
REVIEW

PIWIs Go Viral: Arbovirus-Derived piRNAs in

Vector Mosquitoes

Pascal Miesen☯, Joep Joosten☯, Ronald P. van Rij*

Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University
Medical Center, Nijmegen, The Netherlands

☯ These authors contributed equally to this work.

* ronald.vanrij@radboudumc.nl

Abstract

Vector mosquitoes are responsible for transmission of the majority of arthropod-borne

(arbo-) viruses. Virus replication in these vectors needs to be sufficiently high to permit effi-

cient virus transfer to vertebrate hosts. The mosquito immune response therefore is a key

determinant for arbovirus transmission. Mosquito antiviral immunity is primarily mediated by

the small interfering RNA pathway. Besides this well-established antiviral machinery, the

PIWI-interacting RNA (piRNA) pathway processes viral RNA into piRNAs. In recent years,

significant progress has been made in characterizing the biogenesis and function of these

viral piRNAs. In this review, we discuss these developments, identify knowledge gaps, and

suggest directions for future research.

Small RNAs in Arboviral Infections

Mosquitoes and other hematophagous arthropods transmit important human and animal

viruses, some of which are responsible for debilitating diseases such as dengue, chikungunya,

and Zika [1]. Collectively, this nontaxonomical group of viruses is termed arthropod-borne

viruses (arboviruses). Most arboviruses are RNA viruses with either double-stranded RNA

(dsRNA) genomes or single-stranded RNA (ssRNA) genomes of positive (+) or negative (-)

polarity. The majority can be assigned to the families Bunyaviridae (-ssRNA), Flaviviridae

(+ssRNA), Reoviridae (dsRNA), Rhabdoviridae (-ssRNA), and Togaviridae (+ssRNA) [2].

Because of an increased incidence and expansion of the geographical range of anthropophilic

vector mosquitoes, the global threat of arboviruses is increasing [1,3]. Interestingly, while hav-

ing the potential to cause severe disease in vertebrate hosts, arboviruses replicate to high levels

in their mosquito vectors without causing apparent pathology [4,5]. This suggests that vector

mosquitoes possess efficient mechanisms to resist or tolerate virus infection, despite lacking

the adaptive immune system and interferon-mediated antiviral responses of vertebrates [6].

Whereas the evolutionary conserved Toll, Imd, and Jak-Stat signaling pathways are implied

in antiviral defense [7], the cornerstone of antiviral immunity in insects is believed to be the

small interfering RNA (siRNA) pathway [8,9]. This pathway is initiated by cleavage of viral

dsRNA into 21-nucleotides (nt)-long siRNAs by the RNase-III endonuclease Dicer-2 [10,11].

These siRNAs associate with Argonaute 2 (Ago2) in an RNA-induced silencing complex

(RISC) and serve as a guide for Ago2-mediated cleavage of viral target sequences [10,12].
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Accordingly, experimental inactivation of siRNA pathway components in mosquitoes results

in increased arbovirus replication [13–18]. The fact that several insect viruses have evolved

suppressors of the siRNA pathway underlines its importance in antiviral immunity [8,19].

Likewise, arboviral gene products have been proposed to act as antagonists of the siRNA path-

way in mosquitoes [20–22].

MicroRNAs comprise an independent class of small RNAs that may be involved in the cel-

lular response to arboviral infections by regulation of host immune genes [23]. They are pro-

duced from genome-encoded stem-loop RNA structures in a Dicer-1- and Ago1-dependent

manner, akin to siRNA biogenesis [24]. The role of siRNAs and microRNAs in mosquito–

arbovirus interactions is beyond the scope of this review and is discussed extensively elsewhere

[8,9,23,25].

In this review, we will focus on the most enigmatic class of small silencing RNAs in the con-

text of arbovirus–vector interactions: PIWI-interacting (pi)RNAs. piRNAs associate with the

PIWI clade of the Argonaute protein superfamily, display a broad size range (24–30 nt), and

are produced independently of Dicer [26]. The canonical function of the piRNA pathway is

protection of genome integrity in animal germ cells by silencing transposons, selfish genetic

elements with the ability to randomly integrate into the host genome [27]. Recently, however,

several groups, including ours, have reported de novo production of piRNAs derived from

viral sequences in the vector mosquitoes Aedes aegypti and Ae. albopictus and in cell lines

derived from these animals [28–39]. Biogenesis of viral piRNAs (vpiRNAs) occurs indepen-

dent of siRNA production, which raises the exciting possibility that vpiRNAs may constitute

an additional line of defense against arboviruses in vector mosquitoes.

Our understanding of the piRNA pathway in insects is incomplete and largely biased

towards studies in the genetic model insect Drosophila melanogaster (Box 1). Yet, piRNA

pathways in vector mosquitoes differ considerably from Drosophila and other model organ-

isms. This becomes apparent in many aspects: (i) The composition of piRNA pathway com-

ponents differs between Drosophila and mosquitoes (Fig 1). Notably, the PIWI gene family,

which lies at the heart of the piRNA pathway, has undergone expansion in both Aedes and

Culexmosquitoes [40,41]. In addition, the recent annotations of mosquito genomes do not

contain orthologs for all the established factors involved in Drosophila piRNA biogenesis and

function [42]. (ii) Mosquito PIWI proteins have an extended expression pattern (Fig 1). For

instance, some of the members of the expanded Aedes PIWI family are expressed in somatic

tissue [43], whereas expression of PIWI proteins in Drosophila is largely restricted to gonadal

tissues [44–47]. (iii) The piRNA pathway in Aedes processes a broader repertoire of substrates

(Fig 1). Despite the large transposon content of the Ae. aegypti genome [48], relatively few

piRNAs are derived from these mobile elements [49]. Instead, a considerable proportion of

piRNAs are derived from nonrepetitive genomic areas, including the open reading frames of

protein-coding genes [49]. Yet, the most prominent gain of function is the production of piR-

NAs from viral RNA during the course of an acute infection.

vpiRNAs in AedesMosquitoes

Initial evidence for vpiRNA production came from the analysis of small RNA deep-sequenc-

ing data of the Drosophila ovarian somatic sheet (OSS) cells persistently infected with several

RNA viruses [69]. OSS cells exclusively express Piwi but lack the PIWI proteins that act in

the ping-pong amplification machinery. Since Piwi preferentially associates with piRNAs

containing a uridine at the first nucleotide position, both sense and antisense vpiRNAs pro-

duced in these cells bear a 1U bias (Table 1). However, to date, vpiRNAs have never been

found in adult flies. Even infection with Sigma virus, which naturally infects Drosophila
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Box 1. piRNA Biogenesis in Drosophila

In the Drosophila germline, the mobilization of transposable elements is efficiently sup-

pressed by transcriptional and posttranscriptional gene silencing by the piRNA pathway.

piRNA biogenesis involves the primary processing pathway and ping-pong amplifica-

tion that is capable of triggering phased piRNA production. Below, we provide a brief

description of the Drosophila piRNA pathway; for a comprehensive review, we refer to

[26,50].

During primary processing, single-stranded piRNA precursors are generated from

genomically encoded piRNA clusters that are rich in transposon remnants [44]. The

endonuclease Zucchini (Zuc) cleaves these precursors directly upstream of uridine resi-

dues, thus producing piRNA intermediates with a bias for a uridine at the first nucleo-

tide position (1U) [51–53]. In an electron-dense perinuclear structure termed nuage,

these piRNA intermediates are loaded onto the PIWI proteins Piwi and Aubergine

(Aub). Once bound, piRNA intermediates are trimmed and 20-Omethylated at their 30

end, forming mature piRNAs [54–57]. Mature piRNA-loaded Piwi translocates to the

nucleus and associates with Asterix and Panoramix/Silencio for transcriptional silencing

of transposons through deposition of repressive chromatin marks [58–63].

piRNA-loaded Aub remains in the nuage where it initiates the secondary ping-pong

amplification cycle by recognition and cleavage of cognate transposon mRNA

[44,45,64]. The resulting cleavage product forms the precursor of a secondary sense

piRNA that associates with Ago3. piRNA-loaded Ago3 can target and cleave antisense

piRNA precursors generating the 50 end of new sense piRNAs that can be loaded onto

Aub, completing the ping-pong amplification cycle [44,45].

Recent work has demonstrated a preference for uridine at the 50 position in the bind-

ing pocket of the MID (middle) domain of PIWI proteins [65,66]. In combination with

the predisposition of Zuc to cleave directly 50 of uridine residues, this causes Aub to asso-

ciate predominantly with 1U antisense piRNAs. A subset of PIWI proteins, including

Aub and silkworm Siwi, have an additional preference for target RNAs carrying an aden-

osine directly opposite of the first position of the piRNA [66,67]. As PIWI-mediated

cleavage occurs specifically between nucleotide 10 and 11, Ago3-associated sense piR-

NAs are enriched for adenosine residues at their tenth position (10A). The resulting 1U/

10A signature is a characteristic hallmark of secondary ping-pong amplification of piR-

NAs. Secondary amplification endows the piRNA pathway with specificity, as from a

diverse pool of primary piRNAs, only those recognizing active transposons are

amplified.

Recent studies have proposed that secondary piRNAs initiate Zuc-dependent produc-

tion of phased piRNAs [52,53]. Cleavage by Zuc determines the 30 termini of Aub-asso-

ciated piRNAs, while the downstream fragment is processed further into Piwi-associated

piRNAs by successive Zuc-mediated cleavage events [68]. These piRNAs show ~27 nt

phasing and a strong 1U bias because of the preference of Zuc to cleave upstream of uri-

dine residues. Phased piRNA production increases the diversity of the piRNA pool and

allows adaptation of the piRNA pathway to changes in transposon sequence.
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germ cells, does not give rise to vpiRNA production [70], despite ample expression of PIWI

proteins in these cells. In sharp contrast, vpiRNAs are readily detected both in Aedes cell

lines and in somatic tissues of adult Aedesmosquitoes upon infection with several arbovi-

ruses, including members of the Togaviridae [28–33], Flaviviridae [34–36], Bunyaviridae

[28,29,37–39], and Reoviridae [37] (Table 1). Besides a typical size distribution of small

RNAs around 24–30 nt, piRNAs from several viruses display the characteristic nucleotide

bias indicative of ping-pong amplification (Box 1). Across all virus families, the secondary

10A-biased piRNAs are enriched for the strand with coding capacity, yet the mechanisms

responsible for this sorting remain elusive. In addition, vpiRNAs from dengue virus (Flavivi-

rus genus, Flaviviridae family) and Sindbis virus (Alphavirus genus, Togaviridae family) have

been verified to be 20-Omethylated at the 30 terminal nucleotide (Table 1), a modification

that is present on all PIWI-loaded mature piRNAs (Box 1). PIWI-dependence of vpiRNAs

has been established for dengue, Sindbis, and Semliki Forest virus (Alphavirus genus, Toga-

viridae family) [31,32,36] and direct association with PIWI proteins has been demonstrated

for Sindbis virus–derived piRNAs [32].

Fig 1. Divergence of piRNA pathways in Drosophila melanogaster andAedes aegypti. InDrosophila (left panel), PIWI proteins are almost
exclusively expressed in gonadal tissues. Nuclear Piwi is expressed in both germ cells and ovarian somatic cells, whereas Aub and Ago3
expression is limited to germ cells specifically. In the nuage surrounding the nucleus of these cells, Aub and Ago3 form the ping-pong amplification
complex, which is responsible for secondary piRNA production with the characteristic 1U/10A nucleotide bias (Box 1).Drosophila piRNAs are
mainly derived from transposon sequences and to a lesser extent frommRNA. In Ae. aegypti (right panel), the PIWI protein family is expanded to
eight members (Piwi 1–7 and Ago3), some of which are expressed in somatic tissues. Of these PIWI proteins, Piwi5 and Ago3 interact to produce
piRNAs with the 1U/10A nucleotide bias indicative of secondary piRNA production through ping-pong amplification. In Aedes, piRNAs are
produced from viral RNA, in addition to transposon sequences and mRNA.

doi:10.1371/journal.ppat.1006017.g001
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Determinants of vpiRNA Biogenesis

The substrate for the antiviral siRNA pathway, double-stranded RNA, is not abundant in the

cytoplasm of healthy, uninfected cells and therefore serves as a danger signal indicating ongo-

ing virus infection [71]. In contrast, the substrate for vpiRNA biogenesis is a single-stranded

viral RNA. It is unknown how PIWI proteins distinguish viral from host RNA and how they

determine which of these transcripts are used for piRNA biogenesis. Like cellular mRNAs,

single-stranded (+) RNAs of major arbovirus families carry a 50 cap, produced by a virus-

encoded capping machinery (flaviviruses and alphaviruses) or through a mechanism termed

cap-snatching (bunyaviruses) [72]. In contrast to the eukaryotic and flavivirus capping

machineries, that of alphaviruses does not deposit 20-Omethylation marks at the first two

nucleotides downstream of the cap structure [72,73]. Additionally, genomic RNAs of flavivi-

ruses lack the poly-A tail normally present on cellular mRNAs [74]. In analogy to innate

immune sensors of vertebrates, it is conceivable that the mosquito PIWI proteins specifically

Table 1. vpiRNA production in infections with arboviruses and insect-specific viruses.

Virus family Name Genus Genome Host and cells* Nucleotide and

(strand)

biases**

30 end

modification

PIWI protein-

dependent

Reference

Togaviridae Sindbis virus Alphavirus +ssRNA Aag2, U4.4,
C6/36

1U (-), 10A (+) yes Piwi5/Ago3 in Aag2
cells***

[28,29,32]

chikungunya

virus

Alphavirus +ssRNA Ae. aegypti; Ae.
albopictus

(soma); U4.4,
C6/36, C7-10

1U (-), 10A (+) n.a. n.a. [30,33]

Semliki Forest

virus

Alphavirus +ssRNA Aag2, U4.4 1U (-), 10A (+) n.a. Loss of vpiRNAs upon
combined knockdown
of Piwi1-7 and Ago3 in
Aag2 cells

[31]

Flaviviridae dengue virus,

serotype 2

Flavivirus +ssRNA Ae. aegypti; Aag2,
C6/36

10A (+) yes Piwi5, Ago3, and to a
lesser extent Piwi6 in
Aag2 cells

[34–36]

cell fusing agent

virus

Flavivirus +ssRNA Aag2, C6/36 10A (+) n.a n.a. [34]

Bunyaviridae La Crosse virus Orthobunyavirus -ssRNA, 3
segments

C6/36 1U (-), 10A (+) n.a. n.a. [28,29]

Schmallenberg

virus

Orthobunyavirus -ssRNA, 3
segments

KC, Aag2 1U (-), 10A (+) n.a. n.a. [37]

Rift Valley fever

virus

Phlebovirus -ssRNA, 3
segments

Aag2, U4.4,
C6/36

1U (-), 10A (+) n.a. n.a. [38]

Phasi Charoen-

like virus

unclassified -ssRNA, 3
segments

Ae. aegypti 1U (-), 10A (+) n.a. n.a. [39]

Reoviridae bluetongue virus Orbivirus dsRNA10
segments

KC, Aag2 n.a. n.a. n.a. [37]

Dicistroviridae Drosophila C

virus

Cripavirus +ssRNA OSS 1U n.a. n.a. [69]

Nodaviridae American

nodavirus

Alphanodavirus +ssRNA, 2
segments

OSS 1U n.a n.a. [69]

n.a., not analyzed.

*Aag2 cells are derived from Ae. aegyptimosquitoes; U4.4, C6/36, and C7-10 cells are derived from Ae. albopictusmosquitoes; KC cells are derived from

Culicoides sonorensis;OSS cells are derived from the ovarian somatic sheet of Drosophila melanogaster.

** The strand orientation is defined in relation to translation; (+) refers to the sense strand with coding potential, (-) refers to the antisense strand. For

ssRNA viruses, this reflects the antigenome and genome, respectively.

*** (+) strand piRNAs associate with Ago3 and (-) strand piRNAs associate with Piwi5.

doi:10.1371/journal.ppat.1006017.t001
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recognize such nonself RNA features or that they are recruited to these features by adaptor

proteins.

A clue that may help in understanding the mechanisms of target selection lies in the geno-

mic distribution of vpiRNAs. While approximately equal levels of viral siRNAs (vsiRNAs) are

produced along arbovirus genomes, vpiRNA production is mostly confined to specific hotspot

regions. In alphaviruses such as Sindbis, chikungunya, and Semliki Forest virus, vpiRNAs are

predominantly produced from a subgenomic RNA that is transcribed from an internal pro-

moter sequence (Fig 2A). This may be due to higher expression of subgenomic relative to

genomic RNA. For example, for Sindbis virus it has been shown that the subgenomic pro-

moter yields an excess of subgenomic RNA compared to full length genomic RNA [75,76].

Furthermore, subgenomic ssRNA may be more accessible for the piRNAmachinery because it

is required for translation of the structural proteins at later stages of the infection. However,

these hypotheses do not explain why alphavirus-derived piRNAs are not uniformly distributed

over the length of the subgenomic RNA but rather display very discrete hotspots in the 50

region of the capsid gene (Fig 2A). One mechanism that could underlie this pattern is process-

ing of abortive viral RNA transcripts by the piRNAmachinery. Incomplete viral transcripts

are not protected by RNA replication or translation machineries and may therefore represent

Fig 2. Viral piRNA profiles. piRNA distributions across the genomes of selected (A) alphaviruses, (B)
flaviviruses, and (C) bunyaviruses. The plots depict published genome profiles of Sindbis virus (SINV) [29],
chikungunya virus (CHIKV) [30], Semliki Forest virus (SFV) [31], dengue virus serotype 2 (DENV2) [35,36],
cell fusing agent virus (CFAV) [34], Rift Valley fever virus (RVFV) [38], and Schmallenberg virus (SBV) [37].
For alphaviruses, the position of the subgenomic promoter is depicted. The piRNA coverage on the sense or
antisense strand is shown as peaks above or below the x-axis, respectively. Please note that the plots are
representations of piRNA profiles frommultiple studies that used different ways of normalizing and presenting
read counts. Therefore, the heights of the bars are arbitrary and do not allow a quantitative comparison
between the different viruses.

doi:10.1371/journal.ppat.1006017.g002
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easily accessible substrates for vpiRNA production. Alternatively, RNA sequences or structural

elements may recruit piRNA biogenesis factors to specific regions of the viral genomes.

Recently, Homolka et al. described such a piRNA-trigger sequence (PTS) in the Drosophila fla-

menco locus, which evokes piRNA biogenesis independent of its genomic context. However,

whether this PTS is a structural motif or harbors a small, as-yet unrecognized sequence motif

remains to be unraveled [77]. Similarly, Ishizu et al. identified a cis-acting, 100-nt fragment in

the 30UTR of the piRNA-producing gene traffic jam that triggers piRNA production when

expressed from unintegrated plasmid DNA. These plasmid-derived piRNAs were efficient in

transcriptional silencing of endogenous genes [78]. In light of these data, it would be interest-

ing to test whether vpiRNA hotspot sequences promote piRNA production when placed out-

side their viral context.

piRNA hotspots in flavivirus genomes, including dengue and cell fusing agent virus, differ

considerably from those in alphaviruses. Flavivirus piRNAs mostly derive from few very dis-

crete hotspots, sometimes representing single sequences (Fig 2B). The nature of these piRNA

spikes remains obscure, but this difference strongly suggests that the mechanisms underlying

alphavirus and flavivirus piRNA biogenesis are fundamentally different.

Common to alphavirus and flavivirus piRNAs is their extreme strand bias towards

sequences from the viral sense strands. In sharp contrast, bunyavirus piRNAs are produced

from both antigenomic and genomic strands at a more equal ratio (Fig 2C). It is currently

unclear whether this reflects differences in the replication strategies of alphaviruses and flavivi-

ruses (both +ssRNA viruses) compared to bunyaviruses (-ssRNA virus) or if this is due to vari-

ations in the piRNAmachinery acting on RNAs of distinct viruses. These observations clearly

underscore the need for a comprehensive analysis of cis- and trans-acting factors required for

the piRNA biogenesis from arboviruses of all families.

Biogenesis of vpiRNAs

Functional diversification of Aedes PIWI proteins after gene duplication in combination with

somatic expression are likely the main drivers of the expansion of piRNA substrates, including

viral RNA. Ae. aegypti Piwi4, Piwi5, Piwi6, and Ago3 are abundantly expressed in somatic tis-

sue of adult mosquitoes [43] and Ae. aegyptiAag2 cells [29]. In an RNAi screen targeting indi-

vidual PIWI proteins in Aag2 cells, our group identified Piwi5 and Ago3 as the main players

for vpiRNA production from Sindbis virus. Piwi5 and Ago3 bind vpiRNAs from opposite

strands and with distinct nucleotide biases. Whereas Piwi5 binds 1U-biased antisense piRNAs,

Ago3 binds 10A-biased piRNAs derived from the viral sense strand [32]. These observations

suggest a model in which ping-pong amplification is initiated by Piwi5-bound primary piR-

NAs from the Sindbis virus antisense strand. Cleavage of the sense strand by Piwi5 results in

the production of secondary sense strand piRNAs that are loaded into Ago3 (Fig 3).

Knockdown of Piwi5 and Ago3—and to a lesser extent, Piwi6—results in reduced vpiRNA

production from dengue virus serotype 2 in Aag2 cells [36]. The additional requirement of

Piwi6 specifically for dengue virus piRNA biogenesis suggests that Aedes PIWI proteins have

specialized in processing distinct RNA sources. This is further supported by the differential

requirement of PIWI proteins for the processing of transposon-derived piRNAs that, in con-

trast to Sindbis virus–derived piRNAs, directly or indirectly relies on all somatic Aedes PIWI

proteins [32] (Fig 3). Future research should define to what extent vpiRNA production relies

on similar or distinct PIWI family members for viruses within the same virus family and

between different virus families. Of special interest are bunyaviruses, for which PIWI depen-

dency thus far has not been studied, despite the fact that these viruses represent the largest

arbovirus family [2].
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The piRNA Pathway Acts in Resistance and Tolerance to Virus
Infections

Arboviruses establish persistent infections in mosquitoes without causing apparent fitness loss

in their vectors, despite high viral load. Such a defense strategy in which high pathogen levels

are tolerated and the focus lies on preventing infection-induced damage has been termed toler-

ance. In contrast, actively restricting virus growth and potentially clearing the infection is a

defense strategy called resistance [6]. Although a comprehensive model for vpiRNA function

is still lacking, there is good evidence that the piRNA pathway is implicated in both strategies.

For example, it was shown that upon knockdown of Piwi4 in Ae. aegyptiAag2 cells, replica-

tion of Semliki Forest virus is strongly enhanced [31]. Yet, this resistance seems to be indepen-

dent of vpiRNA production, as Piwi4 depletion does not cause reduction of vpiRNA levels

[31]. In line with this observation, immunoprecipitation of Piwi4 in Aag2 cells infected with a

related alphavirus (Sindbis virus) is depleted of vpiRNAs [32]. Therefore, the molecular mech-

anism by which Piwi4 exerts its antiviral activity remains to be investigated. Knockdown of

Piwi5 and Ago3 in Aag2 cells results in profound decline in vpiRNA expression from Sindbis

Fig 3. Model for piRNA biogenesis in Aedes aegypti.RNAmolecules from varying sources are processed differently by the piRNAmachinery
in Ae. aegypti. Upon acute infection, Sindbis virus RNA is processed into ping-pong–dependent piRNAs involving PIWI proteins Piwi5 and Ago3. In
contrast, dengue virus RNA can also be processed into piRNAs by Piwi6. Transposon-derived piRNAs associate primarily with Piwi5 and Piwi6;
however, some transposon RNAs feed into the ping-pong loop and give rise to Ago3-bound secondary piRNAs. Additionally, the production of
transposon piRNAs is dependent on Piwi4 in an indirect manner, as transposon-derived piRNAs are not loaded in Piwi4, but knockdown of Piwi4
does reduce their numbers. Viral RNAmay directly enter the piRNAmachinery; additionally, viral RNA is reverse transcribed to produce a DNA
form of the virus (vDNA). The vDNAmay either remain episomal or integrate into the host genome. Putative vDNA-derived transcripts may serve
as additional precursors for vpiRNA production. Moreover, when genome integration occurs in the germline, the vDNA fragment forms a novel
endogenous viral element (EVE) that may lead to the production of EVE-derived piRNAs.

doi:10.1371/journal.ppat.1006017.g003
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virus and dengue virus, but viral replication is not strongly affected [36]. Whether PIWI deple-

tion in adult mosquitoes causes enhanced arbovirus replication remains to be shown.

Interestingly, in mosquito cells infected with Rift Valley fever virus (Phlebovirus genus,

Bunyaviridae family), vpiRNAs are primarily detected late in infection following a first wave of

vsiRNAs. The vpiRNAs vastly outnumber vsiRNAs at 72 hours postinfection [38]. These data

suggest that vpiRNAs may exert their function primarily late during Rift Valley fever virus

infection or during the establishment of a persistent infection. Similarly, Goic et al. show that

ping-pong–amplified piRNAs are present at nine days postinfection of Ae. albopictusmosqui-

toes with chikungunya virus, yet that population is not seen at three days postinfection [33]. In

contrast, mosquitoes infected with dengue virus type 2 show the highest accumulation of vsiR-

NAs at nine days postinfection, whereas piRNA-sized reads are the dominant population at

two days postinfection [35]. On the whole, it is currently unclear how differential accumula-

tion of vsiRNAs and vpiRNAs during the course of infection shapes the immune response in

mosquitoes. An intriguing possibility is that the ratio of these two classes of small RNAs is

important for the transition from an acute defense mechanism to the establishment of a persis-

tent infection.

In line with this idea, Goic et al. have proposed a model through which the mosquito

piRNA pathway may regulate tolerance against dengue and chikungunya virus in Aedesmos-

quitoes during persistent infections [33]. Central to the proposed mechanism is the production

of piRNAs from a viral DNA form (vDNA) of these cytoplasmic RNA viruses (Fig 3). Unlike

retroviruses, these viruses do not encode their own reverse transcriptase necessary for the gen-

eration of a DNA form. Instead, it is thought that cDNA production depends on the reverse

transcription activity of endogenous retrotransposons, a mechanism that has been demon-

strated previously inDrosophila [79]. Administration of a reverse transcriptase inhibitor causes

reduction of both vsiRNA and vpiRNA levels, suggesting that a viral cDNA form is required

for the establishment of effective small RNA responses. Mosquitoes treated with reverse tran-

scriptase inhibitors die faster after virus inoculation without a strong increase in viral loads.

Therefore, the authors conclude that the production of viral cDNA is important for tolerance

to virus infection [33]. Yet, the molecular mechanisms linking vpiRNA production and this

tolerance phenotype require further investigation. It is possible that vDNA, either integrated

in the host genome or existing as episomal sequences, give rise to aberrant transcripts that are

processed into piRNAs. Additionally, genomic integration of vDNA close to transposable ele-

ments may favor recognition of vDNA-derived transcripts by the piRNA machinery.

Many viruses have developed strategies to evade or interfere with antiviral pathways. For

instance, several insect viruses have evolved mechanisms to suppress various steps of the anti-

viral siRNA pathway [8,80]. Likewise, if the piRNA pathway exerts strong antiviral activity, it

is likely that arboviruses have evolved suppressors of piRNA biogenesis and function. Intrigu-

ingly, introduction into the chikungunya genome of the gene encoding the Flock House virus

B2 protein, an established suppressor of the siRNA pathway, results in a slight decrease of

vpiRNA levels [30]. Whether this is due to direct interference with the piRNA pathway or to

indirect effects (for example, by affecting RNA abundance or accessibility) remains unclear.

piRNAs and Endogenous Viral Elements: Heritable Immune
Memory?

The canonical function of piRNAs is to provide heritable immunity against transposable ele-

ments. The piRNAmachinery is able to adapt to newly introduced transposable elements

when these integrate into genomic piRNA clusters [81]. In germ cells, these integration events

are heritable and therefore provide an evolutionary benefit. It is an intriguing hypothesis that
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the piRNA pathway in mosquitoes, besides providing memory of transposon encounters, may

establish heritable immunity against circulating viruses.

Strikingly, remnants of cytoplasmic RNA virus genomes are frequently integrated in

genomes of host species, thus providing a record of previous virus encounters [82,83]. These

endogenous viral elements (EVE) may contribute to antiviral immunity in both invertebrates

and vertebrates. For example, the genome of the ground squirrel accommodates a large num-

ber of endogenous bornavirus-like N elements (EBLN), which are commonly integrated in

mammalian genomes [84]. Some EBLNs contain intact open reading frames, and expression

of the encoded proteins interferes with infection with a related virus [85]. Besides the expres-

sion of viral proteins from EBLNs, piRNAs have recently been hypothesized to contribute to

the EBLN-mediated immunity in the mammalian germline [86].

Strikingly, Aedes genomes contain a large number of EVEs, some of which are annotated as

protein-coding ORFs in the published genome assembly [49,87–90]. PCR-based surveys show

that mosquito populations differ in EVE content, indicating that EVEs may be dynamically

acquired and stably inherited to the next generation [87–89]. Intriguingly, mosquito EVEs are

a prominent source of piRNAs [49]. These piRNAs are mostly antisense to the orientation of

the putative viral ORFs [49], suggesting an evolutionary benefit in retaining EVEs that produce

piRNAs with the potential to target cognate viral protein-coding RNA. Yet, the extent to

which these EVE-derived piRNAs represent a heritable antiviral immune memory needs to be

explored.

Interestingly, RNA-mediated antiviral resistance had previously been demonstrated in

adult mosquitoes and cells. Expression of genome segments of dengue or La Crosse virus prior

to infection with the same viruses interfered with virus replication [76,91–93]. Mutagenesis of

in-frame start codons in the expressed viral sequence did not alter this resistance phenotype,

indicating that it was mediated by RNA [92]. Moreover, the expression of viral sequences pro-

vided partial cross-protection, since replication of related viruses but not viruses from a dis-

tinct family was inhibited [91,92]. Similarly, in an attempt to gain siRNA-mediated immunity

against dengue virus, Adelman et al. generated clonal C6/36 cell lines harboring a plasmid-

encoded inverted repeat to produce dsRNA targeting the dengue prM gene. A highly resistant

cell line was obtained, and the authors attributed this resistance phenotype to the production

of viral siRNAs. Indeed, production of small RNAs with dengue sequences was shown by

northern blotting [94]. However, later studies found that C6/36 cells are Dicer-2 deficient and

therefore incapable of producing siRNAs [28]. It is tempting to speculate that the observed

dengue resistance was in fact mediated by piRNAs.

Another small RNA-mediated pathway that provides immune memory through integration

of foreign genetic information into the genome is the CRISPR-Cas system. In the prokaryotic

CRISPR system, short spacer sequences derived from foreign genetic material are incorporated

in designated genomic loci. These spacer sequences guide CRISPR-associated (Cas) proteins

to exogenous target sequences and as such provide heritable immunity against viruses and

plasmids [95]. The piRNA pathway has many similarities with the CRISPR system; in both sys-

tems, exogenous nucleic acid sequences are found in specific clusters, which produce small

RNAs that guide proteins with endonucleic activity to cognate target sequences [26,49,96].

Despite their obvious similarities, there are also major differences between the two RNA-

guided silencing pathways. While in the CRISPR system newly acquired spacers are incorpo-

rated in an orderly fashion, incorporation of novel sequences into piRNA clusters depends on

retrotransposon activity and appears to be random. Hence, adaptation to new threats is

thought to be less efficient in piRNA clusters than in CRISPR loci [81]. Nonetheless, the possi-

bility that piRNA clusters may encode a heritable immune memory in vector mosquitoes simi-

lar to the prokaryotic CRISPR system is intriguing and solicits further investigation.
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vpiRNAs in Other Host Species

Whereas vpiRNAs can be readily detected in Aedesmosquitoes and cell lines, vpiRNAs have

thus far not been reported in important blood-feeding mosquito vectors from the Anopheles

and Culex genera. The Anopheles gambiae genome encodes, like Drosophila, two orthologs of

Piwi/Aub and one copy of Ago3. The Cx. quinquefasciatus PIWI gene family, however, has

undergone expansion to seven members [40,41].

Infection of An. gambiae with o’nyong-nyong virus (Alphavirus genus, Togaviridae family)

does not give rise to an abundant population of piRNA-sized small RNAs [97]. Yet, in this

study, the authors did not analyze additional piRNA features of the small amount of piRNA-

sized reads in the sequencing libraries, making it hard to conclusively exclude low level vpiRNA

production. Since related viruses give rise to ping-pong amplified vpiRNAs in Aedesmosqui-

toes, it would be interesting to investigate whether a ping-pong signature is also present for

o’nyong-nyong piRNA-sized reads. This may also provide an explanation for the observed

increase of o’nyong-nyong virus upon depletion of Ago3 in An. gambiae mosquitoes [15].

Small RNA deep-sequencing in Cx. pipiensmosquitoes infected with West Nile virus

(WNV) or Usutu virus (Flavivirus genus, Flaviviridae family) did not uncover vpiRNAs,

whereas vsiRNAs were readily detected [98,99]. Whether this is due to Cx. pipiens being unable

to produce vpiRNAs or the inability of WNV to trigger vpiRNA production is unclear, espe-

cially as WNV also failed to induce vpiRNA production in Ae. albopictus C6/36 cells [28],

which are competent in producing vpiRNAs from other flaviviruses. In contrast, Sindbis virus

infection of Aedes cells gives rise to an abundant population of vpiRNAs [29,32] yet fails to

induce vpiRNA production in Culexmosquitoes (S1 Fig). Thus, although PIWI gene duplica-

tions have occurred both in Aedes and Culex, only Aedes PIWI proteins seem to support effi-

cient vpiRNA biogenesis. A possible explanation for this discrepancy would be that Culex

PIWI genes are not coexpressed with viral RNA in somatic cells. Alternatively, viral RNA

might not be a favorable substrate for Culex PIWI proteins. Future research will have to char-

acterize to what extent vpiRNA production is supported in different blood-feeding mosquito

species.

The piRNA pathway is not frequently studied in insects other than mosquitoes and fruit

flies. Nevertheless, PIWI gene duplication and somatic expression of PIWI proteins has been

observed in the pea aphid Acyrthosiphon pisum [100]. This indicates that there is potential for

functional innovation and perhaps viral piRNA biogenesis beyond mosquitoes. Likewise,

although PIWI proteins are generally highly expressed in germline tissues in vertebrates,

emerging evidence suggests that PIWI proteins may also be expressed in somatic cells includ-

ing neurons, cancer cells, and stem cells [101,102]. However, it is not yet known whether these

somatically expressed PIWI proteins are capable of targeting viral RNA.

Open Questions

Despite the progress in our understanding of vpiRNA biogenesis and function, many impor-

tant questions remain: (i) Which mosquito species are capable producing vpiRNAs and which

viruses elicit a piRNA response? In relation to these questions, future research should investi-

gate to what extent the piRNA pathway determines vector competence and the specificity of

arboviruses for certain mosquito species. (ii) What is the composition of macromolecular

complexes required for piRNA production from various RNA sources? It is of particular

importance to investigate which PIWI proteins are required for piRNA production from dif-

ferent arboviruses as well as from transposons and other endogenous sources. Also, the contri-

bution of additional proteins to piRNA biogenesis and function warrants investigation. (iii)

What is the role of the mosquito piRNA pathway in mediating resistance to and tolerance for
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arbovirus infections? (iv) What is the contribution of endogenous viral elements to antiviral

immunity and immune memory in mosquitoes? (v) Have arboviruses developed strategies to

evade or interfere with the piRNA pathway? (vi) How widely do somatic piRNA pathways

occur across the tree of life, and has piRNA-mediated gene silencing acquired additional func-

tions beyond transposon control in other animal species? The mosquito piRNA pathway and

in particular the production of vpiRNAs shows that the piRNA pathway is much more versatile

than previously anticipated. It remains to be seen how many more surprises PIWI proteins

have in store when we take a closer look at this fascinating pathway in other species.

Data Availability Statement

New small RNA sequencing data have been deposited in NCBI Sequence Read Archive (acces-

sion number SRA486748).

Supporting Information

S1 Fig. Size profile of Sindbis virus small RNAs in Culex pipiens.Cx. pipiensmosquitoes

were infected with 9,660 TCID50 Sindbis virus (pTE 2J 30GFP) by intrathoracic injection. Two

days postinfection, RNA was extracted from the mosquitoes using Isol-RNA lysis reagent.

Small RNAs were isolated by gel-electrophoresis, and deep-sequencing libraries were prepared

using Illumina’s Truseq small RNA preparation kit. Small RNA libraries were then sequenced

on a Illumina Hiseq2500 system and mapped to the Sindbis virus genome. The size distribu-

tion of viral small RNAs derived from the sense strand (black) or antisense strand (grey) is

depicted for sequencing reads that align to the genome with a maximum of one mismatch in

the first 28 nt. The size profile suggests that Cx. pipiens does not produce vpiRNAs, but it can-

not be excluded that vpiRNAs are found when using a different route of inoculation, at other

time points, or in infections with other viruses. Deep-sequencing data have been deposited in

the NCBI Sequence Read Archive under accession number SRA486748.
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