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Abstract We study the behavior of simple principal pivoting methods for the
P-matrix linear complementarity problem (P-LCP). We solve an open problem of
Morris by showing that Murty’s least-index pivot rule (under any fixed index order)
leads to a quadratic number of iterations on Morris’s highly cyclic P-LCP examples.
We then show that on K-matrix LCP instances, all pivot rules require only a linear
number of iterations. As the main tool, we employ unique-sink orientations of cubes,
a useful combinatorial abstraction of the P-LCP.

Keywords Linear complementarity · Pivoting algorithm · P-matrix · K-matrix ·
Computational complexity · Unique-sink orientation

1 Introduction

The third author of this paper still vividly recollects his visit to Victor Klee at the
University of Washington (Seattle) in August 2000.

J. Foniok · K. Fukuda · H.-J. Lüthi
Institute for Operations Research, ETH Zurich, 8092 Zurich, Switzerland

J. Foniok
e-mail: foniok@math.ethz.ch

K. Fukuda
e-mail: fukuda@ifor.math.ethz.ch

H.-J. Lüthi
e-mail: luethi@ifor.math.ethz.ch

K. Fukuda · B. Gärtner (�)
Institute of Theoretical Computer Science, ETH Zurich, 8092 Zurich, Switzerland
e-mail: gaertner@inf.ethz.ch

mailto:foniok@math.ethz.ch
mailto:fukuda@ifor.math.ethz.ch
mailto:luethi@ifor.math.ethz.ch
mailto:gaertner@inf.ethz.ch


188 Discrete Comput Geom (2009) 42: 187–205

We had a memorable drive in Vic’s car from the hotel to the math depart-
ment. Vic skipped all the small talk and immediately asked: “Do you think that
the simplex method is polynomial?” I still remember how awkward I felt to be
asked this question by the very person who had provided the first and seminal
insights into it. My (then as now quite irrelevant) opinion shall remain between
Vic and me forever.

The seminal work referred to above is of course the 1972 paper of Klee and Minty
entitled “How good is the simplex algorithm?” [19]. It deals with the number of
iterations that may be required in the worst case to solve a linear program (LP) by
Dantzig’s simplex method [9], which was at that time the only available practical
method. Klee and Minty exhibited a family of LPs (now known as the Klee–Minty
cubes) for which the number of iterations is exponential in the number of variables
and constraints.

Dantzig’s specific pivot rule for selecting the next step is just one of many con-
ceivable rules. The question left open by the work of Klee and Minty is whether there
is some other rule that provably leads to a small number of iterations. This question
is as open today as it was in 1972.

Nowadays, the simplex method is no longer the only available method to solve
LPs. In particular, there are proven polynomial-time algorithms for solving LPs—
Khachiyan’s ellipsoid method [18] and Karmarkar’s interior point method [17]—that
are based on techniques developed originally for nonlinear optimization. It is still
unknown, though, whether there is a strongly polynomial-time algorithm for solving
LPs, that is, a polynomial-time algorithm for which the number of arithmetic opera-
tions does not depend on the bit lengths of the input numbers.

The P-Matrix Linear Complementarity Problem In this paper we are concerned
with pivoting methods for the P-matrix linear complementarity problem (P-LCP),
a prominent problem for which neither polynomial-time algorithms nor hardness re-
sults are available.

In general, an LCP is given by a matrix M ∈ R
n×n and a vector q ∈ R

n, and the
problem is to find vectors w,z ∈ R

n such that

w − Mz = q, w, z ≥ 0, wTz = 0. (1)

It is NP-complete to decide whether such vectors exist [7, 20]. However, in a
P-LCP, M is a P-matrix (meaning that all principal minors are positive), and then
there are unique solution vectors w,z for every right-hand side q [30]. The problem
of efficiently finding them is unsolved, though.

Megiddo has shown that the P-LCP is unlikely to be NP-hard. For this, he con-
siders the following (more general) variant: given M and q , either find w,z that
satisfy (1), or exhibit a nonpositive principal minor of M . NP-hardness of the latter
variant would imply that NP = coNP [23].

There is a different notion of hardness that might apply to the P-LCP as a mem-
ber of the complexity class PPAD [28]. This class has complete problems, and no
polynomial-time algorithm is known for any of them. It has recently been shown
that the famous problem of finding a Nash equilibrium in a bimatrix game is PPAD-
complete [6]. Some researchers consider this to be an explanation as to why (despite
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many efforts) no polynomial-time algorithm has been found so far. Incidentally, this
is the second problem for which Megiddo showed in his technical report [23] that it
is unlikely to be NP-hard. However, it is currently not known whether the P-LCP is
also PPAD-complete.

There are various algorithms for solving P-LCPs, among them the classic method
by Lemke [22] as well as interior point approaches [20, 21]. Still, there is no known
polynomial-time algorithm for P-LCPs. For example, the complexity of interior point
algorithms depends linearly on a matrix parameter κ [20] that is not bounded for
P-matrices.

In this work, we focus on combinatorial methods for P-LCPs and in particular
on simple principal pivoting methods that share their essential idea with the simplex
method.

Simple Principal Pivoting Methods Let B ⊆ {1,2, . . . , n}, and let AB be the n × n

matrix whose ith column is the ith column of −M if i ∈ B , and the ith column of the
n×n identity matrix In otherwise. If M is a P-matrix, then AB is invertible for every
set B . We call B a basis. If A−1

B q ≥ 0, we have discovered the solution: let

wi :=
{

0 if i ∈ B,

(A−1
B q)i if i /∈ B,

zi :=
{

(A−1
B q)i if i ∈ B,

0 if i /∈ B.
(2)

If on the other hand A−1
B q � 0, then w and z defined above satisfy w−Mz = q and

wTz = 0, but w,z ≥ 0 fails. In principal pivoting, one tries to improve the situation
by replacing the basis B with the symmetric difference B ⊕ C, where C is some
nonempty subset of the “bad indices” {i : (A−1

B q)i < 0}. The greedy choice is to let
C be the set of all bad indices in every step. For some P-LCPs, however, this algorithm
cycles and never terminates [27].1 In simple principal pivoting, C is of size one, and
a pivot rule is employed to select the bad index. Simple principal pivoting methods
are sometimes called Bard-type methods and were first studied by Zoutendijk [34]
and Bard [2]. For a detailed exposition on simple principal pivoting methods see, for
instance, [8, Sect. 4.2] or [27, Chap. 4].

The Digraph Model and Unique Sink Orientations There is a natural digraph model
behind principal pivoting, first studied by Stickney and Watson [31]. The graph’s
vertices are all bases B , with a directed edge going from B to B ′ if B ⊕ B ′ = {i} and
(A−1

B q)i < 0.2 The underlying undirected graph is the graph of the n-dimensional
cube. A principal pivot step considers the cube that is spanned by the outgoing edges
at the current vertex, and it jumps to the antipodal vertex of some subcube of it.
A simple principal pivot step can be interpreted as the traversal of an outgoing edge,
and this is the analogy with the simplex method for linear programming.

1For n = 3, one such example is the P-LCP (5) whose digraph model (see next paragraph) appears in
Fig. 1. Cycling occurs for any of the three start bases just below the top vertex in Fig. 1.
2We require q to be nondegenerate, meaning that (A−1

B
q)i �= 0 for all B and i. This is no serious restriction

since a nondegenerate problem can always be obtained from a degenerate one by a symbolic perturbation
of q .
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The above digraph has the following specific property: every nonempty subcube
(including the whole cube) has a unique sink, and the global sink corresponds to
the solution of the P-LCP [31]. In the terminology of Szabó and Welzl [32], we are
dealing with a unique-sink orientation (USO).

The goal of this paper is to deepen the understanding of the USO description
of simple principal pivoting methods for the P-LCP. On a general level, we want to
understand whether and how algebraic properties of a P-LCP (which are well studied)
translate to combinatorial properties of the corresponding USO (which are much less
studied), and what the algorithmic implications of such translations are. The principal
motivation behind this research is the continuing quest for a polynomial-time P-LCP
algorithm. In this paper, the concept of a USO serves as the main tool to obtain two
more positive results for simple principal pivoting.

We believe that this combinatorial approach has some untapped potential for the
theory of (simple) principal pivoting methods for LCPs.

The (Randomized) Method of Murty and the Morris Orientations The simple prin-
cipal pivoting method of Murty (also known as the least-index rule) [25] works for
all P-LCP instances, but it may take exponentially many iterations in the worst case
[26]. As a possible remedy, researchers have considered randomized methods. The
two most prominent ones are RANDOMIZEDMURTY (which is just the least-index
rule, after randomly reshuffling the indices at the beginning), and RANDOMEDGE

(which performs a purely random walk in the USO). However, Morris found a family
of P-LCP instances (we call their underlying digraphs the Morris orientations) on
which RANDOMEDGE spends a long time running in cycles and thus performs much
worse than even the exhaustive search algorithm [24].

For RANDOMIZEDMURTY there are as yet no such negative results on P-LCP
instances. In particular, on Murty’s worst-case example, this algorithm takes an ex-
pected linear number of steps [11]; the expected number of steps becomes quadratic
if we allow arbitrary start vertices [1].

On general P-LCP instances, the expected number of iterations taken by RAN-
DOMIZEDMURTY is subexponential if the underlying digraph is acyclic [14], but it
is unknown whether this also holds under the presence of directed cycles (as they
appear in the Morris orientations, for example).

We prove that not only the randomized variant, but actually any variant of the
least-index rule obtained by some initial reshuffling of indices, leads to a quadratic
number of iterations on the Morris orientations. In particular, this “kills” another
family of potentially bad instances for the RANDOMIZEDMURTY rule.

K-Matrix Linear Complementarity Problems A K-matrix is a P-matrix so that all
off-diagonal elements are nonpositive. LCPs with K-matrices (K-LCPs) appear for
example in free boundary problems [8, Sect. 5.1] and in American put option pricing
[3, 4]. It is known that every K-LCP instance can be solved in polynomial time (even
by a simple principal pivoting method [5, 29], see also [8, Sect. 4.7]), but we prove
something stronger: every simple principal pivoting method takes only a linear num-
ber of iterations. We obtain this result by showing that in K-LCP-induced USOs, all
directed paths are short. Our approach is to extract combinatorial structure from the
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algebraic properties of K-matrices. Subsequently, we use the distilled combinatorial
information to get our structural results.

LCPs with Sufficient Matrices and the Criss-Cross Method Let us step back and
take a broader view that brings together LP, the P-LCP, pivoting methods, and com-
putational complexity: linear complementarity problems with sufficient matrices gen-
eralize both LP and the P-LCP while still being amenable to pivoting approaches. The
criss-cross method [12, 13] may be considered an extension of Murty’s algorithm. In
fact, the results of [12] make LCPs with sufficient matrices the largest known class
of LCPs for which Megiddo’s techniques of [23] still apply, so that NP-hardness is
unlikely. Determining the complexity of the sufficient matrix LCP remains a tough
challenge for the future.

2 Unique-Sink Orientations

Now we formally introduce the digraph model behind P-LCPs and show some of its
basic properties. The model was first described by Stickney and Watson in 1978 [31].

We use the following notation. Let [n] := {1,2, . . . , n}. For a bit vector v ∈ {0,1}n
and I ⊆ [n], let v ⊕ I be the element of {0,1}n defined by

(v ⊕ I )j :=
{

1 − vj if j ∈ I ,

vj if j /∈ I .

This means that v ⊕ I is obtained from v by flipping all entries with coordinates in I .
Instead of v ⊕ {i} we simply write v ⊕ i.

Under this notation, the (undirected) n-cube is the graph G = (V ,E) with

V := {0,1}n, E := {{v, v ⊕ i} : v ∈ V, i ∈ [n]}.
A subcube of G is a subgraph G′ = (V ′,E′) of G where V ′ = {v ⊕ I : I ⊆ C} for

some vertex v and some set C ⊆ [n], and E′ = E ∩ (
V ′
2

)
.

Definition 2.1 Let φ be an orientation of the n-cube (a digraph with underlying undi-
rected graph G). We call φ a unique-sink orientation (USO) if every nonempty sub-
cube has a unique sink in φ.

Figure 1 depicts a USO of the 3-cube. The conditions in Definition 2.1 require the
orientation to have a unique global sink, but in addition, all proper nonempty sub-
cubes must have unique sinks as well. In Fig. 1 there are six 2-dimensional subcubes,
twelve 1-dimensional subcubes (edges) and eight 0-dimensional subcubes (vertices).
For edges and vertices, the unique-sink condition is trivial. The figure also shows that
USOs may contain directed cycles.

If V ′ is the vertex set of a subcube (as defined above), then the directed subgraph
of φ induced by V ′ is denoted by φ[V ′].

It is convenient to view the orientation of the n-cube G as a mapping φ : {0,1}n →
{−,+}n, where φ(v)i = − if the edge between v and v ⊕ i is oriented towards v ⊕ i,
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Fig. 1 A USO of the 3-cube; for each vertex, the orientation of incident edges is encoded with a sign vector
in {−,+}n (− for an outgoing edge; + for an incoming edge). The unique global sink and a directed cycle
are highlighted

and φ(v)i = + if it is oriented towards v. To encode a vertex v along with the ori-
entations of its incident edges, we can then use a configuration of n bits and n signs,
where the ith sign is φ(v)i (see Fig. 1). If an orientation φ of G contains the directed

edge (v, v ⊕ i), we write v
φ−→ v ⊕ i, or simply v → v ⊕ i if φ is clear from the

context.
Let φ be an orientation of the n-cube and let F ⊆ [n]. Then φ(F) is the orientation

of the n-cube obtained by reversing all edges in coordinates contained in F ; formally

v
φ(F)

−−→ v ⊕ i :⇔
⎧⎨
⎩v

φ−→ v ⊕ i if i /∈ F,

v ⊕ i
φ−→ v if i ∈ F .

Proposition 2.2 [32] If φ is a USO, then φ(F) is also a USO for an arbitrary sub-
set F ⊆ [n].

This proposition can be proved by induction on the size of F ; it essentially suffices
to show that under φ({i}), the whole cube still has a unique sink.

Now we can derive the unique-completion property. Its meaning is that we can
prescribe the bits for some coordinates and the signs for the remaining coordinates,
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and in a USO there will always be a unique vertex that satisfies the prescription. In
particular, it follows that any USO (and any of its subcubes) also has a unique source.

In fact, the unique-completion property characterizes USOs.

Lemma 2.3 An orientation φ of the n-cube G is a USO if and only if for every
partition [n] = A ∪ B and every pair of maps α : A → {0,1}, β : B → {−,+} there
exists a unique vertex v such that

vi = α(i) for all i ∈ A, (3a)

φ(v)i = β(i) for all i ∈ B. (3b)

Proof First suppose that φ is a USO. Let U := {u : ui = α(i) for all i ∈ A} and con-
sider the subcube φ[U ]. Let F := {i ∈ B : β(i) = −}. As we have just noted, φ(F) is
a USO, and thus the subcube φ[U ] has a unique sink v with respect to φ(F). This
vertex v is the only vertex that satisfies (3a) and (3b).

Conversely, let φ be an orientation of the n-cube which satisfies the unique-
completion property and let U := {u ⊕ I : I ⊆ C}. Set B := C and A := [n] \ C,
and let α(i) := ui for i ∈ A and β(i) := + for i ∈ B . Then the unique vertex v satis-
fying (3a) and (3b) is the unique sink of the subcube φ[U ]. �

P-LCP-Induced USOs We now formally define the USO that is induced by a non-
degenerate P-LCP instance P-LCP(M,q) [31]. For v ∈ {0,1}n, let B(v) := {j ∈ [n] :
vj = 1} be the canonical “set representation” of v. Then the USO φ induced by
P-LCP(M,q) is

v
φ−→ v ⊕ i :⇔ (

A−1
B(v)q

)
i
< 0. (4)

Recall that AB is the (invertible) n × n matrix whose ith column is the ith column
of −M if i ∈ B , and the ith column of the n × n identity matrix In otherwise.

In this way, we have reduced the P-LCP to the problem of finding the sink in
an implicitly given USO. Access to the USO is gained through a vertex evaluation
oracle that for a given vertex v ∈ {0,1}n returns the orientations φ(v) ∈ {−,+}n of all
incident edges. In this setting, the aim is to find the sink of the USO so that the number
of queries to the oracle would be bounded by a polynomial in the dimension n. In the
case of a P-LCP-induced USO, a (strongly) polynomial-time implementation of the
vertex evaluation oracle is immediate from (4). From the sink of φ, we can reconstruct
solution vectors w and z as in (2). The fact that the n-cube orientation defined in this
way is indeed a USO was proved by Stickney and Watson [31].

Not every USO is P-LCP-induced; for n = 3, the P-LCP-induced USOs are char-
acterized in [31], but for n ≥ 4, we have only a necessary condition. This condition
was originally proved by Holt and Klee for polytope graphs oriented by linear func-
tions [16].

Theorem 2.4 [15] Every P-LCP-induced USO of the n-cube satisfies the Holt–Klee
condition, meaning that there are n directed paths from the source to the sink with
pairwise disjoint sets of interior vertices.
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3 Pivot Rules

In the USO setting resulting from P-LCPs, simple principal pivoting can be inter-
preted as follows: start from any vertex, and then proceed along outgoing edges until
the global sink (and thus the solution to the P-LCP) is reached. A pivot rule R deter-
mines which outgoing edge to choose if there is more than one option. Here is the
generic algorithm, parameterized with the rule R. It outputs the unique sink of the
given USO φ.

Algorithm 3.1
SIMPLEPRINCIPALPIVOTINGR(φ)

Choose v ∈ {0,1}n
while O := {j ∈ [n] : v φ−→ v ⊕ j} �= ∅ do

choose i ∈ O according to the pivot rule R

v := v ⊕ i

end while
return v

Note that when φ contains directed cycles as in Fig. 1, this algorithm may enter
an infinite loop for certain rules R, but we consider only rules for which this does
not happen. In the USO setting we are restricted to combinatorial rules. These are
rules that may access only the orientations of edges {v, v ⊕ j} (as given by the vertex
evaluation oracle) but not any numerical values such as (A−1

B(v)q)j that define these
orientations.

Let us now introduce the combinatorial pivot rules that are of interest to us. We
write them as functions of the set O of candidate indices. The first one is Murty’s
least-index rule MURTY that simply chooses the smallest candidate. In the cube, this
may be interpreted as a “greedy” approach that always traverses the first outgoing
edge that it finds (in the order of the cube dimensions).

MURTY(O) MURTYπ(O)

return min(O) return π(min(π−1(O)))

It is easy to prove by induction on n that this rule leads to a finite number of itera-
tions, even if the USO contains directed cycles. The rule has a straightforward gener-
alization, using a fixed permutation π ∈ Sn: choose the index π(i) with the smallest i

such that v → v ⊕ π(i). This just reshuffles the cube dimensions by applying π , and
with π = id, we recover Murty’s least-index rule.

The natural randomized variant of MURTYπ is RANDOMIZEDMURTY: at the be-
ginning, choose the permutation π uniformly at random from the set Sn of all permu-
tations, and then use MURTYπ throughout.

Finally, RANDOMEDGE stands for the plain random walk: in each iteration, sim-
ply choose a random candidate.
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RANDOMIZEDMURTY(O) RANDOMEDGE(O)

if called for the first time then choose i ∈ O uniformly at random
choose π ∈ Sn uniformly at random return i

end if
return MURTYπ (O)

Unlike the previous rules, RANDOMEDGE may lead to cycling in SIMPLEPRIN-
CIPALPIVOTINGR, but the algorithm still terminates with probability 1, and with an
expected number of at most (n + 1)nn iterations. This is a simple consequence of the
fact that there is always a short directed path to the sink.

Lemma 3.2 [31, Proposition 5] Let t ∈ {0,1}n be the global sink of an n-cube
USO φ, and let v ∈ {0,1}n be any vertex. If k is the Hamming distance between v

and t , then φ contains a directed path of length k from v to t .

4 The Morris Orientations

Morris proved that under R = RANDOMEDGE, Algorithm 3.1 may be forced to per-
form an expected exponential number of iterations [24]. More precisely, at least
((n − 1)/2)! iterations are required on average to find the sink of the n-cube USO
generated (as described in Sect. 2) by the LCP(M,q), with

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 0 . . . 0 0 0
0 1 2 . . . 0 0 0
0 0 1 . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . 1 2 0
0 0 0 . . . 0 1 2
2 0 0 . . . 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
−1
−1
...

−1
−1
−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5)

Here, n must be an odd integer in order for M to be a P-matrix.
To prove this result Morris first extracted the relevant structure of the underly-

ing USO, and then showed that on this USO, RANDOMEDGE runs in cycles for a
long time before it finally reaches the global sink. It was left as an open problem
to determine the expected performance of RANDOMIZEDMURTY, the other natural
randomized rule, on this particular USO.

We solve this open problem by showing that for any permutation π , MURTYπ

incurs only O(n2) iterations on the n-dimensional Morris orientation. In particular,
this bound then also holds for RANDOMIZEDMURTY.

Theorem 4.1 For any π ∈ Sn, Algorithm 3.1 with R = MURTYπ finds the sink of the
n-dimensional Morris orientation after at most 2n2 − (5n−3)/2 iterations, from any
start vertex.

Computational experiments suggest that the worst running time is attained for the
identity permutation if the algorithm starts from 0 (the global source). Therefore we
analyze this case thoroughly and compute the precise number of iterations.
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Fig. 2 The finite state
transducer that generates the
Morris orientations. Each
transition is labeled with an
input symbol (bit) and an output
symbol (sign)

Theorem 4.2 Algorithm 3.1 with R = MURTYid finds the sink of the n-dimensional
Morris orientation after (n2 + 1)/2 iterations, starting from 0.

Experimental data suggest that this is an upper bound on the number of iterations
for any permutation π and start vertex 0. Allowing start vertices different from 0, we
get slightly higher iteration numbers, but π = id continues to be the worst permuta-
tion. In view of this, we conjecture that n2/2 +O(n) iterations actually suffice for all
π and all start vertices. This would mean that the bound in Theorem 4.1 is still off by
a factor of 4.

The Combinatorial Structure The n-cube USO resulting from (5) can be described
in purely combinatorial terms [24, Lemma 1]. Here we make its structure even more
transparent by exhibiting a finite state transducer (finite automaton with output) with
just two states that can be used to describe the USO; see Fig. 2. For the remainder of
this section, we fix n to be an odd integer and we consider the n-dimensional Morris
orientation φ.

The orientation is then determined for each vertex v = (v1, v2, . . . , vn) ∈ {0,1}n
as follows. If v1 = v2 = · · · = vn = 1, then v is the global sink. Otherwise, choose
some i in [n] so that vi = 0 and consider the bit string vi−1vi−2 . . . v1vnvn−1 . . . vi

as the input string to the transducer. In other words, the transducer is reading the
input from right to left, starting immediately to the left of some 0. The output string
φ(v)i−1φ(v)i−2 . . . φ(v)1φ(v)nφ(v)n−1 . . . φ(v)i then determines the orientation of
each edge incident to v. The choice of i does not matter, because after reading any
zero, the transducer is in the state S.

For instance, let n = 5 and let v = (1,0,1,1,0). Then the transducer takes v4 = 1,
outputs + and switches to state T ; reads v3 = 1, outputs − and switches to S; reads
v2 = 0, outputs − and stays in S; reads v1 = 1, outputs + and switches to T ; and
finally reads v5 = 0, outputs + and switches to S. The resulting configuration for v

is
( 1 0 1 1 0

+ − − + +
)
.

Figure 1 depicts the Morris orientation for n = 3. It can easily be checked that the
above procedural definition of the orientation is equivalent to the one given in [24,
Lemma 1]. In particular, we obtain a USO. It has the remarkable symmetry that the
set of configurations is closed under cyclic shifts.

Pivoting From the transducer we can easily derive the sign changes in the config-
uration

( v
φ(v)

)
that are caused by a pivot step v → u := v ⊕ {i}. We always have

φ(v)i = − and φ(u)i = +.
If vi = 1, we get ui = 0. In processing v and u, the transducer then performs

exactly the same steps, except that at the ith coordinate different transitions are used
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to get from T to S. But this implies φ(u)j = φ(v)j for j �= i. Here is an example for
such a pivot step (with i = 3; affected signs are indicated):(

1 0 1 1 0
+ − − + +

)
→

(
1 0 0 1 0
+ − ⊕ + +

)
. (6)

If vi = 0, we get ui = 1, meaning that at the ith coordinate the transducer stays
in S for v but switches to T for u (assuming that u is not the sink). This implies
that signs change at all coordinates i − 1, i − 2 down to (and including) the next
coordinate k (wrap around possible) for which vk = uk = 0. In our example we have
such a step for i = 2: (

1 0 1 1 0
+ − − + +

)
→

(
1 1 1 1 0
 ⊕ − + 

)
. (7)

In both v and u, the signs in the block of 1’s at indices k + 1, . . . , i − 1 alternate.

Levels It will be useful to define the following function on the vertices of the cube.

Let �(v) be the number of coordinates where
(0
−
)

appears. Formally,

�(v) := ∣∣{i : vi = 0 and φ(v)i = −}∣∣.
The number �(v) is called the level of v. From the two types of pivots, it is easy to see
that the value of � does not increase along any directed edge [33, Lemma 3]. Indeed,
if u is an out-neighbor of v, then either �(u) = �(v) (this happens in every pivot of
type (6), and in pivots of type (7) with an odd block of 1’s at indices k +1, . . . , i −1),
or � decreases to the next possible value: �(u) = �(v) − 2, or �(u) = 0 if �(v) = 1.
In particular, the values of � lie in the set {n,n − 2, . . . ,3,1,0}. The sink is the only
vertex at level 0.

Let us make a small digression and briefly explain why RANDOMEDGE is slow
on φ. Let L(v) := |{i : vi = 1 and φ(v)i = −}|. So the out-degree of v is �(v)+L(v).
Now let v be a vertex at level 1. In pivots of type (6), L decreases by one, whereas in
pivots of type (7) that do not reach the sink, L increases by one. The latter occurs if
and only if RANDOMEDGE pivots at the unique

(0
−
)
, which happens with probability

1/(L(v) + 1).
At level 1, we can thus interpret RANDOMEDGE as a random walk on the integers,

where k → k+1 with probability 1/(k+1), and k → k−1 with probability k/(k+1).
Therefore, the walk is strongly biased towards 0, but in order to reach a neighbor u

of the sink, we need to get to k = L(u) = (n − 1)/2. This takes exponentially long in
expectation [24].

A Quadratic Bound for MURTYπ To prove Theorem 4.1 we first derive a (somewhat
surprising) more general result: for any pivot rule, starting from any vertex v with
vk = 0 for some k, it takes O(n2) iterations to reach a vertex u with uk = 1. This
can be viewed as a statement about the USO induced by the n-dimensional Morris
orientation on the cube facet {v : vk = 0}. The statement is that in this induced USO,
all directed paths are short (in particular, the induced USO is acyclic).
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Lemma 4.3 Let v ∈ {0,1}n be a vertex, and let k be any index for which vk = 0.
Starting from v, Algorithm 3.1 (with an arbitrary pivot rule R) reaches a vertex u

satisfying uk = 1 after at most
(
n+1

2

)
iterations.

Proof We employ a nonnegative potential that decreases with every pivot step. By a
cyclic shift of coordinates we may assume that k = 1, and thus v1 = 0.

Let us define

N0(v) := {
j ∈ [n] : vj = 0 and φ(v)j = −}

,

N1(v) := {
j ∈ [n] : vj = 1 and φ(v)j = −}

.

The potential of v is the number

p(v) = ∣∣N1(v)
∣∣ +

∑
j∈N0(v)

j.

Now we will observe how the potential changes during a pivot step v → u =
v ⊕ {i}. We always have φ(v)i = −, φ(u)i = +. There are two cases. If vi = 1, as
in (6), the configurations of v and u differ only at index i. Hence N0(u) = N0(v) and
N1(u) = N1(v) \ {i}. Therefore p(u) = p(v) − 1.

In the other case we have vi = 0, as in (7). If i = 1, we are done, since then u1 = 1.
Otherwise, v is of the form

v = (v1, . . . , vj︸︷︷︸
0

, vj+1, . . . , vi−1︸ ︷︷ ︸
1,...,1

, vi︸︷︷︸
0

, vi+1, . . . , vn),

with 1 ≤ j < i. If i − j is odd, there is an even number of 1’s between vj and vi ,
implying that |N1(u)| = |N1(v)| and N0(u) = N0(v) \ {j, i}. We then have p(u) <

p(v). If i − j is even, there is an odd number of 1’s between vj and vi , implying that
|N1(u)| = |N1(v)| + 1 and N0(u) = N0(v) ∪ {j} \ {i}. Since i − j ≥ 2 in this case,
we get p(u) ≤ p(v) − 1.

To summarize, the potential decreases by at least 1 in every pivot step v := v ⊕ i,
and as long as v is not the sink, we have p(v) ≥ 1. The highest potential is attained
by the source, p(0) = (

n+1
2

)
. Therefore, after at most

(
n+1

2

)
steps we have v1 = 1. �

If v happens to be at level 1 already, we obtain a better bound, since |N0(v)| = 1
in this case. In fact, the vertex with largest potential in level 1 such that v1 = 0 is
v = ( 0 1 1 1 1 ... 1 1 1 0

+ + − + − ··· + − + −
)
, and its potential is p(v) = 3(n − 1)/2.

Corollary 4.4 Let v ∈ {0,1}n be a vertex at level 1, and let k be any index for which
vk = 0. Starting from v, Algorithm 3.1 (with an arbitrary pivot rule R) reaches a
vertex u satisfying uk = 1 after at most 3(n − 1)/2 iterations.

Now MURTYπ comes in: we will apply either Lemma 4.3 or Corollary 4.4 to
vertices v with vπ(i) = 0 and vπ(i+1) = · · · = vπ(n) = 1, for some i. The next lemma
shows that the 1’s at coordinates π(i + 1), . . . , π(n) will stay.
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Lemma 4.5 Let i ∈ [n]. After Algorithm 3.1 with R = MURTYπ visits a vertex v

with vπ(i+1) = · · · = vπ(n) = 1, it will visit only vertices u satisfying uπ(i+1) = · · · =
uπ(n) = 1.

Proof At every iteration, the algorithm replaces the current vertex v with v ⊕ π(j),
where j is the smallest index such that v → v ⊕ π(j). It follows that coordinates
π(i + 1), . . . , π(n) will be touched only if v ⊕ π(j) → v for all j ≤ i. When this
holds for the first time, we have

vπ(j) = 1, for j > i,

φ(v)π(j) = +, for j ≤ i.

The unique-completion property (Lemma 2.3) then implies that we have already
reached the sink. �

Now we can put it all together.

Proof of Theorem 4.1 Let v be the start vertex, and let i be the largest index such
that vπ(i) = 0 (if no such index exists, v is the sink, and we are done). Lem-
mas 4.3 and 4.5 show that after at most

(
n+1

2

) − 1 iterations, we additionally have
φ(v)π(1) = φ(v)π(2) = · · · = φ(v)π(i−1) = + (since the next pivot step flips vπ(i)).
At this point v is at level 1, since there is a unique

(0
−
)
: at coordinate π(i). After the

flip at coordinate π(i), we repeatedly apply Corollary 4.4 together with Lemma 4.5 to
also produce 1’s at coordinates π(i − 1), . . . , π(i − 2), . . . , π(1), at which point we
have reached the sink. This takes at most 3(i −1)(n−1)/2 more iterations, summing
up to a total of(

n + 1

2

)
+ 3(i − 1)(n − 1)/2 ≤

(
n + 1

2

)
+ 3(n − 1)(n − 1)/2

= 2n2 − (5n − 3)/2. �

A better bound in the case of the identity permutation can be achieved by thor-
oughly examining the run of the algorithm, as we do next.

The Identity Permutation Let us now go on to prove Theorem 4.2. For this, we
first identify certain “milestone” vertices that are visited by Algorithm 3.1 with R =
MURTYid, and then we count the number of iterations to get from one milestone to
the next. Let us define

vi := (0,1,0,1 . . . ,0,1︸ ︷︷ ︸
2i

,0,0, . . . ,0), i = 0, . . . , (n − 1)/2.

Lemma 4.6 If Algorithm 3.1 with R = MURTYid starts at the vertex vi , 0 ≤ i <

(n − 1)/2, it gets to the vertex vi+1 in 4i + 3 iterations.
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Proof The algorithm starts at
( 0 1 0 1 ... 0 1 0 0 ...

+ + + + ··· + + − − ···
)
, and then proceeds by the rules

of pivoting (6) and (7) in four phases (recall that MURTYid always pivots on the
leftmost −):

• It pivots on the coordinates 2i + 1, 2i − 1, . . . , 1 and thus reaches the vertex( 1 1 1 1 ... 1 1 1 0 ...
+ − + − ··· + − + − ···

)
after i + 1 iterations.

• It pivots on the coordinates 2, 4, 6, . . . , 2i, 2i + 2 and thus reaches the vertex( 1 0 1 0 ... 1 0 1 1 ...
+ + + + ··· + − − + ···

)
after i + 1 iterations.

• It pivots on the coordinates 2i, 2i − 2, . . . , 2 and thus reaches the vertex( 1 1 1 1 ... 1 1 1 1 ...
− + − + ··· − + − + ···

)
after i iterations.

• It pivots on the coordinates 1, 3, 5, . . . , 2i + 1 and thus reaches the vertex( 0 1 0 1 ... 0 1 0 1 ...
+ + + + ··· + + + + ···

) = vi+1 after i + 1 iterations.

Therefore, it takes 4i + 3 iterations to get from vi to vi+1. �

The previous lemma allows us to count the number of iterations from 0 = v0 to
v(n−1)/2. The following lemma takes care of the remaining iterations.

Lemma 4.7 If Algorithm 3.1 with R = MURTYid starts at the vertex v(n−1)/2, it gets
to the global sink in (n + 1)/2 iterations.

Proof The proof is similar to the proof of Lemma 4.6, except that here only the first
phase takes place: if the algorithm starts at the vertex

( 0 1 0 1 ... 0 1 0
+ + + + ··· + + −

)
, it pivots

on coordinates n, n − 2, . . . , 1 and thus reaches the sink after (n + 1)/2 iterations. �

Proof of Theorem 4.2 By Lemmas 4.6 and 4.7, the overall number of iterations from
the source to the sink is

(n−3)/2∑
i=0

(4i + 3) + n + 1

2
= n2 + 1

2
.

�

5 K-Matrix LCP

In this section we examine K-LCPs, the linear complementarity problems LCP(M,q)

where M is a K-matrix.

Definition 5.1 A K-matrix is a P-matrix so that all off-diagonal entries are non-
positive.3

We introduce two simple combinatorial conditions on USOs and prove that one
of them implies that all directed paths from 0 are short, and the other one implies
that all directed paths in the orientation are short. We show that K-LCP orientations
satisfy these conditions and conclude that a simple principal pivoting method with

3Another common name in the literature for a K-matrix is Minkowski matrix.
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Fig. 3 2-up-uniformity: The orientations of the solid edges imply the orientations of the dashed edges.
The top row contains vertices with j th entry equal to 1 and the bottom row vertices with j th entry equal
to 0; the left column contains vertices with ith entry equal to 0, and the right column contains vertices with
ith entry equal to 1

an arbitrary pivot rule solves a K-LCP in linearly many iterations, starting from any
vertex.

First, the uniform orientation is the USO in which v → v ⊕ i if and only if vi = 0
(in other words, all edges are oriented “from 0 to 1”).

Definition 5.2 A USO φ is 2-up-uniform if whenever U = {u⊕I : I ⊆ {i, j}} is such
that ui = uj = 0 and u is the source of U , then the orientation of the subcube φ[U ]
is uniform (see Fig. 3).

A K-USO is a USO that arises (as described in Sect. 2) from the LCP(M,q) with
some K-matrix M and some right-hand side q .

Proposition 5.3 Every K-USO is 2-up-uniform.

Proof The essential fact we use is that a subcube of a K-USO is also a K-USO, as
was observed already by Stickney and Watson [31, Lemma 1]. Thus, it suffices to
prove 2-up-uniformity for K-LCPs of dimension 2. Hence, suppose that M = (

a b
c d

)
is a 2 × 2 K-matrix, so a, d > 0 and b, c ≤ 0. Then M−1 = (

d −b
−c a

)
/(ad − bc) ≥ 0

and nonsingular. Now 0 is the source of the orientation induced by the LCP(M,q) if
and only if q < 0. Hence, −M−1q > 0, which proves uniformity. �

One particular nice property of a 2-up-uniform orientation is that all paths from
the vertex 0 to the sink t have the shortest possible length, equal to the Hamming
distance |t | of t from 0. To prove this statement, we use the following lemma.

Lemma 5.4 Let φ be a 2-up-uniform USO and let v be a vertex such that vi = 1 and

v ⊕ i
φ−→ v. If vj = 0 and u = v ⊕ j is an out-neighbor of v, then u ⊕ i

φ−→ u.

Proof Suppose for the sake of contradiction that vi = 1, vj = 0 and v ⊕ i → v, and
that u = v ⊕ j , v → u and u → u ⊕ i. Let U := {u ⊕ I : I ⊆ {i, j}} and consider the
subcube φ[U ] (see Fig. 4, left): we observe that v ⊕ i → u ⊕ i because otherwise the
subcube would not contain a sink. But then it follows from 2-up-uniformity of φ that
u ⊕ i → u, a contradiction. �
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Fig. 4 Illustrating the proof of Lemma 5.4 (left) and Lemma 5.11 (right)

Proposition 5.5 Let φ be a 2-up-uniform USO and let t be its sink. Then any directed
path from 0 to t has length |t |.

Proof It follows from Lemma 5.4 by induction that if u is a vertex on any directed
path starting from 0, and if ui = 1, then u ⊕ i → u. Hence, all edges on a directed
path from 0 to t are oriented from 0 to 1, and therefore the length of a directed path
from 0 to t is |t |. �

As a direct consequence of Propositions 5.3 and 5.5 we get the following theorem.

Theorem 5.6 Every directed path from 0 to the sink t of a K-USO has length |t | ≤ n.

What is the actual strength of this theorem? We know that from any vertex of
a USO there exists a path to the sink of length at most n (Lemma 3.2). It has also
long been known how to find such a path from the vertex 0 in the case of a K-USO
[5, 29]. The novelty is that any directed path starting from 0 reaches the sink after the
least possible number of iterations. Hence, a simple principal pivoting method with
an arbitrary pivot rule finds the solution to a K-LCP in at most n iterations.

In view of this result, it is natural to ask whether it also holds if the path starts
in some vertex different from 0. Imposing 2-up-uniformity is insufficient, as we can
observe by looking at the Morris orientations. If we swap 0’s and 1’s in any Morris
orientation, we get a 2-up-uniform orientation. Hence, all directed paths from 0 to
the sink are short; indeed, 0 is the sink of the orientation after swapping, so all such
paths have length 0. Nevertheless, long directed paths (and even directed cycles) do
exist in this orientation. Therefore, we introduce the following stronger combinatorial
property of USOs, which turns out to be satisfied by K-USOs as well.

Definition 5.7 A USO φ is 2-uniform if it is 2-up-uniform and the orientation φ([n])
constructed from φ by reversing all edges is also 2-up-uniform.

Proposition 5.8 Every K-USO is 2-uniform.

Proof If φ is induced by the LCP(M,q) for some K-matrix M , then φ([n]) is induced
by the LCP(M,−q), hence it is also a K-USO and therefore it is 2-up-uniform. �

Surprisingly, the simple property of being 2-uniform enforces a lot of structure on
the whole orientation, as we show next.
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Theorem 5.9 The length of every directed path in a 2-uniform USO is at most 2n.

Before we prove the theorem, let us point out an important corollary.

Corollary 5.10 Algorithm 3.1 with an arbitrary pivot rule R, starting at an arbitrary
vertex of the corresponding USO, finds the solution to an n-dimensional K-LCP in at
most 2n iterations.

As a consequence, we get a result for a larger class of LCPs. If M is a principal
pivotal transform [8, Sect. 2.3] of a K-matrix M ′, then M is a P-matrix [8, Theo-
rem 4.1.3], and the USO φ induced by the LCP(M,q) is isomorphic to the USO φ′
induced by the LCP(M ′, q ′) for suitable q ′. It follows that Corollary 5.10 also applies
to the LCP(M,q), even though M is not necessarily a K-matrix itself.

Our proof of Theorem 5.9 is based on the following crucial fact, which extends
Lemma 5.4. Informally, it asserts that once we have a

(1
+
)

in some coordinate, we will

always have a
(1
+
)
.

Lemma 5.11 Let φ be a 2-uniform USO and let v be a vertex such that vi = 1 and

v ⊕ i
φ−→ v. If u = v ⊕ j is an out-neighbor of v, then u ⊕ i

φ−→ u.

Proof If vj = 0, the claim follows from Lemma 5.4. So let us suppose that we have
vi = 1, vj = 1 and v ⊕ i → v, and that u = v ⊕ j , v → u and u → u ⊕ i. Let
U := {u ⊕ I : I ⊆ {i, j}}. We observe that v ⊕ i → u ⊕ i so that the subcube φ[U ]
contains a sink. But then it follows from 2-up-uniformity of φ([n]) that v → v ⊕ i,
a contradiction (see Fig. 4, right). �

Proof of Theorem 5.9 Let i be a fixed coordinate. Suppose in the considered directed
path there is an edge v ⊕ i → v such that vi = 1. As a consequence of Lemma 5.11,
all vertices u on a directed path starting at v satisfy ui = 1. It follows that in any
directed path no more than two edges appear of the form v ⊕ i → v for any fixed i:
possibly one with vi = 0 and one with vi = 1. This fact then implies that the length
of any directed path is at most 2n. �

The strength of 2-uniformity can perhaps be explained by its being equivalent
to what we call local uniformity. A USO φ is locally up-uniform if for every U =
{u ⊕ I : I ⊆ J } such that uJ = 0 and u

φ−→ u ⊕ j for all j ∈ J , the orientation of the
subcube φ[U ] is uniform. A USO φ is locally uniform if both φ and φ([n]) are locally
up-uniform.

Proposition 5.12 Let φ be a USO:

(i) φ is locally up-uniform if and only if it is 2-up-uniform.
(ii) φ is locally uniform if and only if it is 2-uniform.

Proof (ii) is easily implied by (i); and one implication of (i) is trivial. The remaining
implication is not difficult to prove by induction on the dimension of the considered
subcube. �
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Local up-uniformity allows for a slight improvement in solving a K-LCP. When
following a directed path starting in 0, instead of traversing one edge at a time we
can perform a “greedy” principal pivot: jump straight to the sink of the subcube in-
duced by outgoing edges. Unlike the general P-matrix case, it cannot lead to cycling.
Due to local up-uniformity, it will never increase the number of iterations and may
sometimes reduce it.

Locally Uniform USOs vs. K-USOs We have shown (Propositions 5.8 and 5.12) that
every K-USO is 2-uniform (equivalently, locally uniform). It is natural to ask whether
the converse is also true.

The answer to this question is negative. It can be shown that the number of n-
dimensional locally uniform USOs is asymptotically much larger than the number

of K-USOs. A lower bound of 2( n−1
�(n−1)/2�) on the number of locally uniform USOs

can be derived by an adaptation of Develin’s construction [10] of many orientations
satisfying the Holt–Klee condition. An upper bound of 2O(n3) on the number of P-
USOs (and thus also K-USOs) follows from Develin’s proof of his upper bound on
the number of LP-realizable cube orientations.

At present, however, we do not know whether locally uniform P-USOs form a
proper superclass of the class of K-USOs.
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