scanning 

elecron microscope (SEM) image in Fig. 5b is one small portion of the pitted region. The broken 

apart passive film remnant is clearly seen. The material to either side of the pitted area is the 

metallic Al film, as determined by a strong Al EDS signal that is absent in the central area. The 

metallic region to the top right of the pitted area is brighter than the region to the lower left 

because it is electrically isolated from the main part of the Al film and is thus charging under the 

electron-beam, even with a very low accelerating voltage of 2 kV. 

As the potential is increased from open circuit in a typical experiment in a chloride + 

dichromate solution, further pit growth often initiates at a site associated with these open-circuit 

pits. Pits may also initiate at other sites that are apparently isolated from such defects. The pit 

growth emanating from the original open-circuit pits is often different than that observed even in 

the same experiment for pits that are initiated at other sites; the current density of pits growing 

from these original pits is typically much lower than that at pits initiated at other sites. Pits 

initiated away from the open-circuit pits grow with hydrogen bubbles at the pit edge, just as in  

 

 
 

 
Fig. 5. Metastable pit formed during a 5 min immersion at open circuit in 1 M NaCl + 0.5 M Na2Cr2O7. (a) 

Optical micrograph, (b) SEM with an accelerating voltage of 2 kV. 

 

the case of pure chloride solutions. In contrast, pits that initiate at open-circuit pits do not have 

hydrogen bubbles decorating the pit edge. Instead, small bubbles can be seen to move quickly 

away from the pit edge along the glass substrate toward the center of the dissolved pit region and 

then escape from a spot away from the pit edge. It is presumed that the bubbles are moving under 



an intact passive film remnant and escaping at a place where this film is broken. Compared to the 

case where bubbles form at the surface and lift up the passive film, this added barrier results in a 

decrease in the pit growth rate or pit current density. Figure 6 shows an image of a pit growing 

away from an open-circuit pit (Eoc = −701 mV SCE) in 1 M NaCl + 0.5 M Na,Cr2O7. The open-

circuit pit is seen as an irregularly shaped region. The dark area is the pit growth that initiated at -

646 mV SCE at the edge of open-circuit pit. The potential was then stepped upward to different 

values; this image was taken at −550 mV SCE. In this particular pit, there are two distinct 

regions that are growing at different rates. The perimeter at the top left of the image is decorated 

with bubbles. It has moved further away from the original pit than the other areas, which are not 

decorated with bubbles. The passive film remnant was apparently broken away at this one 

region, resulting in a higher local pit current density. Pits that initiate at sites that are removed 

from the open-circuit pits in this solution typically grow with hydrogen bubbles decorating the 

pit perimeter and at a high rate similar to the top left region in Fig. 6. 

 

 

 

 
 

 
Fig. 6. Video image of a pit growing in 1 M NaCl + 0.5 M Na2Cr2O7 at -550 mV SCE. 

 

 



 
 

 
Fig. 7. Average anodic pit current density as a function of applied potential for pits in 209 nm thick Al films 

in 1.0 M NaCl with varying amounts of Na2Cr2O7. 

 

The current density of pits in solutions with chloride + dichromate was determined as a 

function of applied potential as was done for the case of pure chloride solutions described above. 

Figure 7 shows the pit polarization curves in 1 M NaCl solutions containing varying amounts of 

Na2Cr2O7. Dichromate ions increase the repassivation potential (ER) by about 150 mV for 0.1 M 

Cl solutions and about 90 mV for most concentrations in 1.0 M Cl . This is one indication of the 

benefit of dissolved dichromate ions for inhibiting pit growth in spite of the formation of open-

circuit pits in dichromate-containing solutions. Only the step-down experiments were performed 

in 1 M NaCl + 0.05 M Na2Cr2O7. The pit current density was similar to that for pure 1 M NaCl, 

and even somewhat larger at potentials above −500 mV SCE. Apparently, no effect on the pit 

growth rate is observed if the chromate concentration is sufficiently small. 

The data for pits in 1 M NaCl + 0.5 M Na2Cr2O7 are divided in Fig. 7 into step-up and 

step-down experiments. Furthermore, the measurements made for "slow" growth that initiated at 

the initial open-circuit pits with no hydrogen gas bubbles, are separated from "fast" growth that 

occurs with hydrogen bubbles at the retreating pit edge. The fast pits with hydrogen at the pit 

walls behave similarly in the step-up experiments to pure 1 M NaCl solutions. The peak current 

density is somewhat smaller, but the slow decrease in pit current density at higher potentials is 

identical to the 1.0 M NaCl case. The step-down behavior of these pits is closer to that of the 0.1 

M case in that the limiting current density is maintained to low potential values and a large 

hysteresis is observed. In contrast, the slow growing pits without hydrogen bubbles at the edge 

never reach high current density values and no hysteresis is seen. Clearly the mass-transport 

conditions play a significant role in the behavior of these pits. The slow pits have a tenacious 

passive film remnant at the pit edge, so that mass transport is inhibited relative to the case where 

the passive film is lifted up at the pit edge by hydrogen bubbles. It is not clear at this point what 

controls the tenacity of the passive film remnant. This is a local property since different regions 



on the same pit can behave differently. It is possible that whether the passive film remnant 

remains tenaciously adhered at the pit edge or is lifted up away from the edge depends on the 

initial condition when the pit starts to grow. The repassivated open-circuit pits provide a ready 

crevice for the initiation of pit growth so that the bubbles that form when pit growth restarts may 

tend to exit from the pre-existing breaks in the passive film as shown in Fig. 5b. If bubbles large 

enough to break the passive film remnant never form, this would lead to sustained growth at low 

current. On the other hand, if bubbles start breaking the film away as soon as the pit is initiated, 

pit growth may continue with the undermined passive film continually being broken and lifted, 

and the pit growth rate remaining high. 

Figure 7 also shows that in a 1 M NaCl + 2 M Na2Cr2O7 solution, only very small pit 

growth rates were observed. It should be noted that this bulk solution is almost saturated to begin 

with, so that salt film precipitation would easily occur. It is expected that the salt films that 

precipitate in the chloride + dichromate solutions contain Cr(III) ions in some form that have 

reduced from the dichromate since the pit wall potential is so far below the reversible potential 

for this reaction. 

In order to investigate higher dichromatexhloride ratios, it was necessary to use lower 

chloride concentrations. When the dichromate/chloride ratio was sufficiently high, pits would not 

initiate or grow. For instance, in a 0.01 M NaCl + 0.05 M Na2Cr2O7 solution, no pits were 

initiated even though the potential was scanned up to +2 V SCE. An alternate approach was used 

in an attempt to study pit growth in this solution. The applied potential of a sample in 0.01 M 

NaCl was jumped from open circuit to different potentials as high as +2 V SCE, at which point 

many pits initiated quickly. A measured amount of concentrated dichromate solution was then 

injected with a syringe to make a bulk solution of 0.01 M NaCl + 0.05 M Na2Cr2O7. Gas purging 

was used to aid mixing and equilibration of the solutions. The pits that were initiated in 0.01 M 

NaCl continued growing for 4 s while mixing of the dichromate into the solution was taking 

place, and then suddenly froze, and stopped growing. At that point the solution was observed to 

be well mixed with a uniform appearance and a noticeable decrease in the number of density 

gradient streaks that were evident as the concentrated, red-colored dichromate solution was 

mixing in. Even subsequent stepping of the potential to +2 V could not make the pits grow 

further. 

The data presented above indicate that the dichromatexhloride molar ratio of 0.5:1 in 1 M 

Cl
−
 solutions has only a minor effect on thin film pit growth if the slow pit growth associated 

with open-circuit pits is disregarded. At a molar ratio of 2:1 pit growth is significantly reduced, 

and at a ratio of 5:1 pit growth would not have been possible. These ratios, however, are 

dependent on the chloride concentration. For instance, pits will grow in a 0.1 M NaCl + 0.5 M 

Na2Cr2O7 solution, which also has a 5:1 molar ratio. Given the trend of increasing 

dichromatexhloride ratio needed to affect pitting with increasing scale of the pitting, as described 

in the introduction, it is somewhat surprising that the ratio needed to affect thin film pit growth is 

almost the same as that needed to affect the growth of 0.2 mm deep pits.
5 

 

Sulfate-containing solutions.—The effects of adding Na2SO4 to 0.1 M NaCl on the pit 

growth rates are shown in Fig. 8. All the data reported in this figure are step-down 

measurements. The addition of 0.05 M Na2SO4 has a small effect in the low potential region, 

whereas the pit growth rates increase substantially when 0.2 M Na2SO4 is added. The 

conductivity of the 0.1 M NaCl increases as Na2SO4 is added; Table I gives various properties of 

the solutions examined, as well as the characteristic potentials of 209 nm Al thin films in the 



solutions. The increased pit current densities in the 0.1 M NaCl + 0.2 M Na2SO4 solution 

certainly result from the increase in bulk solution conductivity compared to 0.1 M NaCl. 

The addition of 0.2 M sulfate reduced the repassivation potential by a small amount, and 

smaller concentrations had almost no effect. However, sulfate additions had a remarkable effect 

on the pitting potentials. For example, the addition of 0.05 M Na2SO4 to 0.1 M NaCl resulted in 

an increase in the pitting potential of almost 400 mV to around −200 mV SCE, and no change in 

the repassivation potential of −725 mV SCE. The reason for this behavior is not clear. The 

increase in pitting potential cannot be attributed to pit growth considerations since sulfate 

increases pit growth rates. Sulfate ions are typically not thought to affect the passive film 

properties. An explanation for the influence of sulfate will require further work. 

 

Implications of the findings.—Two of the critical aspects of growing pits in Al samples of 

any size are the copious evolution of hydrogen gas in the pit and the role of the undermined 

passive film, which can act as a pit cover and transport barrier. These aspects are highlighted, 

and possibly exaggerated in pits in thin films. Because the anodic current densities are high for 

pits in thin films, the hydrogen evolution current densities are correspondingly high and 

relatively large amounts of hydrogen bubbles are generated. Furthermore, the close proximity of 

the entire active pit surface to the undermined passive film allows this film to have a significant 

influence on pit growth rates for thin film samples. The effects of hydrogen and the remnant 

passive film are easier to control and assess for pits in thin films compared to those in bulk 

samples. They are shown in this work to affect both mass transport and ohmic potential 

considerations. 

The observation of a large current density hysteresis is evidence of some role of 

supersaturation and salt film precipitation. It is not clear to what extent these phenomena occur in 

pits in bulk samples. However, the observations in this work suggest that they may be important 

for small pits. The fact that large amounts of chromate are required before the 2D pit growth rate 

is affected is interesting in light of observations that very small concentrations of chromate in 

chloride solutions can have large effects on the pitting behavior of Al alloys.
12

 As described 

above, the amount of chromate required to affect pitting seems to increase as the scale of pitting 

increases.
5-7

 Assuming that pits in thin films act like small pits in bulk samples, one might expect 

that only small concentrations of chromate would be needed to influence pitting in the thin films. 

The observation that large amounts of chromate are required to reduce the rate of pit growth even 

in thin films suggests that chromate does not inhibit pitting by acting as a strong anodic inhibitor 

and reducing pit growth rates. Other possible roles of chromate are currently under investigation. 

 

 

 

 

 

 

 



 
 

 
Fig. 8. Average anodic pit current density as a function of applied potential for pits in 209 nm thick Al films 

in 0.1 M NaCl with varying amounts of Na2SO4. 

 

 
Table I. Properties of solutions examined, and open circuit pitting, and repassivation potentials of 209 nm Al 

thin films in the solutions. The mean potentials are reported along with their standard deviations. Note that 

large metastable pits form at open circuit in the dichromate-containing solutions, but the pitting potentials 

given are for the initiation of stable pits. 

 

 

 
 

Conclusions 

 

Pit growth in 209 nm thick Al films was studied over a wide range of applied potential 

using image analysis of the growing pits to determine pit current density. The following 

observations were made. 

1.  In chloride solutions, the pit current density initially increased as the applied current 

density increased. A maximum pit current density was observed followed by a decrease to lower 

values as the applied potential was further increased. At the highest applied potentials the pit 

current density was almost independent of potential. 

2.  A hysteresis in the pit polarization curve was found for samples whose potential was 

stepped downward from high values. This hysteresis is thought to be a result of a combination of 

supersaturation followed by salt film formation, and changes in mass transport from hydrogen 

bubbles that increase convection and lift the remnant passive film away from the dissolving 

surface. 



3.  In dichromate-containing chloride solutions, the corrosion and repassivation potentials 

shifted in the noble direction, and rather large metastable pits formed at open circuit. These 

metastable pits act as sites for initiation of further pitting at higher applied potentials. The pit 

current densities associated with these pits that initiate at the open-circuit metastable pits are 

lower because of a remnant passive film that is not lifted away from the surface and acts as a 

barrier for mass transport. 

4. High dichromate:chloride ratios are required to affect 2D pit growth in thin films. 
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