
An audio-mixing

artist usually adds

the musical

accompaniment to

video. Employing

such artists is

expensive and not

feasible for a home

video presentation.

Our automatic

audio–video mixing

technique is suited

for home videos. It

uses a pivot vector

space mapping

method that

matches video shots

with music segments

based on aesthetic

cinematographic

heuristics.

A
udio mixing is an important aspect

of cinematography. Most videos

such as movies and sitcoms have

several segments devoid of any

speech. Adding carefully chosen music to such

segments conveys emotions such as joy, tension,

or melancholy. It also acts as a mechanism to

bridge scenes and can add to the heightened

sense of excitement in a car chase or reflect the

somber mood of a tragic situation. In a typical

professional video production, skilled audio-

mixing artists aesthetically add appropriate audio

to the given video shots. This process is tedious,

time-consuming, and expensive. 

With the rapid proliferation in the use of digi-

tal video camcorders, amateur video enthusiasts

are producing a huge amount of home video

footage. Many home video users would like to

make their videos appear like professional produc-

tions before they share it with family and friends.

To meet this demand, companies such as Muvee

Technologies (http://www.muvee.com) produce

software tools to give home videos a professional

look. Our work is motivated by similar goals.

The software tool available from Muvee lets a

user choose a video segment, audio clip, and

mixing style (for example, music video or slow

romantic). The Muvee software automatically

sets the chosen video to the given audio clip

incorporating special effects like gradual transi-

tions, the type of which depends on the chosen

style. If a user chooses an appropriate audio and

style for the video, the result is indeed impres-

sive. However, a typical home video user would

lack the high skill level of a professional audio

mixer needed to choose the right audio clip for a

given video. It’s quite possible to choose an

inappropriate audio clip (say the one with a fast

tempo) for a video clip (one that’s slow with

hardly any motion). The result in such a case

would certainly be less than desirable.

Our aim is to approximately simulate the

decision-making process of a professional audio

mixer by employing the implicit aesthetic rules

that professionals use. We have developed a

novel technique that automatically picks the

best audio clip (from the available database) to

mix with a given video shot. Our technique uses

a pivot vector space mixing framework to incor-

porate the artistic heuristics for mixing audio

with video. These artistic heuristics use high-

level perceptual descriptors of audio and video

characteristics. Low-level signal processing tech-

niques compute these descriptors. Our tech-

nique’s experimental results appear highly

promising despite the fact that we have current-

ly developed computational procedures for only

a subset of the entire suite of perceptual features

available for mixing. Many open issues in the

area of audio and video mixing exist and some

possible problems in computational media aes-

thetics
1

need future work.

Aesthetic aspects

We initially tackled the problem of mixing

music and moving images together by searching

the existing artistic literature related to movies

and cinematography. According to Andrew,
2

movies comprise images (still or moving); graph-

ic traces (texts and signs); recorded speech,

music, and noises; and sound effects. Prince

highlights Aaron Copland’s categorization of dif-

ferent roles of music in movies:
3

❚ setting the scene (create atmosphere of time

and place),

❚ adding emotional meaning,

❚ serving as a background filler,
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❚ creating continuity across shots or scenes, and

❚ emphasizing climaxes (alert the viewer to cli-

maxes and emotional points of scenes).

The links between music and moving images

are extremely important, and the juxtaposition

of such elements must be carried out according

to some aesthetic rules. Zettl
4

explicitly defined

such rules in the form of a table, presenting the

features of moving images that match the fea-

tures of music. Zettl based these proposed mix-

ing rules on the following aspects: tonal

matching (related to the emotional meaning

defined by Copland), structural matching (relat-

ed to emotional meaning and emphasizing cli-

maxes defined by Copland), thematic matching

(related to setting the scene as defined by

Copland), and historical-geographical matching

(related to setting the scene as defined by

Copland). In Table 1, we summarize the work of

Zettl by presenting aesthetic features that corre-

spond in video and music. For instance, in the

third row of Table 1, the light falloff video feature

relates to the dynamics musical feature. The table

also indicates extractable features (because many

video and audio features defined by Zettl are

high-level perceptual features and can’t be

extracted by the state of the art in computation-

al media aesthetics), as well as we present the fea-

tures that we use in our work. 

Video aesthetic features

Table 1 shows, from the cinematic point of

view, a set of attributed features (such as color and

motion) required to describe videos. The compu-

tations for extracting aesthetic attributed features

from low-level video features occur at the video

shot granularity. Because some attributed features

are based on still images (such as high light

falloff), we compute them on the key frame of a

video shot. We try to optimize the trade-off in

accuracy and computational efficiency among the

competing extraction methods. Also, even though

we assume that the videos considered come in the

MPEG format (widely used by several home video

camcorders), the features exist independently of a

particular representation format.
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Table 1. Corresponding pairs of video and audio aesthetic features.

Video Feature Extractable/Used Audio Feature Extractable/Used

Light type No/no Rhythm Yes/no

Light mode Yes/no Key No/no

Light falloff Yes/yes Dynamics Yes/yes

Color energy Yes/yes Dynamics Yes/yes

Color hue Yes/yes Pitch Yes/yes

Color saturation Yes/yes Timbre No/no

Color brightness Yes/yes Dynamics Yes/yes

Space screen size No/no Dynamics Yes/yes

Space graphic weight No/no Chords and beat No/no

Space general shape No/no Sound shape No/no

Object in frame No/no Chord tension No/no

Space texture Yes/no Chords No/no

Space field density/frame No/no Harmonic density No/no

Space field density/period No/no Melodic density No/no

Space field complexity/frames No/no Melodic density No/no

Space graphic vectors No/no Melodic line No/no

Space index vectors No/no Melodic progression No/no

Space principal vector Yes/no Sound vector orientation No/no

Motion vectors Yes/yes Tempo Yes/yes

Zooms Yes/no Dynamics Yes/yes

Vector continuity Yes/no Melodic progression No/no

Transitions Yes/no Modulation change No/no

Rhythm No/no Sound rhythm No/no

Energy vector magnitude No/no Dynamics Yes/yes

Vector field energy Yes/no Sound vector energy No/no



Light falloff

Light falloff refers to the brightness contrast

between the light and shadow sides of an object

and the rate of change from light to shadow. If

the brightness contrast between the lighted side

of an object and the attached shadow is high, the

frame has fast falloff. This means the illuminat-

ed side is relatively bright and the attached shad-

ow is quite dense and dark. If the contrast is low,

the resulting falloff is considered slow. No falloff

(or extremely low falloff) means that the object

is lighted equally on all sides. 

To compute light falloff, we need a coarse back-

ground and foreground classification and extrac-

tion of the object edges. We adapt a simplified

version of the algorithm in Wang et al.
5

that

detects the focused objects in a frame using mul-

tiresolution wavelet frequency analysis and statis-

tical methods. In a frame, the focused objects (in

home video, this often means humans) have more

details within the object than the out-of-focus

background. As a result, the focused object regions

have a larger fraction of high-valued wavelet coef-

ficients in the high frequency bands of the trans-

form. We partition a reference frame of a shot into

blocks and classify each block as background or

foreground. The variance of wavelet coefficients

in the high-frequency bands distinguishes back-

ground and foreground. The boundary of the

background-foreground blocks provides the first

approximation of the object boundary.

The second step involves refining this bound-

ary through a multiscale approach. We perform

successive refinements at every scale
5

to obtain

the pixel-level boundary. After removing the

small isolated regions and smoothing the edge,

we calculate the contrast along the edge and lin-

early quantize the values. The falloff edge often

has the highest contrast along the edge, so we

select the average value in the highest bin as the

value of light falloff in this frame. 

Color features

The color features extracted from a video shot

consist of four features: saturation, hue, bright-

ness, and energy. The computation process is

similar for the first three as follows:

1. Compute the color histogram features on the

frames, set of intraframes: if we use the hue,

saturation, and intensity (HSI) color space,

the three histograms histH, histS, and

histBrightness(B) are respectively based on the H, S,

and I components of the colors. We then

obtain the dominant saturation, hue, and

brightness in a shot.

2. Choose the feature values VH, VS, and VB that

correspond respectively to the dominant bin

of each of histH, histS, and histB. All these

value are normalized in [0, 1].

The values VH, VS, and VB define a shot’s hue, sat-

uration, and brightness. The aesthetic color ener-

gy feature relates to the brightness, saturation,

and hue features and is defined as (VH + VS +
VB)/3, which scales to the range [0, 1].

Motion vectors

To measure the video segments’ motion inten-

sity, we use descriptors from Pecker, Divakaran,

and Papathomas.
6

They describe a set of auto-

matically extractable descriptors of motion activ-

ities, which are computed from the MPEG motion

vectors and can capture the intensity of a video

shot’s motion activity. Here we use the max2

descriptor, which discards 10 percent of the

motion vectors to filter out spurious vectors or

very small objects. We selected this descriptor for

two reasons: The extraction of motion vectors

from MPEG-1 and -2 compressed video streams is

fast and efficient. Second, home videos normally

have moderate motion intensity and are shot by

amateur users who introduce high tilt up and

down so that camera motion isn’t stable. So, if we

use the average descriptors, the camera motion’s

influence will be high. If we use the mean descrip-

tor, the value will be close to zero, which will fail

to capture the object’s movement. Interestingly,

max2 is also the best performing descriptor. 

Aesthetic attributed feature formation

The descriptions discussed previously focus on

features extraction, not on the attributed feature

definitions. However, we can determine such

attributed features. We collected a set of 30 video

shots from two different sources: movies and

home videos. We used this data set as the train-

ing set. A professional video expert manually

annotated each shot from this training set,

ascribing the label high, medium, or low for each

of the aesthetic features from Table 1. Next, we

obtained the mean and standard deviation of the

assumed Gaussian probability distribution for the

feature value of each label. We subsequently used

these values, listed in Table 2, for estimating the

confidence level of the attributed feature for any

test shot. 
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Audio aesthetic features

Music perception is an extremely complex

psycho-acoustical phenomenon that isn’t well

understood. So, instead of directly extracting the

music’s perceptual features, we can use the low-

level signal features of audio clips, which can pro-

vide clues on how to estimate numerous

perceptual features. In general, we found that per-

ceptual label extraction for audio clips is a diffi-

cult problem and much more research is needed.

Low-level features

We describe here the required basic features

that are extracted from an audio excerpt.

Spectral centroid (brightness). The spectral

centroid is commonly associated with the mea-

sure of a sound’s brightness. We obtain this mea-

sure by evaluating the center of gravity using the

frequency and magnitude information of Fourier

transforms. The individual centroid C(n) of a

spectral frame is the average frequency weighted

by the amplitude, divided by the sum of the

amplitude:
7-9

where Fn(ω) represents the short-time Fourier

transform of the nth frame, and the spectral

frame is the number of samples that equals the

size of the fast Fourier transform.

Zero crossing. In the context of discrete-time

signals, a zero crossing is said to occur if two suc-

cessive samples have opposite signs. The rate at

which zero crossings occur is a simple measure of

the frequency content of the signal. This is par-

ticularly true of the narrowband signals. Because

audio signals might include both narrowband

and broadband signals, the interpretation of the

average zero-crossing rate is less precise.

However, we can still obtain rough estimates of

the spectral properties using a representation on

the short-time average zero-crossing rate, as

defined below:

ZCR = sgn[s(m)] 

− sgn[s(m − 1)]w(m)

where, sgn(x) = {1 if x ≥ 0, and −1 if x ≤ 0,

and w(m) = {0.5(1 − cos(2π )) 

if 0 < m < N − 1, 

and 0 otherwise

Note that w(m) is the Hamming window, s(n) is

the audio signal, and N is the frame length.

Volume (loudness). The volume distribution

of audio clips reveals the signal magnitude’s tem-

poral variation. It represents the subjective mea-

sure, which depends on the human listener’s

frequency response. Normally volume is approx-

imated by the root mean square value of the sig-

nal magnitude within each frame. Specifically,
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Table 2. The mean and variance for the video and audio attributed features.

Video Feature Attribute m s Audio Feature Attribute m s

Light falloff High 0.3528 0.1323 Dynamics High 0.7513 0.0703

Medium 0.1367 0.0265 Medium 0.5551 0.0579

Low 0.0682 0.0173 Low 0.3258 0.0859

Color energy High 0.6515 0.1026 Dynamics High 0.7513 0.0703

Medium 0.4014 0.0819 Medium 0.5551 0.0579

Low 0.1725 0.7461 Low 0.3258 0.0859

Color hue High 0.7604 0.0854 Pitch High 0.4650 0.0304

Medium 0.552 0.0831 Medium 0.3615 0.0398

Low 0.1715 0.1005 Low 0.0606 0.0579

Color brightness High 0.8137 0.0954 Dynamics High 0.7513 0.0703

Medium 0.4825 0.1068 Medium 0.5551 0.0579

Low 0.2898 0.0781 Low 0.3258 0.0859

Motion vector High 0.6686 0.0510 Tempo High 0.808 0.1438

Medium 0.4683 0.0762 Medium 0.3873 0.0192

Low 0.2218 0.0361 Low 0.0623 0.0541



we calculate frame n’s volume by

where Sn(i) is the ith sample in the nth frame of

the audio signal, and N is the frame length. To

measure the temporal variation of the audio clip’s

volume, we define two time domain measures

based on the volume distribution. The first is the

volume standard deviation over a clip, normal-

ized by the maximum volume in the clip. The sec-

ond is the volume dynamic range, given by

Perceptual features extraction

We can relate the low-level audio features

described previously with Table 1’s perceptual

labels required for our matching framework.

Dynamics. Dynamics refers to the volume of

musical sound related to the music’s loudness or

softness, which is always a relative indication,

dependent on the context. Using only the audio

signal’s volume features isn’t sufficient to capture

music clip dynamics because an audio signal

could have a high volume but low dynamics.

Thus, we should incorporate the spectral cen-

troid, zero crossings, and volume of each frame

to evaluate the audio signal’s dynamics. We use

a preset threshold (which we empirically choose

using a training data set) for each feature to

decide whether the audio clips’ dynamics is high,

medium, or low.

Tempo features. One of the most important

features that makes the music flow unique and

differentiates it from the other types of audio sig-

nal is temporal organization (beat rate). Humans

perceive musical temporal flow as a rhythm relat-

ed to the flow of music with the time. One aspect

of rhythm is the beat rate, which refers to a per-

ceived pulse marking off equal duration units.
10

This pulse is felt more strongly in some music

pieces than others, but it’s almost always present.

When we listen to music, we feel the regular rep-

etition of these beats and try to synchronize our

feelings to what we hear by tapping our feet or

hands. In fact, using certain kinds of instruments

like bass drums and bass guitars synchronizes the

rhythm flow in music. 

Extracting rhythmic information from raw

sound samples is difficult. This is because there’s

no ground truth for the rhythm in the simple mea-

surement of an acoustic signal. The only basis is

what human listeners perceive as the rhythmical

aspects of the musical content of that signal.

Several studies have focused on extracting the

rhythmic information from the digital music rep-

resentations such as the musical instrument digi-

tal interface (MIDI), or with reference to a music

score.
11

Neither of these approaches is suited for

analyzing raw audio data. For the purpose of our

analysis, we adopted the algorithm proposed by

Tzanetakis.
12

This technique decomposes the audio

input signal into five bands (11 to 5.5, 5.5 to 2.25,

2.25 to 1.25, 1.25 to 0.562, and 0.562 to 0.281

KHz) using the discrete wavelet transform (DWT),

with each band representing a one-octave range.

Following this decomposition, the time domain

envelope of each band is extracted separately by

applying full wave rectification, low pass filtering,

and down sampling to each band. The envelope of

each band is then summed together and an auto-

correlation function is computed. The peaks of the

autocorrelation function correspond to the various

periodicities of the signal envelope. The output of

this algorithm lets us extract several interesting fea-

tures from a music sample. We use DWT together

with an envelope extraction technique and auto-

correlation to construct a beat histogram. The set

of features based on the beat histogram—which

represents the tempo of musical clips—includes

❚ relative amplitudes of the first and second

peaks and their corresponding periods,

❚ ratio of the amplitude between the second

peak divided by the amplitude of the first

peak, and

❚ overall sum of the histogram (providing an

indication of overall beat strength).

We can use the amplitude and periodicity of

the most prominent peak as a music tempo fea-

ture. The periodicity of the highest peak, repre-

senting the number of beats per minute, is a

measure of the audio clips’ tempo. We normal-

ized the tempo to scale in the range [0, 1]. From

the manual preclassification of all audio clips in

the database and extensive experiments, we real-

ized a set of empirical thresholds to classify

whether the audio clips have a high, medium, or

low tempo.
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Perceptual pitch feature. Pitch perception

plays an important role in human hearing, and

the auditory system apparently assigns a pitch to

anything that comes to its attention.
13

The seem-

ingly easy concept of pitch in practice is fairly

complex. This is because pitch exists as an acoustic

property (repetition rate), as a psychological per-

cept (perceived pitch), and also as an abstract sym-

bolic entity related to interval and keys.

The existing computational multipitch algo-

rithms are clearly inferior to the human auditory

system in accuracy and flexibility. Researchers

have proposed many approaches to simulate

human perception. These generally follow one of

two paradigms: place (frequency) theory or tim-

ing periodicity theory. In our approach, we don’t

look for accurate pitch measurement; instead we

only want to approximate whether the level of

the polyphonic music’s multipitch is high, medi-

um, or low. This feature’s measurement has a

highly subjective interpretation and there’s no

standard scale to define the pitch’s highness. For

this purpose, we follow the simplified model for

multipitch analysis proposed in Tero and Matti.
14

In this approach, prefiltering preprocesses the

audio signal to simulate the equal loudness curve

sensitivity of the human ear and warping simu-

lates the adaptation in the hair cell models. The

frequency of the preprocessed audio signal is

decomposed into two channels. The autocorrela-

tion directly analyzes the low frequencies (below

1 KHz) channel, while a half-wave rectifier first

rectifies the high frequencies (above 1 KHz) chan-

nels and then passes through a low pass filter.

Next, we compute the autocorrelation of each

band in a frequency domain by using the discrete

Fourier transform as corr(τ) = IDFT{DFT{s(τ)}2
}.

The sum of the two channel’s autocorrelation

functions represents the summary of autocorrela-

tion functions (SACF). The peaks of SACF denote

the potential pitch periods in the analyzed signal.

However, the SACF include redundant and spuri-

ous information, making it difficult to estimate

the true pitch peaks. A peak enhancement tech-

nique can add more selectivity by pruning the

redundant and spurious peaks. At this stage, the

peak locations and their intensity estimate all

possible periodicities in the autocorrelation func-

tion. However, to obtain more robust pitch esti-

mation, we should combine evidence at all

subharmonics of each pitch. We achieve this by

accumulating the most prominent peaks and

their corresponding periodicities in a folded his-

togram over a 2,088-sample window size at a

22,050-Hz sampling rate, with a hop window size

of 512 samples. In the folded histogram, all notes

are transposed into a single octave (array of size

12) and mapped to a circle of fifths, so that the

adjacent bins are spaced a fifth apart, rather than

in semitones. Once the pitch histogram for an

audio file is extracted, it’s transformed to a single

feature vector consisting of the following values:

❚ bin number of maximum peaks of the his-

togram, corresponding to the main pitch class

of the musical piece;

❚ amplitude of the maximum peaks; and

❚ interval between the two highest peaks.

The amplitude of the most prominent peak

and its periodicity, can roughly indicate whether

the pitch is high, medium, or low. To extract the

pitch level, we use a set of empirical threshold

values and the same procedures as for tempo fea-

tures extraction.

Audio aesthetic attributed feature formation

We collected a set of music clips from differ-

ent music CDs, each with several music styles.

Our data set contained 50 samples (each music

excerpt is 30 seconds long). In our experiments,

we sampled the audio signal 22 KHz and divided

it into frames containing 512 samples each. We

computed the clip-level features based on the

frame-level features. To compute each audio

clip’s perceptual features (dynamics, tempo, and

pitch as mentioned previously), a music expert

analyzes the audio database and defines the high,

medium, and low attributes for each feature, in a

similar manner as with video shots. We eventu-

ally obtain the mean and variance of the

Gaussian probability distribution to estimate the

confidence level of the ternary labels for any

given music clip. Table 2 lists the mean and vari-

ance parameters for each feature.

Pivot representation

We aim to define a vector space P that serves

as a pivot between the video and audio aesthet-

ics representations. This space is independent of

any media, and the dimensions represent the aes-

thetic characteristics of a particular media. Pivot

space P is a space on IR
p

and is defined with the

p set of aesthetic features in which the music and

videos are mapped. The initial spaces V (for

video) and M (for music) are respectively spaces
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on IR
v
and IR

m
, with v being the number of tuples

(video feature, description) extracted for the

video, and m the number of tuples (audio feature,

description) extracted for the music excerpts.

Media representation of base vector spaces V

and M

Once we define the aesthetic features, we con-

sider how to represent video and audio clips into

their aesthetic spaces V or M. In the two spaces, a

dimension corresponds to an attributed feature.

Instances of such attributed features for video

data include brightness_high, brightness_low,

and so on. One video shot is associated with one

vector in the V space. Obtaining the values for

each dimension resembles handling fuzzy lin-

guistic variables, with the aesthetic feature play-

ing the role of a linguistic variable and the

attribute descriptor acting as a linguistic value,
15

as presented in Figure 1. In this figure, we repre-

sent sharp boundaries between fuzzy member-

ship functions in a manner that removes

correlation between them. The x-axis refers to the

actual computed feature value and the y-axis

simultaneously indicates the aesthetic label and

the confidence value. Figure 1 shows an attrib-

uted feature value a, which has the medium label

with a fuzzy membership value of 0.3.

Using a training collection for each linguistic

value obtains the membership function. As

described previously, we assume that each attrib-

uted feature follows a Gaussian probability distri-

bution function, that is, we compute the mean

µ_ij and standard deviation σ_ij on the samples so

the probability density function fµ_ij, σ_ij(x) becomes

available for each aesthetic feature i and attribute

j in (low, medium, high). We next translate each

Gaussian representation into a fuzzy membership

function, which can compute labels for the video

or musical parts. Because we consider three kinds

of attributes for each feature—namely high, medi-

um, and low—one membership function repre-

sents each attribute, as shown in Figure 1. The fol-

lowing steps define the membership functions for

M
ij

for each aesthetic feature i and attribute j in

(low, medium, high): 

1. Thresholding the Gaussian distributions to

ensure that the membership function fits into

the interval [0, 1].

2. Forcing the membership function for the low

attributes to remain constant and equal to the

minimum of 1 and the maximum of the

Gaussian function for values smaller than the

mean µ. 

3. Forcing the membership function for the

high attributes to remain constant and equal

to the minimum of 1, and the maximum of

the Gaussian function for values greater than

the mean µ.

4. Removing cross correlation by defining strict

separation between the fuzzy membership

functions of the different attributes for the

same feature.

Formally, the membership functions M
i Small

defined for the linguistic values that correspond

to low attributes is M
i Small

(x) = min(1, fµ_iSmall,

σ_iSmall(µ)) for x ∈ [0, µ]; min(1, fµ_iSmall, σ_iSmall(x)) for x

∈ ]µ, y], y so that fµ_iSmall, σ_iSmall(y) = fµ_iMedium, σ_iMedium(y);

and 0 otherwise. We assume for M
i Small

that no

negative values occur for the base variable.

The membership function M
i Medium

for attrib-

utes corresponding to medium is defined as M
i

Medium
(x) = min(1, fµ_iMedium, σ_iMedium(x)) for x ∈ ]y, µ],

y so that fµ_iSmall, σ_iSmall(y) = fµ_iMedium, σ_iMedium(y); min(1,

fµ_iMedium, σ_iMedium(x)) for x ∈ [µ, z], z so that fµ_iMedium,

σ_iMedium(z) = fµ_iHigh, σ_iHigh(z); and 0 otherwise.

For the attribute that corresponds to high, the

membership function M
iHigh

is M
iHigh

(x) = min(1,

fµ_iHigh, σ_iHigh(x)) for x ∈ ]y, µ], y so that fµ_iMedium,

σ_iMedium(y) = fµ_iHigh, σ_iHigh(y); min(1, fµ_iHigh, σ_iHigh(µ))

for x ≥ µ; and 0 otherwise.

So, for each feature i (in the video or music

space), we compute the M
i Low

, M
i Medium

, or M
i High

fuzzy membership functions using the previous

equations. We then express the values obtained

after a video shot or music excerpt analysis in the

aesthetic space using the linguistic membership

function value. So the dimension space v (respec-

tively m) of V (respectively M) equals three times

the number of video (respectively music) aes-

thetic features.
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We represent one video shot as a point Si in the

space V. Each of the coordinates si,j of Si is in [0,1],

with values close to 0 indicating that the corre-

sponding aesthetic attributed feature doesn’t prop-

erly describe Shoti, and values close to 1 indicating

that the corresponding aesthetic attributed feature

well describes Shoti. Similar remarks hold for the

music excerpts represented as Ek in the space M.

Table 2 presents the mean and variance obtained

for each attributed feature that we used.

Pivot space mapping

The mapping going from the IR
v
(respectively

IR
m

) to the IR
p
space is provided by a p × v (respec-

tively p × m) matrix Tv (respectively Tm) that

expresses a rotation or projection. Rotation

allows the mapping of features from one space to

another. Several features of the IR
v

space might

be projected in one feature of IR
p
; it’s also possi-

ble that one feature of IR
v

might be projected

onto several features of IR
p
. The mapping is sin-

gle stochastic, implying that the sum of each col-

umn of Tv and Tm equals 1. This ensures that the

coordinate values in the pivot space still fall in

the interval [0, 1] and can be considered fuzzy

values. The advantage of the mapping described

here is that it’s incremental. This is because if we

can extract new video features, the modification

of the transformation matrix Tv preserves all the

existing mapping of music parts. We directly

extrapolated the transformation matrices Tv and

Tm from Table 1 and define links between video-

and music-attributed aesthetic features and

pivot-attributed aesthetic features. Figure 2 shows

the mapping process.

The fundamental role of the pivot space is

allowing the comparison between video- and

music-attributed aesthetic features. We compute

the compatibility between the music described

with V1 and the music described as M1 as the rec-

iprocal of the Euclidian distance between V′1 and

M′1. For instance, the cosine measure (as used in

vector space textual information retrieval
16

) isn’t

adequate because we don’t seek similar profiles in

terms of vector direction, but on the distance

between vectors. The use of Euclidean distance is

meaningful; when the membership values for one

video shot and one music excerpt are close for the

same attributed feature, then the two media parts

are similar on this dimension, and when the val-

ues are dissimilar, then the attributed feature for

the media are different. Euclidean distance holds

here also because we assume independence

between the dimensions.

In our work, the dimension p is 9, because we

assign one dimension of P for the three attributes

high, medium, and low related to the following:

❚ Dynamics (related to light falloff, color energy,

and color brightness for video and dynamics for

music). Without any additional knowledge, we

only assume that each of the attributed features

of dynamics in the pivot space are equally based

on the corresponding attributed video features.

For instance, the high dynamics dimension in

P comprises one-third each of the high light

falloff, color energy, and color brightness.

❚ Motion (related to motion vectors of video

and tempo of music).

❚ Pitch (related to the color hue of video and

pitch of music).

In the following, we’ll represent a music excerpt

or a video shot in the pivot space using a 9-

dimensional vector corresponding respectively to

the following attributed features: low_dynamics,

medium_dynamics, high_dynamics, low_motion,

medium_motion, high_motion, low_pitch,

medium_pitch, and high_pitch.

We now illustrate the mapping with one

example taken from the file LGERCA_LISA_1.mpg

that belongs to the MPEG-7 test collection. The

selected shot, namely L01_39, is between the

frame 22025 and 22940. Table 3 (next page) pre-

sents the extracted features and the mapping into
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the video space. Table 4 shows the mapping into

the pivot space.

Media sequence matching

From a retrieval point of view, the approach

presented in the previous section provides a rank-

ing of each music excerpt for each video shot and

vice versa, by computing the Euclidean distances

between their representatives in the pivot space.

However, our aim is to find the optimal set of

music excerpts for a given video where the com-

patibility of the video and music (as defined in

Table 1) determines optimality.

One simple solution would be to only select

the best music excerpt for each shot and play

these music excerpts with the video. However,

this approach isn’t sufficient because music

excerpt duration differs from shot duration. So,

we might use several music excerpts for one

shot, or have several shots fitting the duration

of each music excerpt. We chose to first define

the overall best match value between the video

shots and the music excerpts. If we obtain sev-

eral best matches, we take the longest shot,

assuming that for the longer shots we’ll have

more accurate feature extraction. (Longer shots

are less prone to errors caused by small pertur-

bations.) Then we use media continuity heuris-

tics to ensure availability of long sequences of

music excerpts belonging to the same music

piece.

Suppose that we obtained the best match for

Shoti and the music excerpt l from music piece k,

namely Mk,l. Then we assign the music excerpts

Mk,m (with m < l) to the part of the video before

Shoti, and the music excerpts Mk,n (n > l) to the

parts of the videos after Shoti. Thus, we achieve

musical continuity. If the video is longer than

the music piece, we apply the same process on

the remaining part(s) of the video, by placing pri-

ority on the remaining parts that are contiguous

to the already mixed video parts, ensuring some

continuity. The previous description doesn’t

describe the handling of all the specific cases that

could occur during the mixing (for example, sev-

eral music parts might have the same matching

value for one shot), but it gives a precise enough

idea of the actual process.

Experiments

We tested our approach on 40 minutes of edit-

ed home videos (109 shots) taken from the
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Table 3. Initial feature values and attributed features for the video shot L01_39 in the video space.

Features Light Falloff Color Hue Color Brightness Color Energy Motion Vector

Feature value 0.658 0.531 0.643 0.413 0.312

High falloff 1.0

Medium falloff 0.0

Low falloff 0.0

High hue 0.0

Medium hue 1.0

Low hue 0.0

High brightness 0.0

Medium brightness 1.0

Low brightness 0.0

High energy 0.0

Medium energy 0.0

Low energy 0.701

High motion 0.0

Medium motion 0.638

Low motion 0.0

Table 4. Attributed features for the video shot L01_39 in the pivot vector space.

Low Medium High Low Medium High Low Med High

Dynamics Dynamics Dynamics Motion Motion Motion Pitch Pitch Pitch

0.701 0.0 0.0 0.0 0.638 0.0 0.0 1.0 0.0



MPEG-7 test collection (LGERCA_LISA_1.mpg

from the CD no. 31 and LGERCA_LISA_2.mpg

from the CD no. 32) and considered 93 minutes

(186 excerpts of 30 seconds each) of music com-

posed of instrumental rock, blues, and jazz styles.

We defined the video excerpts according to the

sequence list provided for the MPEG-7 evaluation. 

Elemental shot-excerpt mixing results

We first present the matching of one music

excerpt to one video shot. We chose three shots

of the LGERCA_LISA_2.mpg (from frames 16044

to 17652), namely L02_30, L02_31, and L02_32.

The first shot presents two girls dancing indoors

with a dim light. Because the girls are dancing,

there’s motion, but no close-ups, so the motion

is medium. The video’s pitch (related to the hue

of the colors presents in the shot) is also medium

because the girls’ clothes have some colors.

Figure 3 presents nine dimensions of the pivot

space for L02_30 and the best matching obtained

with the music excerpt T01_5, extracted from the

music piece “Slow and Easy” (from the music

album Engines of Creation by Joe Satriani, Epic

Records, 2000). This music is a medium- to slow-

tempo rock piece, with medium dynamics and

medium pitch. As Figure 3 shows, the matching

is perfect and the distance is 0.

Figure 4 presents the features of the shot

L02_31 in the pivot space. This shot is also dark,

but less than L02_32, which is why the

low_dynamics dimension has a value equal to
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Figure 3. (a) Matching between the video L02_30 and the music T01_5. (b) A sample frame from the video.
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Figure 4. (a) Matching between the video L02_31 and the music T06_5. (b) A sample frame from the video.



0.66. In this shot the two girls dancing are closer

to the camera, generating much more motion.

Also, the dresses’ colors are more visible, gener-

ating high_motion and high_pitch. The mini-

mum distance value obtained is 0.071 for the

music excerpt T6_5 (medium tempo rock,

“Motorcycle Driver” from the album The

Extremist by Joe Satriani, Relativity Records, 1992)

with high pitch and low energy. The matching

isn’t perfect because the motion doesn’t match,

but this match is the best one we obtained.

Consider now the shot L02_32, taken outdoors.

In this case, the images are brighter than in the pre-

vious two cases, and the feature med_dynamics

equals 1. There isn’t much motion because the

focus point (a girl driving a small pink car) is far

away. The pitch is also medium because there are

only natural colors. The shot L02_32 best matches

at a distance of 1.414 with the music excerpt

T19_01 (“Platinum” from the eponymous album

of Mike Oldfield, Virgin Records, 1979), as present-

ed in Figure 5. This music excerpt is of medium

tempo, with medium dynamics and high pitch.

Full audio–video mixing results

We matched a sequence of shots, which corre-

spond to a “Kids Dancing on Stage and After

Play” segment in the video LGERCA_LISA_2.mpg.

We numbered the shots from L02_44 to L01_51.

The segment shows children coming onto a stage,

and then a prize nomination. This sequence lasts

2 minutes and 33 seconds. We obtained the best

match for shot L02_48 (vector [0, 1, 0, 1, 0, 0, 0,

1, 0]) with the music excerpt T19_1, described

previously; the match is perfect. The shot L02_48

has small motion activity, medium bright colors,

and medium hue colors. 

According to our rule to ensure media conti-

nuity, we mixed the same music for shots L02_49,

L02_50, and L02_51. We then considered shot

L02_47 (vector [0.95, 0, 0, 0, 1, 0, 0, 0, 1]), mixed

with the music excerpt T06_1 (medium tempo

rock, “Motorcycle Driver,” from The Extremist

album by Joe Satriani, Relativity Records, 1992)

with a vector of (1, 0, 0, 0, 1, 0, 0, 0, 1). The dis-

tance between their respective vectors is 0.041.

This shot contains not very bright images and not

much motion but a lot of high hue colors, and we

mixed it with medium tempo rock music with

high pitch and low energy. 

Because shot L02_47 is longer than the music

excerpt, we mix it with music part T06_2. We

continue to mix shots going backward from shot

L02_47. Shot L02_46 (vector [0.97, 0, 0, 0, 1, 0, 0,

1, 0]) contains less high hue colors because it

focuses on a girl wearing black clothes. We mixed

it with its best music match, T05_2 (medium

rock, “S.M.F,” from Joe Satriani by Joe Satriani,

Relativity Music, 1995), with a distance value of

0.024. By back propagating the music, we can mix

the remaining shots L02_44 and L02_45 with

music excerpt T05_1, which is the preceding part

of T05_2 in the same song. Figure 6 shows the

mixing obtained.

Conclusions

Our novel audio–video mixing algorithm

picks the best audio excerpts to mix with a video
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Figure 5. (a) Matching between the video L02_32 and the music T19_1. (b) Sample frame from the video.



clip according to perceptual cues of both video

and audio. Our work represents initial steps

toward developing automatic audio–video mix-

ing that rivals that of a skilled human mixing

artist. Many interesting and challenging prob-

lems remain for future study. 

We provided computational procedures for

only a subset of the video features, but we need

computational procedures for all video and

audio descriptors. Table 1 lists a total of 43 attrib-

uted features, but only 16 of them are

extractable, and we’ve only used 10 of them so

far. Future research will develop procedures for

all the attributed features so we can use the

heuristics of Table 1 for audio–video mixing.

While video processing seems relatively easier,

hardly any corresponding work has occurred for

music. The literature on digital audio processing

is overwhelmingly skewed toward speech pro-

cessing and scant work exists on nonspeech

audio processing.

We essentially used the mixing heuristics as

given in Zettl.
4

Perhaps better mixing heuristics

are possible, and we need to understand better

the aesthetic decision process of mixing artists. 

Table 1 doesn’t explicitly address music genre.

It’s obvious that while perceptual features of two

audio clips of two different genres might be sim-

ilar, their appropriateness for a particular video

clip might differ. Because we use a Euclidean

pivot space, it’s possible to define clustering

methods to make the matching faster when con-

sidering compatible music and videos. For

instance, if we define different genres of music,

it’s possible in the IR
p

space to define a vector

that’s the center of the vector mass of each genre.

We would then base the matching first on genre

representatives, and once we obtained the best

matching genre for a particular video, we could

limit the aesthetic matching to that musical gen-

re’s vectors. The influence of music genre would

improve the mixing algorithm. 

If we incorporate musical genre into the mix-

ing framework, then we’ll need automatic genre

classification to process large audio collections.

This appears to be a challenging problem.
12

After matching at the video shot and music

segment level, we presented a heuristic procedure

based on media continuity for the overall mix-

ing. We could improve this procedure by devel-

oping some overall measures of optimality over

and above media continuity. Thus, a second-best

match for a particular shot might lead to the

overall best match for the whole clip, which isn’t

possible with our algorithm. As a result, we need

to formally pose the audio–video mixing as an

optimization problem.

We could introduce special effects such as cuts

and gradual transitions in the video to better

match and synchronize shots with the matched

audio. Thus, we could define an appropriate mix-

ing style based on the attributed features of the

mixed media.

Using gradual transitions is a well understood

concept for videos, but not much work has

occurred around aesthetically pleasing gradual

transitions for blending two disparate audio clips.

We aim to work on many of these problems

in the future. MM
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