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List of symbols

d spacing between adjacent grid points

f focal length of a lens

F general function

FOV �eld of view

f# f-number of a lens

facq acquisition frequency

Lsr spatial resolution length
∗

Lsr spatial resolution length relative to the vector

spacing d

N number of measured variables; number of acquired 

samples

Neff effective number of independent samples

npix linear size (in pixels) of the PIV  interrogation 

window

Ruu, Rvv, Rww Reynolds normal stresses

Ruu, true, Ruu, corr true/corrected Reynolds normal stress

Ruv Reynolds shear stress

T total recording time

TI turbulence intensity

Tint integral time scale

TKE turbulent kinetic energy

u horizontal velocity component

u mean velocity

u′ �uctuating velocity
′utrue true �uctuating velocity (in absence of 

 measurement errors)
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Abstract

This paper discusses the propagation of the instantaneous uncertainty of PIV measurements 

to statistical and instantaneous quantities of interest derived from the velocity �eld. The 

expression of the uncertainty of vorticity, velocity divergence, mean value and Reynolds 

stresses is derived. It is shown that the uncertainty of vorticity and velocity divergence requires 

the knowledge of the spatial correlation between the error of the x and y particle image 

displacement, which depends upon the measurement spatial resolution. The uncertainty of 

statistical quantities is often dominated by the random uncertainty due to the �nite sample 

size and decreases with the square root of the effective number of independent samples. 

Monte Carlo simulations are conducted to assess the accuracy of the uncertainty propagation 

formulae. Furthermore, three experimental assessments are carried out. In the �rst experiment, 

a turntable is used to simulate a rigid rotation �ow �eld. The estimated uncertainty of the 

vorticity is compared with the actual vorticity error root-mean-square, with differences 

between the two quantities within 5–10% for different interrogation window sizes and

overlap factors. A turbulent jet �ow is investigated in the second experimental assessment. 

The reference velocity, which is used to compute the reference value of the instantaneous 

�ow properties of interest, is obtained with an auxiliary PIV system, which features a 

higher dynamic range than the measurement system. Finally, the uncertainty quanti�cation 

of statistical quantities is assessed via PIV measurements in a cavity �ow. The comparison 

between estimated uncertainty and actual error demonstrates the accuracy of the proposed 

uncertainty propagation methodology.

Keywords: particle image velocimetry, uncertainty quanti�cation, uncertainty propagation, 

linear error propagation, spatial resolution
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2

Ux uncertainty of the quantity x

Uu

2 mean-square of the uncertainty of u

U
Uu

2 uncertainty of the mean-square of the uncertainty 

of u

Uu

rms root-mean-square averaged uncertainty of u

v vertical velocity component

w spanwise velocity component

x measured variable; horizontal coordinate

x  mean value of the quantity x

y derived quantity of interest; vertical coordinate

∆t time interval between successive samples 

(inverse of the acquisition frequency)

δx measurement error of the quantity x

ρ(x,y), ρxy cross-correlation coef�cient between x and y

ρ(a) cross-correlation coef�cient between two 

samples at temporal or spatial separation a

σx standard deviation of x

σUu standard deviation of the uncertainty of u

σu,err
2  variance of u due to measurement errors

σu,fluct
2  variance of u due to physical �ow �uctuations

σxy
2  covariance between x and y

σx

2 variance of x

ω vorticity

ω0 reference vorticity

ωz out-of-plane vorticity component

1. Introduction

Uncertainty quanti�cation in particle image velocimetry 

(PIV) is crucial to determine an interval that contains the mea-

surement error. Several a-posteriori PIV uncertainty quanti�-

cation methods have been recently proposed to estimate the 

unknown error for every velocity vector in the �ow �eld.

In the ‘uncertainty surface’ method by Timmins et  al 

(2012), the recorded images are analyzed to quantify the mag-

nitude of relevant error sources (particle image size, particle 

density, displacements and shear). Comparing to previously 

computed errors using synthetic data leads to uncertainty 

estimation for every vector. The ‘peak ratio’ method by 

Charonko and Vlachos (2013) makes use of an empirical rela-

tion between uncertainty and the ratio between the highest and 

the second highest correlation peak. Further advances on the 

quanti�cation of the measurement uncertainty based on the 

cross-correlation signal-to-noise ratio have been proposed by 

Xue et  al (2014). In the ‘image matching’ or ‘particle dis-

parity’ method by Sciacchitano et  al (2013), the measured 

displacement �eld is used to deform the recorded images, 

and the residual disparity in the position of matching particle 

images leads to an estimate of the uncertainty of the displace-

ment vector. Finally, the ‘correlation statistics’ method by 

Wieneke (2015) analyzes the contribution of all pixel intensi-

ties to a possible asymmetry of the correlation peak, which is 

related to the uncertainty of the displacement vector. All these 

methods allow the a-posteriori quanti�cation of the instanta-

neous measurement uncertainty. A thorough comparison of 

their performances in different imaging and �ow conditions 

is reported in Sciacchitano et al (2015), where the dedicated 

experimental data from Neal et al (2015) is used.

In many applications, PIV measurements are conducted 

to investigate �ow properties derived from the velocity �eld, 

which can be instantaneous (e.g. vorticity, velocity diver-

gence, acceleration, turbulence dissipation rate, pressure) or 

statistical quantities (e.g. time average and Reynolds stresses). 

Therefore, once the uncertainties of the instantaneous velocity 

components are estimated, they need to be propagated into 

the derived quantities of interest. The quanti�cation of the 

uncertainty of derived quantities relies upon the following 

considerations:

 i. the uncertainty of the velocity components propagates to 

that of the derived quantity of interest;

 ii. the correlation (in space, time and/or inter-component) 

of velocity components affects the uncertainty of derived 

quantities;

 iii. for statistical quantities, additional uncertainty is due 

to the �nite number of samples N, which yields lack of 

statistical convergence.

The works of Wilson and Smith (2013a, 2013b) provide 

upper and lower uncertainty bounds for a number of statistical 

quantities, such as average, variance and covariance. In their 

analysis, the authors considered the contributions of random 

errors, mainly due to the �nite sample size, and unknown 

time-dependent systematic errors. For velocity variance and 

covariance, the lower uncertainty bound was found to be larger 

than the upper uncertainty bound because spurious �uctua-

tions tend to elevate the time-averaged measured �uctuations, 

yielding an error in the negative direction. In the work pre-

sented here, uncertainty quanti�cation is provided for many 

commonly used derived quantities in PIV processing, both 

statistical and instantaneous. Following Coleman and Steele 

(2009), we assume that each systematic error whose sign and 

magnitude are known has been removed by correction. Thus 

the paper focuses on random errors and uncertainties. The 

work discusses the basic concepts of uncertainty propagation 

and its applications for �ow properties of interest in typical 

PIV measurements, such as vorticity, mean velocity and 

Reynolds stresses. Furthermore, a correction of the Reynolds 

stresses based on the magnitude of the noisy �uctuations is 

proposed.

2. Uncertainty propagation methodology

2.1. Basic concepts

Let us consider a derived quantity of interest y, which is a 

general function F of N measured variables xi, with i  =   

1, 2, …, N.

( )= …y F x x x, , , N1 2 (1)

Assuming that each variable xi has a standard deviation σxi, 

and given suf�cient linearity of F, the variance of y can be 

approximated by the variance-covariance matrix of F (Bendat 

and Piersol 2010):
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or in another notation:
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(3)

where ρ(xi, xj) is the cross-correlation coef�cient between xi 

and xj, de�ned by:

( ) ( ) /ρ σ σ=x x x x, cov ,i j i j x xi j (4)

Notice that when xi and xj are independent, then ρ(xi, xj)  =  0 

and equation (3) reduces to:

⎛

⎝
⎜

⎞

⎠
⎟∑σ σ=

∂

∂=

F

x
y

i

N

i
x

2

1

2

2

i
 (5)

Equation (3) can be interpreted in two ways. First, assuming 

that the set of input variables xi is measured many times, each 

time yielding an output variable yj, the standard deviation 

σy provides a measure of the �uctuation of the derived yj’s. 

Secondly, σy provides a measure of the uncertainty Uy of y for 

a single measurement given the standard uncertainties Uxi of 

each input variable xi (Coleman and Steele 2009):

( )
⎛

⎝
⎜

⎞

⎠
⎟∑ ∑ ∑ ρ δ δ=

∂

∂
+

∂
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∂
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x x U U2 ,y

i
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i
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N

j i

N

i j
i j x x

2

1

2

2

1

1

1
i i j

 (6)

where ρ(δxi, δxj) is now the cross-correlation coef�cient 

between the errors of xi and xj, which are indicated with δxi 

and δxj, respectively. This equation will be used extensively in 

the following.

In the present work, the uncertainty of instantaneous 

velocity components is quanti�ed with the correlation sta-

tistics method (Wieneke 2015). Equation  (6) shows that the 

evaluation of the uncertainty of y requires the knowledge of 

the cross-correlation between velocity vectors separated in 

time or space or inter-component. Most PIV-UQ methods 

are unable to compute such values from single interrogation 

windows. The values of ρ are usually determined before-

hand for a particular set of PIV processing parameter e.g. by 

Monte-Carlo simulation with synthetic data, similar to the 

uncertainty surface method by Timmins et al (2012), which 

analyses the local imaging and �ow conditions and looks up 

the corresponding potentially skewed and biased error distri-

bution. Further details on the computation of the error spatial/

temporal correlation are given in next sections.

2.2. Time-averaged statistical quantities

Given a set of samples x  =  {x1, x2, …, xN} recorded over time, 

the temporal mean value, standard deviation and variance of x 

are de�ned as, respectively:

∑=
=

x
N

x
1

i

N

i

1

 (7)

( )∑σ =
−

−
=N
x x

1

1
x

i

N

i

1

2 (8)

( )∑σ =
−

−
=N
x x

1

1
x

i

N

i
2

1

2
 (9)

Given two sets of samples x and y, the covariance cov(x, y) or 

σxy
2  between them is de�ned as:

( )( )∑σ =
−

− −
=N
x x y y

1

1
xy

i

N

i i
2

1

 (10)

Notice that equations  (7)–(10) provide the mean, standard 

deviation and variance for the sample population. These 

values are estimates of the corresponding values for the parent 

population, which comprises the totality of all samples (not 

only those acquired during the measurement). The accuracy 

of the estimate increases for increasing N; the estimates are 

exact for N  →  ∞.

Assuming that the samples are independent and follow 

a normal distribution of standard deviation σx, the standard 

uncertainty of the above quantities is (Benedict and Gould 

1996):

Uncertainty of mean:

σ

=U
N

x
x

 (11)

Uncertainty of standard deviation:

( )

σ

=

−

σU
N2 1

x

x (12)

Uncertainty of variance:

σ=

−
σ

U
N

2

1
x

2

x

2 (13)

Finally, the uncertainty of the covariance is (Bendat and 

Piersol 2010):

σ σ

ρ

=

+

−
σ

U
N

1

1
x y

xy
2

xy
2

 (14)

where ρxy is the cross-correlation coef�cient between x and y.

These equations are valid for suf�ciently large N. Ahn and 

Fessler (2003) report that for N  ⩾  30 these formulae are accu-

rate within 1%. For a smaller number of samples, the form-

ulae typically underestimate the actual standard uncertainty 

by up to 10%, and correction factors should be used for the 

mean, standard deviation and variance to make them unbiased 

(Coleman and Steele 2009). The results of equations (11)–(14) 

will be used in the following for determining the uncertainty 

of statistical quantities of interest in turbulent �ows.

2.2.1. Uncertainty of the mean velocity. Consider the generic 

velocity component u. Based on equations  (7) and (11), the 

uncertainty of the mean velocity u is:
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σ

=U
N

u
u

 (15)

Analogous equations  are obtained for the v and w velocity 

components. In equation (15), systematic uncertainties due to 

spatial modulation errors or peak locking are not taken into 

account. The standard deviation σu contains both the true 

velocity �uctuations (σu, �uct) and the measurement errors  

(σu,err):

σ σ σ σ= + ≈ +Uu u u u u

2
, fluct
2

, err
2

, fluct
2 2 (16)

where Uu is the uncertainty of the instantaneous velocity 

comp onent and Uu

2 is the mean-square of Uu. The right-hand-

side of equation (16) is obtained by considering that the error 

variance σu, err
2  is approximately equal to the uncertainty mean-

square Uu

2 for accurate uncertainty quanti�cation methods 

(see appendix of Sciacchitano et al 2015).

When the samples are not independent, the parameter N of 

equation (15) must be substituted with the effective number of 

independent samples Neff, as discussed in section 2.2.3.

2.2.2. Uncertainty of Reynolds stress. The Reynolds stress 

plays a crucial role in turbulent �ows because it represents 

the rate of mean momentum transfer by turbulent �uctuations.  

In this section, the expression of the uncertainty is derived for 

the Reynolds normal stress and for the Reynolds shear stress.

Reynolds normal stress. The Reynolds normal stress for the 

x-velocity component u is de�ned as the variance of u:

( )∑′ σ= = =
−

−
=

R u
N

u u
1

1
uu u

i

N

i
2 2

1

2
 (17)

where ′u  is the �uctuating part of u: = −′u u u. Due to its def-

inition, the uncertainty of Ruu is computed with equation (13):

σ σ=

−

≅ =U
N N

R
N

2

1

2 2
R u u uu

2 2

uu
 (18)

It is assumed that the samples are statistically independent.  

If not, N must again be substituted with the effective number 

of independent samples Neff (section 2.2.3). As discussed in 

section 2.2.1, σu contains both the effects of true velocity �uc-

tuations and spurious �uctuations due to noise. The latter yield 

an over-estimate for Ruu with respect to the true value Ruu, true:

σ= + = +R R R Uuu uu u uu u,true ,err
2

,true
2 (19)

When the uncertainty of the measured velocity is known,  

a corrected (more accurate) estimate of Ruu can be retrieved by 

subtracting the spurious �uctuations mean square Uu

2from the 

measured Reynolds stress:

= −R R Uuu uu u,corr
2 (20)

Thus, according to equation  (6), the uncertainty of the cor-

rected normal Reynolds stress estimate Ruu, corr, indicated with 

URuu,corr, is given by:

= +U U UR R
U

2 2
uu uu

u

,corr 2 (21)

The latter is composed by two components: (a) the uncer-

tainty of the measured Reynolds stress, which is given by 

equation (18); (b) the uncertainty of the spurious �uctuations 

mean square Uu

2. Notice that Uu

2 can only assume positive 

values, therefore its distribution is better approximated by a 

log-normal distribution rather than by a Gaussian distribution. 

At least when approximating the distribution with a Gaussian 

distribution with positive mean, an analytical expression of 

the uncertainty of Uu

2 can be derived using equation (6):

σ

σ

= ⋅ +U
N

U

U

2
1

2
U U u

U

u

2

2
u

u

u

2 (22)

The accuracy of equation  (22) is assessed in section  3.1. 

Combining both equations  (18) and (22), the uncertainty of 

Ruu, corr is:

⎛

⎝

⎜
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⎞

⎠

⎟
⎟⎟
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= + ⋅ + ⋅U R U

U N
2 1

2

2
R uu U u

U
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2

2

2

uu u

u

,corr
 (23)

In many applications, the measurement error is small with 

respect to the actual velocity �uctuations, therefore the term 

within brackets is negligible and equation (23) reduces to:

= ⋅U R
N

2
R uuuu,corr (24)

In practice, the uncertainty of the Reynolds normal stress 

according to (23) and (24) is often strongly underestimated 

for two reasons. First, the subtraction of equation (20) is sub-

ject to the accuracy of the uncertainty quanti�cation method 

itself. As shown by Sciacchitano et al (2015), the uncertainty 

estimations of state-of-the-art UQ methods may deviate from 

the true errors by as much as a factor two for different �ow 

and imaging conditions. Secondly, the �nite spatial resolution 

of the PIV processing algorithm does not allow resolving �uc-

tuations of length scale smaller than about the interrogation 

window. This may lead to a substantial underestimation of Ruu 

depending on Reynolds number, turbulent level and imaging 

magni�cation.

It is important to remark here that the computation of the 

uncertainty of Ruu according to equation (18) does not require the 

knowledge of the uncertainty of the instantaneous velocity. On 

the other hand, in order to compute the corrected value Ruu, corr,  

the uncertainty of the instantaneous velocity must be known.

Turbulent kinetic energy. The turbulent kinetic energy TKE 

is de�ned as half of the sum of the Reynolds normal stresses:

= = + +′ ′u u R R RTKE
1

2

1

2
i i uu vv ww( ) (25)

Based on the error propagation formula (6), the uncertainty of 

the TKE is equal to:
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= + +U U U U
1

2
R R RTKE
2 2 2

uu vv ww
 (26)

Assuming N ≫ 1 and that the instantaneous measurement 

uncertainty is negligible with respect to the velocity �uctua-

tions, the result of equation (24) can be used and the expres-

sion of UTKE reduces to:

= + + ⋅U R R R
N

1

2
uu vv wwTKE
2 2 2

 (27)

When Rww is unknown (e.g. in planar PIV, which only pro-

vides two velocity components), its value can be estimated 

as ( )/= +R R R 2ww uu vv  under the assumption of isotropic 

turbulence.

Reynolds shear stress. The Reynolds shear stress Ruv is 

de�ned as the covariance of the u and v velocity components:

∑ ∑
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(28)

The quantity ρuv is the cross-correlation coef�cient between 

the velocity components u and v. Assuming that the velocity 

�uctuations are affected by error δu and δv, respectively, and 

that the error of the time-averaged velocity is negligible, equa-

tion (28) becomes:

∑
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In equation  (29), ρδuδv is the cross-correlation coef�cient 

between the errors of the two velocity components. The 

true velocity �uctuations are assumed to be independent of 

the measurement errors, thus cancelling the cross-terms 

( )δ∑ ′
= u v
i

N

i1 ,true  and ( )δ∑ ′
= v u
i

N

i1 ,true . As a consequence, the 

Reynolds shear stress Ruv exhibits a systematic error (equal 

to ρδ δ U U
u v u v

2 2 ) only if δu and δv are correlated (ρδuδv  ≠  0); 

however, this is typically not the case for planar 2 C-PIV. 

Conversely, for stereo-PIV there may be non-zero inter- 

comp onent correlations dependent on the experimental setup 

of the two cameras relative to the x- and y-axis. The uncer-

tainty of Ruv is obtained by applying the covariance uncer-

tainty equation (14):

σ σ
ρ

= ⋅
+

−
U

N

1

1
R u v

uv

2

uv
 (30)

The uncertainty of the Reynolds shear stress has a minimum 

value of /σ σ −N 1u v when u and v are uncorrelated and 

increases with higher correlation between the two velocity 

components.

2.2.3. Effective number of independent samples. Consider a 

generic statistical quantity, as the mean x . In this section we 

will show that if the N samples from which x  is computed are 

not independent, a larger uncertainty of x  is expected. In fact, 

from equation (6) it is obtained:

( )∑∑ ρ σ=
= =

U
N

x x
1

,x

i

N

j

N

i j x
2

1 1
2

2
 (31)

having assumed a constant underlying �uctuation distribution 

σ σ σ= =x x xi j
. The auto-correlation coef�cient ρ(xi, xj) can be 

written as:

( ) ( ) ( )ρ ρ ρ= = ∆+x x x x n t, ,i j i i n (32)

with ∆t the inverse of the sampling frequency. The auto- 

correlation coef�cient ρ is a function of the time separation 

n∆t between samples xi and xj  =  xi+n. As a result, equa-

tion (31) can be written as:

( ) ( )∑ ∑ ∑ ∑
σ

ρ
σ

ρ= = ∆
= = −

−

+

= = −

−

U
N

x x
N

n t,x

x

i

N

n i

N i

i i n
x

i

N

n i

N i
2

2

2
1 1

2

2
1 1

 (33)

The quantity ρ(n∆t) is equal to one for n  =  0 and decays to 

zero for increasing n. Furthermore, ρ(n∆t) is an even func-

tion: ρ(n∆t)  =  ρ(–n∆t). Assuming →∞N  and neglecting the 

edge effects in the summation, equation (33) becomes:

( ) ( )

( )

∑ ∑ ∑

∑

σ
ρ

σ
ρ

σ

ρ

= ∆ = ∆

=

∆

= =−∞

+∞

=−∞

+∞

=−∞

+∞

U
N

n t
N
N n t

n t

N

x

x

i

N

n

x

n

x

n

2

2

2
1

2

2

2

 (34)

De�ning the effective number of independent samples as:

( )∑ ρ

=

∆
=−∞

+∞
N

N

n t

n

eff

 (35)

leads to:

σ σ

= =U
N

U
N

or x

x
x

x2

2

eff eff

 (36)

Typically, the summation of equation (35) is stopped when the 

correlation value reaches zero for the �rst time. Notice that 

when the samples are uncorrelated, then ρ(n∆t) is 1 for n  =  0 

and zero otherwise, so in this case Neff  =  N. Conversely, when 

the samples are correlated then ( )ρ∑ ∆ >=−∞
+∞

n t 1
n

; therefore 

Neff is smaller than N, thus the uncertainty of the mean value 

is larger.

The integral time scale Tint is de�ned as the integral of the 

auto-correlation function ρ(t) of the time series x(t) (George 

et al 1978):

( )∫ ρ=
∞

T t tdint
0

 (37)
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Tint is a measure of the time interval over which x(t) is depen-

dent on itself. For time intervals large compared to Tint, x(t) 

becomes statistically independent of itself. Then, the effective 

number of independent samples can be written as a function 

of the observation time T and the integral time scale Tint:

∫ ∫

∑ ∑ρ ρ

ρ ρ

=

∆

=
⋅ ∆

∆ ⋅ ∆

≈ = =

=−∞

+∞

=−∞

+∞

−∞

+∞ +∞

N
N

n t

N t

n t t

T

t t

T

t t

T

T
d d 2 d d

2

n n

eff

0

int

( ) ( )

( ) ( )

 

(38)

The relevance of equations  (36) and (38) for experimental 

measurements in turbulent �ows is discussed by Tennekes 

and Lumley (1972) among others. The equations  illustrate 

the fact that, when ∆t  <  Tint and the total observation time T  

is �xed, increasing the sampling frequency and therefore 

the number of samples does not improve the accuracy of 

the derived  statistical quantities (Taylor 1997), because the 

 effective number of independent samples stays constant. 

Instead, it is advantageous to limit the sampling frequency to 

1/(2Tint) and increase the recording time T.

2.3. Instantaneous quantities

2.3.1. Uncertainty of vorticity. Let us consider a planar-PIV 

measurement where the velocity components (u, v) are mea-

sured in a 2D domain. The out-of-plane vorticity component 

is de�ned as:

ω =
∂

∂
−
∂

∂

v

x

u

y
z (39)

For sake of brevity, we will drop the subscript z in the 

reminder and we will indicate the out-of-pane vorticity comp-

onent simply with ω. The velocity components u and v are 

discrete functions, de�ned at grid points with uniform spacing 

d (both in x- and y-direction). As an example, the vorticity can 

be computed by the central-difference scheme by:

( ) [ ( ) ( ) ( )

( )]

ω = + − − − +

+ −

x y
d
v x d y v x d y u x y d

u x y d

,
1

2
, , ,

,

 

(40)

Other methods using larger kernel sizes are available at the 

expense of lower spatial resolution of the vorticity �eld. Using 

the error propagation formula (6), the uncertainty of the vor-

ticity at grid point (x, y) is (apart from truncation errors):

[ ( ) ( ) ]

[ ( )] ( )

ρ ρ

ρ

= + + + − −

= − +

ω
⎜ ⎟

⎜ ⎟

⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠

U
d

U U U U d U d U

d
d U U

1

2
2 2 2 2

2
1

2
1 2

v v u u v u

u v

2

2

2 2 2 2 2 2

2

2 2

 

(41)

where the following assumptions have been made:

 i. The errors of u and v at the same or neighboring spatial 

locations are uncorrelated (2C-PIV).

 ii. The errors of u(x, y  +  d ) and u(x, y  −  d ) are spatially 

correlated (and similarly the errors of v(x  +  d, y) and 

v(x  −  d, y)). The corresponding cross-correlation coef�-

cient, indicated with ρ(2d ), is assumed to be the same for 

the two velocity components. It represents the normalized 

cross-correlation of the measurement error at two grid 

points at spatial separation 2d.

 iii. The uncertainty of u(x, y  +  d ) is assumed to be equal to 

the uncertainty of u(x, y  −  d ) and is indicated with Uu. 

Likewise, the uncertainty of v(x  +  d, y) is assumed to be 

equal to the uncertainty of v(x  −  d, y) and is indicated 

with Uv. In practice, an appropriate local average of 

uncertainties can be taken.

If we further assume that the two velocity components 

have the same uncertainty (Uu  =  Uv  =  U), the expression of 

the uncertainty of the vorticity simpli�es to:

( )ρ= −ωU
U

d
d1 2 (42)

Equation (42) shows the proportionality between the uncer-

tainties of vorticity and velocity. The grid spacing d has a 

twofold effect on Uω: on the one hand, Uω is inversely pro-

portional to d, which would cause a reduction of Uω when d is 

increased. On the other hand, increasing d yields a reduction of 

the spatial cross-correlation coef�cient and in turn an increase 

of the square-root term. When the interrogation window 

overlap is increased, d tends to zero faster than ( )ρ− d1 2 : 

as a consequence, the uncertainty of the vorticity increases 

(see �gure 1). However, two things should be kept in mind: 

(a) equation (42) accounts only for the random errors of the 

vorticity and not for the truncation errors, which are system-

atic and decrease when increasing the interrogation window 

overlap; (b) the uncertainty of the vorticity can be reduced by 

computing the spatial derivatives using a larger spacing in the 

�nite differences (e.g. using [ ( ) ( )] /+ − −v x d y v x d y d2 , 2 , 4

instead of [ ( ) ( )] /+ − −v x d y v x d y d, , 2  ). For noisy data, 

Vollmers (2001) reports that lower uncertainty can be 

achieved by computing the vorticity from the �ow circula-

tion, rather than via equations  (39) and (40). Linear error 

propagation can be used to evaluate the uncertainty of the 

vorticity calculated with advanced algorithms; the determina-

tion and analysis of that uncertainty goes beyond the scope of 

the present paper.

It can be shown that equation (42) also corresponds to the 

uncertainty of the 2D divergence of the velocity. Conversely, 

for 3D divergence in tomographic PIV, the following expres-

sion of the uncertainty is derived:

[ ( )]ρ= −U
U

d
d

3

2
1 2div (43)

The above derivations can be modi�ed accordingly when the 

central-difference scheme is replaced by more elaborate func-

tions, e.g. �tting �ow derivatives by a Levenberg–Marquardt 

algorithm on a 3  ×  3 or 5  ×  5 vector kernel size. For stereo-

PIV with non-zero correlations between u and v, additional 

terms must be taken into account in the above equations. 
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Stereo-PIV uncertainty quanti�cation including assessment 

of calibration errors will be subject of future work.

2.3.2. Spatially averaged quantities. When a velocity comp-

onent is spatially averaged over a pro�le, region or volume, 

the uncertainty of the average could be computed either by 

equation  (11) using the �uctuations of the velocity vectors, 

or, alternatively, by considering the mean as a simple function 

and propagating the individual velocity uncertainties accord-

ing to equation  (6). Usually the second option is preferred, 

since the mean should be considered here as an instantaneous 

quantity and not as a statistically converged value. Most often, 

the underlying mean and standard deviation will be anyway 

different at different spatial locations. Only in the case of 

averaging over isotropic homogeneous turbulence with suf�-

cient data points one could try to measure turbulent statistical 

values; even in this case, it would be more accurate to record a 

large number of images over time for unbiased statistics.

The derivation of the uncertainty of the mean is done in 

the same way as in equations  (31)–(36), replacing standard 

deviations with uncertainties, and replacing temporal correla-

tion of velocity components with the spatial correlation of the 

velocity errors, which are closely related to the spatial resolu-

tion of the PIV processing scheme.

Consider the 1D-case with N values of the u velocity comp-

onent averaged along a pro�le in x-direction:

∑=
=

u
N

u
1

i

N

i

1

 (44)

According to equation (6), the uncertainty of the mean is:

( ) ( )∑∑ ∑∑ρ δ δ ρ δ δ= ≈
= = = =

U
N

u u U U
N

u u U
1

,
1

,u

i

N

j

N

i j u u

i

N

j

N

i j u
2

1 1
2

1 1
2

2
i j

 (45)

where, for simpli�cation, the product of individual uncer-

tainties U Uu ui j
 is substituted by the mean square uncertainty 

Uu

2. The spatial auto-correlation coef�cients ρ(δui, δuj) can be 

written as a function of the vector grid spacing d:

( ) ( ) ( )ρ δ δ ρ ρ= | − | =u u j i d nd,i j (46)

where n is the number of grid points between locations i and 

j. Neglecting edge effects, i.e. requiring large N, equation (45) 

leads to:

∑ ∑ ∑

∑

ρ ρ

ρ

= =

=

= =−∞

+∞

=−∞

+∞

=−∞

+∞

U
U

N
nd

U

N
N nd

U

N
nd

u

u

i

N

n

u

n

u

n

2

2

2
1

2

2

2

( ) ( )

( )

 

(47)

Again, an effective number of independent samples can be 

de�ned as:

( )∑ ρ

=

=−∞

+∞
N

N

nd

n

eff

 (48)

thus:

=U
U

N
u

u

rms

eff

 (49)

having de�ned the root-mean-square averaged uncertainty 

=U Uu u

rms 2 .

The integral of the auto-correlation coef�cients can be 

de�ned as the spatial resolution Lsr of the PIV algorithm, 

which in pixel units is:

( )∫ ρ=
−∞

+∞
L x xdsr (50)

The spatial resolution can also be written relative to the vector 

spacing d:

( )

( )
∫

∑
ρ

ρ= ≈∗ −∞

+∞

=−∞

+∞

L

x x

d
nd

d

n

sr
 (51)

Figure 1. Uncertainty of the vorticity as a function of the 
interrogation window overlap. Results for interrogation window of 
size 32  ×  32 px2.

Figure 2. Spatial auto-correlation of the measurement error for 
interrogation window of 32  ×  32 pixels and 75% overlap.
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In the 2D-case, when the average is conducted over a region of 

Nx  ×  Ny vectors, equation (48) becomes:

=
∗

N
N N

L

x y
eff

sr

2 (52)

with ∗

Lsr again in units of vector spacing and assuming the 

same spatial resolution in x and y. This is, for example, not the 

case for advanced locally adaptive PIV schemes with elon-

gated windows e.g. adjusting to boundaries. For a single-pass 

PIV processing scheme with a square interrogation window 

of npix  ×  npix pixel, the correlation function ρ(x) is the triangle 

function ( )−1
x

npix
 for |x|  ⩽  npix, and 0 otherwise. Hence, 

the spatial resolution is simply Lsr  =  npix. For a Gaussian 

weighted interrogation window with a standard deviation 

of σ, it can be shown that the spatial resolution is equal to 

πσ=L 4sr . For state-of-the-art PIV algorithms using multi-

pass window deformation (like DaVis 8), it has been found 

that the correlation function—when approximating the PIV 

algorithm as a linear spatial �lter function—is Gaussian with 

some Mexican hat contribution leading to slight overshooting 

for steep velocity step functions as observed by Elsinga and 

Westerweel (2011). A detailed analysis is beyond the scope 

of this work.

In practice, the correlation coef�cients and spatial resolu-

tion need to be speci�ed for a particular set of PIV processing 

parameters. When the averaging process is conducted with 

a small number of vectors over a region comparable to the 

 spatial resolution, the simplifying assumptions that led to 

equation (49) are not valid anymore. In this case, the uncer-

tainty of the spatial mean must be computed via equation (6), 

where all individual correlation coef�cients must be taken into 

account.

2.3.3. Spatial correlation of the measurement error. The errors 

of neighboring vectors are spatially correlated due to the inter-

rogation window overlap. To investigate the spatial correlation 

of the error, a Monte Carlo simulation is conducted considering 

Figure 3. Comparison between the results of Monte Carlo simulations (MC) and uncertainty propagation (UP) for the uncertainty of mean, 
standard deviation (Std), variance (Var) and mean square. Left: uncertainty as a function of the sample size. Right: uncertainty as a function 
of the sample standard deviation. For mean and standard deviation, the relative uncertainty is computed dividing the absolute uncertainty by 

σx; for variance and mean square, it is computed dividing the absolute uncertainty by x

2
σ . The symbol keys apply to both plots.

Figure 4. Instantaneous horizontal velocity (left) and vorticity �elds (right) for the case U  =  0.1 px and ρ  =  0.45.
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a null displacement �eld. The images have a resolution of 

5000  ×  400 pixels, with a seeding concentration of 0.05 ppp. 

The particle images have a Gaussian intensity pro�le with 

peak intensity of 1024 counts; their diameter is set to 2 pixels. 

Noise is added to the recordings (white background noise with 

5 counts standard deviation and photon shot noise, assuming a 

conversion factor of 4 electrons per count) to cause errors in the 

measured velocity. The images are processed with the commer-

cial software DaVis 8.2 from LaVision. The auto-correlation 

function ρ of the measurement error is computed to investigate 

the spatial correlation among neighboring vectors. The results 

of �gure 2, which refer to the case of Gaussian-weighted inter-

rogation window size of 32  ×  32 pixels with 75% overlap, 

show that a signi�cant  correlation is present up to sample spac-

ing of 3d. Notice that in this case ρ(2d)  ≅  0.45; hence, the spa-

tial correlation of the error is relevant and cannot be neglected 

for the computation of the uncertainty of the vorticity via equa-

tion (42). Note that the above mentioned mixture of Gaussian 

and Mexican hat �lter function of PIV leads here to the slight 

undershooting of the correlation values below zero.

3. Numerical assessment via Monte Carlo 

simulations

3.1. Uncertainty of statistical quantities

The uncertainty of mean, standard deviation, variance and 

mean square is veri�ed by Monte Carlo simulations. For each 

sample size N, normally distributed random data are gener-

ated with =x 1 and σx  =  0.3, and the statistical quantities of 

interest are computed. The procedure is repeated 1000 times 

to evaluate the standard deviation of the mean, standard devi-

ation, variance and mean square. The results of the Monte 

Carlo simulations are compared with the theoretical predic-

tions of equations (11)–(13) and (22). Figure 3(left) shows the 

uncertainty as a function of the sample size N: as predicted by 

the theoretical uncertainty propagation equations, the uncer-

tainty decreases with 1/ N . The agreement between theor-

etical values and Monte Carlo simulation is excellent. The 

simulation is repeated with constant sample size N  =  10 0000 

and varying the sample standard deviation σx (�gure 3(right)). 

The uncertainty of mean, standard deviation and mean square 

increases linearly with /σ xx  in the range [0, 1]. Conversely, 

Figure 5. Uncertainty of the vorticity as a function of the 
uncertainty of the velocity. Comparison between Monte Carlo 
simulation results (MC) and uncertainty propagation (UP).

Figure 6. Auto-correlation functions of the three signals. Mean 
values out of 1000 simulations.

Table 1. Integral time scale and effective number of independent 
samples for the three signals.

Signal
Total number 
of samples N

Integral time 
scale Tint

Effective number 
of samples Neff

x1 10 000 0.50 10 000

x2 10 000 1.69 2950

x3 10 000 6.74 742

Figure 7. Uncertainty of the mean value (relative to the standard 
deviation) as a function of the effective number of samples Neff. 
Comparison between Monte Carlo simulation results (MC) and 
theoretical uncertainty propagation (UP).
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the uncertainty of the variance features a quadratic increase 

according to equation (13).

3.2. Uncertainty of vorticity

A Monte Carlo simulation is conducted to assess the acc uracy 

of the uncertainty estimate given by equation  (42). A null 

velocity �eld (u  =  0, v  =  0) is considered on a 2D domain 

composed by 1000  ×  100 grid points, yielding a null exact 

vorticity �eld ω  =  0; thus any measured vorticity directly 

provides the true error. The grid spacing is set to d  =  8 px, 

which is the typical value obtained with 32  ×  32 px interro-

gation windows with 75% overlap. Gaussian noise is added 

to the velocity �eld to simulate the error encountered in PIV 

measurements. The noise is spatially correlated to simulate 

the effect of interrogation window overlap in PIV. The stan-

dard deviation of the noise, which coincides with the measure-

ment uncertainty U, is varied between 0.02 px and 0.3 px.  

Three values of the cross-correlation coef�cient ρ(2d ) are 

considered, namely 0, 0.11, 0.45. These values are representa-

tive of the cross-correlation coef�cient encountered in PIV for 

overlap factors of 0%, 50% and 75%. The results are averaged 

(via root-mean-square) in the entire measurement domain and 

for a total number of 1000 velocity �elds for each value of 

ρ. An example of instantaneous horizontal velocity �eld and 

vorticity �eld is shown in �gure 4.

The results of �gure  5 show the excellent agreement 

between the uncertainty obtained with Monte Carlo simula-

tions and with the theoretical uncertainty propagation (equa-

tion (42)). As predicted, the uncertainty of the vorticity 

Figure 8. (a) Raw image of the turntable; (b) Measured instantaneous vorticity �eld with velocity vectors. For sake of clarity, one of 4 
vectors is displayed both in x- and y-direction; (c) Root-mean-square of the actual error of the x-displacement; (d) Root-mean-square of the 
uncertainty of the x-displacement computed with the correlation statistics method; (e) Standard deviation of the actual error of the vorticity; 
(f) Root-mean-square of the uncertainty of the vorticity, estimated with equation (42).
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increases linearly with the uncertainty of the velocity. It is also 

noticed that the spatial correlation of the measurement error 

(ρ  =  0.45) yields a reduction by factor 5 of Uω with respect to 

the case where the error is uncorrelated (ρ  =  0).

3.3. Effective number of independent samples

The in�uence of the effective number of independent samples 

on the accuracy of the statistical results in investigated by 

Monte Carlo simulations. Three signals are considered, each 

composed by N  =  10 000 samples and having actual mean and 

standard deviation equal to 1.0 and 0.3, respectively. Signal 

x1 is composed by statistically independent samples, whereas 

the samples of signals x2 and x3 are statistically dependent. 

The integral time scale of the signals is evaluated from the 

auto-correlation function (ρ1, ρ2 and ρ3, respectively) via 

equation (37) (see �gure 6). The effective number of indepen-

dent samples is then computed via equation (38) and reported 

in table 1. For each signal, the mean value is computed. The 

 simulation is repeated 1000 times to compute the standard 

deviation of the estimated mean. The latter is compared with 

the theoretical prediction of equation  (15). The results of 

�gure 7 show the excellent agreement between Monte Carlo 

simulation and theoretical prediction: the uncertainty of the 

mean decreases with / N1 eff , even if the total number of sam-

ples N is the same for the three signals.

4. Experimental assessment

4.1. Turntable experiment

The �rst experimental validation has been conducted using a 

turntable with a diameter of 30 cm rotating at constant speed. 

A printed pattern with small particles (size of about 200 µm) 

is applied onto the turn table to simulate �ow tracer particles. 

Images were acquired with a PCO Dimax S4 camera (CMOS 

sensor, 2016  ×  2016 pixel resolution, 11 µm pixel pitch,  

12 bit, maximum 1279 frames per second at full resolu-

tion), see �gure  8(a). The camera mounted a Nikkor lens 

with 28 mm focal length and the f-number was set to 4.0. The 

camera was placed at about 1 m distance from the turntable, 

resulting in a magni�cation factor of 0.027. A diffusor was 

mounted between camera and lens to blur the image in order 

to suppress peak locking errors. The acquisition frequency is 

1 kHz with an area of interest of 980  ×  1080 pixels. The illu-

mination was provided by an LED light source. The rotational 

speed of the turntable was set to 37 rpm (0.61 Hz), yielding a 

uniform vorticity ω0  =  0.007 58 px/px. Since the exact vor-

ticity is known, the difference between measured and exact 

value yields the error of the vorticity. The latter quantity is 

compared with the uncertainty estimated by the linear propa-

gation (equation (42)).

The images were processed with the LaVision DaVis 8.2 

software, using 32  ×  32 pixels interrogation window and 

75% overlap factor. An instantaneous vorticity �eld with the 

velocity vectors is shown in �gure 8(b). The root-mean-square 

of the error of the x-displacement and the standard deviation 

of the error of the vorticity are shown in �gures 8(c) and (e), 

respectively: both errors are lower in the bottom part of the 

�eld of view and increase in the top part due to a reduction 

of the illumination intensity. The uncertainty of the meas-

ured displacement was quanti�ed via the correlation statistics 

approach (Wieneke 2015). It is veri�ed that the uncertainty 

Uv of the vertical displacement component (not shown here) 

is comparable with Uu. The uncertainty of the vorticity is 

retrieved from the displacement uncertainty via equation (42), 

using U  =  (Uu  +  Uv)/2 and ρ(2d )  =  0.45. Figures  8(d) and 

(f ) show the root-mean-square of the uncertainty of displace-

ment and vorticity, respectively: both results agree very well 

with the statistical true error (�gures 8(c) and (e)) and repro-

duce the increase of uncertainty from bottom to top of the �eld 

of view.

The measurements were repeated for different overlap 

factors (0%, 25%, 50% and 75%) and interrogation window 

sizes of 16  ×  16 and 32  ×  32 px. The uncertainty of the 

vorticity computed via equation (42) was averaged in space 

Figure 9. Comparison between true vorticity error and uncertainty 
propagation (UP) result. Root-mean-square in time over 200 
velocity �elds and space in the rectangular region x  ∈  [291; 594] 
px, y ∈ [732; 941] px.

Table 2. Parameters of the rectangular jet experiment.

Seeding Glycol-water droplets, 1 µm diameter

Illumination Photonics Industries DM40-527 laser

Recording device MS: LaVision HighSpeedStar 5 

CMOS camera

HDR: 2  ×  LaVision HighSpeedStar 6 

CMOS camera

Imaging MS: Nikon objective, f  =  105 mm, 

f#  =  4

HDR: Nikon objectives, f  =  105 mm, 

f#  =  5.6

Field of view MS: 69.3  ×  69.3 mm2

HDR: 22.8  ×  22.8 mm2

Acquisition frequency 10 000 Hz

Magni�cation factor MS: 0.126; HDR: 0.449

Number of images 8000
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and time over the entire set of 200 �elds and compared with 

the root-mean-square of the vorticity error. The results of 

the comparison are illustrated in �gure  9. The agreement 

between uncertainty propagation from equation  (42) and 

true uncertainty (stemming from the actual error of the vorti-

city) is very good. Figure 9 shows that the uncertainty of the 

vorticity increases with reducing the interrogation window 

size, because less information carriers are contained in a 

smaller window. Furthermore, the uncertainty increases 

with the overlap factor, because a smaller grid spacing d 

results in larger uncertainty of the vorticity according to 

equation (42). However, it is important to notice that high 

overlap factors lead to higher spatial resolution of the 

 vorticity �eld (smaller d ), thus in general to less trunca-

tion errors and higher peak vorticity levels at the expense 

of higher noise.

4.2. Turbulent �ow

The uncertainty propagation methodology is applied to two PIV 

measurements of a turbulent �ow. The �rst one is the rectan-

gular jet �ow described in Neal et al (2015). The peculiarity of 

the database is that two PIV measurement systems were used, 

namely the measurement system (MS) and the high-dynamic 

range system (HDR). The latter is composed by two cameras in 

stereoscopic con�guration and features a magni�cation factor 

larger by factor 3. Via comparison with hot-wire measurements, 

Neal et al (2015) showed that the HDR system yields more accu-

rate results by about factor 4 with respect to the MS. As a conse-

quence, the HDR velocity can be used as a reference to retrieve 

the error of the MS data. The parameters of the experiment 

are reported in table 2. The measurements were conducted at  

x/h  =  20, being x the streamwise direction and h the jet height, 

where the turbulent �ow is in the turbulent regime.

The MS images were processed with LaVision DaVis 8.2 

with 16  ×  16 pixels interrogation window with Gaussian 

window weighting and 75% overlap factor. For the HDR 

images, 48  ×  48 pixels interrogation windows with Gaussian 

weighting and 75% overlap factor were selected. Notice 

that, due to the difference in optical magni�cation factor, 

the  different interrogation windows yielded approximately 

the same spatial resolution for the two systems. The HDR 

velocity �elds were �nally mapped onto the MS coordi-

nate system. The time-average velocity �eld and the turbu-

lence intensity, de�ned as ( )/σ σ= +TI 2u v

2 2 , are shown in 

�gure 10: the turbulence intensity is about 12% of the time-

average velocity.

The second experiment is a PIV measurement over a cavity 

�ow. The experiment is conducted in the M-tunnel, a low-

speed open-jet open-return wind tunnel of the Aerodynamics 

Laboratories of TU Delft. The wind tunnel has a squared test 

section of 40  ×  40 cm2. The cavity model is made out of wood 

and has height H  =  2 cm and spanwise dimension W  =  40 cm. 

The length of the cavity is L  =  24 cm. The free-stream velocity 

is set to 5 m s−1, yielding a Reynolds number ReH  =  6500 

based on the cavity height. A series of 2000 uncorrelated image 

pairs are acquired at acquisition frequency facq  =  8.3 Hz.  

The �eld of view, which is 70  ×  55 mm2, is positioned 3 H 

downstream of the beginning of the cavity. The resulting mag-

ni�cation factor is 0.093. The parameters of the cavity �ow 

experiment are reported in table 3. A sketch of the cavity �ow 

Figure 10. Left: time-average velocity �eld. For sake of clarity, one every eight vectors is shown in the horizontal direction, one every two 
in the vertical direction. Right: turbulence intensity.

Table 3. Parameters of the cavity �ow experiment.

Seeding Glycol-water droplets, 1 µm diameter

Illumination Quantel Evergreen Nd:YAG Laser  

(200 mJ @ 15 Hz)

Recording device LaVision Imager LX 2MPx

Imaging f  =  75 mm, f#  =  3.9

Field of view 70  ×  55 mm2

Acquisition frequency 8.33 Hz

Magni�cation factor 0.093

Number of images 2000
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experiment is shown in �gure 11. Further details of the experi-

ment are reported in Iannetta et al (2016).

4.2.1. Uncertainty of the vorticity. To assess the uncertainty 

of the vorticity, the rectangular jet data are used. The velocity 

time series is extracted at a point P  =  (398, 246) as shown 

in �gure 10. Figure 12 shows a portion of the time series for 

a time interval of 10 ms. The comparison between MS and 

HDR data on the entire time series yields the error for the 

MS reported in table  4. It is noticed that: (a) the two error 

components δu and δv have comparable magnitude; (b) the 

random component of the error (error standard deviation) is 

signi�cantly larger than the mean bias component.

The vorticity is computed with the central-difference 

scheme of equation (40), with grid spacing d  =  4 px. The vor-

ticity time series for the �rst 10 ms is shown in �gure 13. Both 

HDR and MS yield the same peak vorticity (ωmax  =  – 0.15 px/

px at t  =  2.2 ms), which con�rms that the two systems have 

the same spatial resolution. The vorticity error δω is computed 

as the difference between MS and HDR vorticity. The results 

of table 4 show that the random error dominates over the mean 

bias error.

Figure 11. Sketch of the cavity �ow experiment.

Figure 12. Longitudinal (left) and transverse (right) velocity time series at point P.

Table 4. Actual error and estimated uncertainty at P.

Mean  
error

Error 
standard 
deviation

Error  
root-mean-
square (rms)

Uncertainty 
rms

u-component 

(px)

–0.005 0.060 0.060 0.063

v-component 

(px)

–0.021 0.060 0.063 0.064

Vorticity  

(px/px)

0.0008 0.0104 0.0104 0.0116

Figure 13. Comparison between MS and HDR vorticity time series 
at P.
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The uncertainty at P is evaluated with the correlation statis-

tics method (Wieneke 2015). Uncertainty propagation is done 

according to equation (42) using d  =  4 px, U  =  (Uu  +  Uv)/2 

and ρ(2d )  =  0.45. The root-mean-square of the uncertainty 

is equal to Uu,rms  =  0.063 px and Uv,rms  =  0.064 px, which 

agrees very well with the error root-mean-square of 0.060 and 

0.063, respectively. The calculation is repeated in the entire 

measurement domain in common between HDR and MS. 

The contours of �gure 14 illustrate the comparison between 

the rms of the error and the uncertainty of the vorticity. Both 

uncertainty and error exhibit small variations within the con-

sidered domain, with values between 0.010 and 0.016 px/px. 

Again, the agreement between estimated uncertainty and error 

is very good.

4.2.2. Uncertainty of statistical quantities. The time-resolved 

jet data are not suited for statistical analysis because the low 

effective number of independent samples (Neff  =243, despite 

the total number of samples is N  =  8000) does not guarantee 

the statistical convergence of the results. Hence, to assess the 

uncertainty of statistical �ow properties, the cavity �ow data 

are used, where 2000 statistically independent velocity �eld 

are available.

Velocity data are extracted at a point P located close to 

the reattachment point; the turbulence intensity in P is equal 

to 22.0% of the free-stream velocity. The entire set of 2000 

samples is divided into 100 independent subsets composed 

by 20 samples each. The statistical �ow properties, namely 

time averages and Reynolds stresses, are computed from 

the subsets and compared with the value obtained with the 

entire set. Figure  15(left) shows the comparison between 

the time-averaged vertical velocity computed with the sub-

sets of 20 samples and that evaluated from the entire set 

of 2000 samples. The uncertainty bars are evaluated with 

equation  (15) and correspond to a theoretical con�dence 

level of 68%. In most of the cases the results agree within 

the uncertainty of the measured mean velocity. To assess 

the accuracy of the uncertainty propagation formulae, the 

uncertainty coverage for different statistical quantities is 

computed and displayed in �gure 15(right). The uncertainty 

Figure 14. Comparison between root-mean-square of the vorticity error (left) and root-mean-square of the estimated vorticity uncertainty 
(right).

Figure 15. Left: comparison between time-averaged vertical velocity obtained with the subsets of 20 samples and that computed with 
the entire set of 2000 samples. For sake of clarity, only the �rst 20 subsets (out of 100) are shown. The uncertainty bars are evaluated at 
68% con�dence level with the corresponding uncertainty propagation formula. The uncertainty of the reference value is displayed with a 
dashed black line. Right: uncertainty coverage for different statistical quantities. The theoretical uncertainty coverage for Gaussian error 
distribution is 68%.
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coverage is de�ned as the number of samples for which 

the error is smaller than or equal to the estimated uncer-

tainty. In case of Gaussian error distribution, the theor-

etical uncertainty coverage is about 68%. The results of 

�gure 15(right) show the accuracy of the uncertainty prop-

agation methodology: the uncertainty of the time-averaged 

quantities (u and v) is accurate within 5%, whereas that of 

the Reynolds stresses is accurate within 10%.

The effect of the number of samples on the accuracy of 

the statistical results is shown in �gure 16. It is evident that 

the random uncertainty of the mean (�gure 16(a)) is ini-

tially large and decreases with increasing sample size. In the 

entire range of sample sizes considered, the reference mean 

velocity is within the uncertainty bounds estimated with 

equation (15). Similarly, the normal Reynolds stress Rvv conv-

erges to the reference value with rate / N1  (�gure 16(b)).  

For low sample size (N  <  250), the measured Rvv over-

estimates the reference value due to the effect of spu-

rious �uctuations by about 10%. A corrected value of Rvv 

is computed by subtracting the mean-square �uctuation:  

Rvv,corr  =  Rvv–U rms

2 . The uncertainty of uncorrected and 

corrected Rvv is computed via equations  (18) and (23), 

respectively. The two uncertainties are the same within 1%, 

meaning that the uncertainty of Rvv is mainly due to sta-

tistical conv ergence rather than to the measurement uncer-

tainty of u and v. For a correction of less than 1%, one 

would need at least 20 000 independent samples according 

to equation  (24) before the uncertainty of the Reynolds 

stress decreases to the same level as the correction term 

U rms

2 . But a correction is nevertheless useful for low levels 

of Reynolds stress comparable to the uncertainties.

The Reynolds shear stress Ruv is illustrated in �gure 16(c). 

To compute the uncertainty URuv, the cross-correlation coef-

�cient between u and v is calculated: ρuv  =  0.41. The meas-

ured Ruv converges to the reference value with rate / N1 .  

As the estimated uncertainty, also the measurement error (dif-

ference between measured and reference value) decreases 

with increasing the sample size.

Figure 16. (a) Convergence of the mean vertical velocity as a function of the sample size. (b) Convergence of the Reynolds normal stress 
as a function of the sample size. (c) Convergence of the Reynolds shear stress as a function of the sample size. In all plots, the uncertainty 
bars are evaluated at 68% con�dence level with the corresponding uncertainty propagation formula. The uncertainty of the reference value 
is displayed with a dashed black line.
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5. Conclusions

The present study proposes a mathematical framework for the 

propagation of the instantaneous measurement uncertainty 

to derived quantities of interest, either instantaneous (e.g. 

velocity derivatives, vorticity, divergence) or statistical (mean, 

Reynolds stresses, TKE). The framework relies upon the use 

of linear error propagation.

For statistical quantities, the uncertainty is typically domi-

nated by random errors due to the �nite sample size. The 

uncertainty decreases with / N1 eff , being Neff the effective 

number of independent samples. It is noticed that, in many 

PIV experiments conducted in continuous rate mode, Neff may 

be signi�cantly lower than the total number of samples N, thus 

yielding an uncertainty of statistical quantities larger than that 

obtained when the samples are statistically independent. The 

quanti�cation of the uncertainty of statistical quantities does 

not require the knowledge of the uncertainty of the instanta-

neous velocity �elds. Nevertheless, the instantaneous uncer-

tainty allows correcting the normal Reynolds stress for the 

spurious �uctuations due to random errors. In fact, in absence 

of systematic errors due to peak locking or spatial modula-

tion, the random errors have the effect to increase the meas-

ured normal Reynolds stress with respect to the actual one. 

The uncertainty of velocity spatial derivatives (e.g. vorticity 

and divergence) depends upon the spatial correlation of the 

measurement error along x- and y-directions. The latter is 

related to the measurement spatial resolution, which can be 

evaluated from the sum of the error spatial auto-correlation 

values. Although the error correlation is typically unknown 

in an experiment, it can be estimated a priori by Monte Carlo 

simulations for a given set of PIV processing parameters.

The proposed uncertainty propagation methodology is 

assessed via both Monte Carlo simulations and experiments. 

The Monte Carlo simulations showed the accuracy of the esti-

mated uncertainty for varying testing conditions (sample size, 

signal variance, error correlation) under the assumption of 

Gaussian error distribution of the velocity. In the experimental 

assessment, the reference velocity is either known (turn-

table experiment) or estimated with an auxiliary PIV system 

 featuring a higher dynamic range (turbulent �ow experiment), 

as done in Neal et al (2015), or evaluated with a much larger 

sample size for statistical convergence. From the experimental 

assessment, three main conclusions can be drawn:

 i. When the spatial correlation of the error is correctly taken 

into account, the uncertainty of the vorticity is estimated 

typically within 5–10% accuracy.

 ii. When the actual �ow �uctuations are larger than the 

instantaneous uncertainties, the uncertainty of statistical 

quantities is dominated by the �nite sample size rather 

than the random instantaneous uncertainties.

 iii. the uncertainty of the time-averaged quantities (u and 

v) is accurate within 5%, whereas that of the Reynolds 

stresses is accurate within 10%.
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