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Abstract

Estimating the 6D pose of objects using only RGB im-

ages remains challenging because of problems such as oc-

clusion and symmetries. It is also difficult to construct 3D

models with precise texture without expert knowledge or

specialized scanning devices. To address these problems,

we propose a novel pose estimation method, Pix2Pose, that

predicts the 3D coordinates of each object pixel without

textured models. An auto-encoder architecture is designed

to estimate the 3D coordinates and expected errors per

pixel. These pixel-wise predictions are then used in multiple

stages to form 2D-3D correspondences to directly compute

poses with the PnP algorithm with RANSAC iterations. Our

method is robust to occlusion by leveraging recent achieve-

ments in generative adversarial training to precisely re-

cover occluded parts. Furthermore, a novel loss function,

the transformer loss, is proposed to handle symmetric ob-

jects by guiding predictions to the closest symmetric pose.

Evaluations on three different benchmark datasets contain-

ing symmetric and occluded objects show our method out-

performs the state of the art using only RGB images.

1. Introduction

Pose estimation of objects is an important task to under-

stand the given scene and operate objects properly in robotic

or augmented reality applications. The inclusion of depth

images has induced significant improvements by providing

precise 3D pixel coordinates [10, 30]. However, depth im-

ages are not always easily available, e.g., mobile phones

and tablets, typical for augmented reality applications, offer

no depth data. As such, substantial research is dedicated to

estimating poses of known objects using RGB images only.

A large body of work relies on the textured 3D model of

an object, which is made by a 3D scanning device, e.g., Big-

BIRD Object Scanning Rig [35], and provided by a dataset

to render synthetic images for training [14, 28] or refine-

ment [18, 21]. Thus, the quality of texture in the 3D model

should be sufficient to render visually correct images. Un-

fortunately, this is not applicable to domains that do not

Figure 1. An example of converting a 3D model to a colored coor-

dinate model. Normalized coordinates of each vertex are directly

mapped to red, green and blue values in the color space. Pix2Pose

predicts these colored images to build a 2D-3D correspondence

per pixel directly without any feature matching operation.

have textured 3D models such as industry that commonly

use texture-less CAD models. Since the texture quality of a

reconstructed 3D model varies with method, camera, and

camera trajectory during the reconstruction process, it is

difficult to guarantee sufficient quality for training. There-

fore, it is beneficial to predict poses without textures on 3D

models to achieve more robust estimation regardless of the

texture quality.

Even though recent studies have shown great potential to

estimate pose without textured 3D models using Convolu-

tional Neural Networks (CNN) [2, 3, 24, 29], a significant

challenge is to estimate correct poses when objects are oc-

cluded or symmetric. Training CNNs is often distracted by

symmetric poses that have similar appearance inducing very

large errors in a naı̈ve loss function. In previous work, a

strategy to deal with symmetric objects is to limit the range

of poses while rendering images for training [14, 22] or sim-

ply to apply a transformation from the pose outside of the

limited range to a symmetric pose within the range [24] for

real images with pose annotations. This approach is suffi-

cient for objects that have infinite and continuous symmetric

poses on a single axis, such as cylinders, by simply ignor-

ing the rotation about the axis. However, as pointed in [24],

when an object has a finite number of symmetric poses, it is

difficult to determine poses around the boundaries of view

limits. For example, if a box has an angle of symmetry, π,
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with respect to an axis and a view limit between 0 and π,

the pose at π + α(α ≈ 0, α > 0) has to be transformed

to a symmetric pose at α even if the detailed appearance is

closer to a pose at π. Thus, a loss function has to be inves-

tigated to guide pose estimations to the closest symmetric

pose instead of explicitly defined view ranges.

This paper proposes a novel method, Pix2Pose, that can

supplement any 2D detection pipeline for additional pose

estimation. Pix2Pose predicts pixel-wise 3D coordinates of

an object using RGB images without textured 3D models

for training. The 3D coordinates of occluded pixels are im-

plicitly estimated by the network in order to be robust to oc-

clusion. A specialized loss function, the transformer loss,

is proposed to robustly train the network with symmetric

objects. As a result of the prediction, each pixel forms a

2D-3D correspondence that is used to compute poses by the

Perspective-n-Point algorithm (PnP) [17].

To summarize, the contributions of the paper are: (1) A

novel framework for 6D pose estimation, Pix2Pose, that ro-

bustly regresses pixel-wise 3D coordinates of objects from

RGB images using 3D models without textures during train-

ing. (2) A novel loss function, the transformer loss, for han-

dling symmetric objects that have a finite number of am-

biguous views. (3) Experimental results on three different

datasets, LineMOD [8], LineMOD Occlusion [1], and T-

Less [9], showing that Pix2Pose outperforms the state-of-

the-art methods even if objects are occluded or symmetric.

The remainder of this paper is organized as follows. A

brief summary of related work is provided in Sec. 2. Details

of Pix2Pose and the pose prediction process are explained

in Sec. 3 and Sec. 4. Experimental results are reported in

Sec. 5 to compare our approach with the state-of-the-art

methods. The paper concludes in Sec. 6.

2. Related work

This section gives a brief summary of previous work re-

lated to pose estimation using RGB images. Three different

approaches for pose estimation using CNNs are discussed

and the recent advances of generative models are reviewed.

CNN based pose estimation The first, and simplest,

method to estimate the pose of an object using a CNN is

to predict a representation of a pose directly such as the lo-

cations of projected points of 3D bounding boxes [24, 29],

classified view points [14], unit quaternions and transla-

tions [32], or the Lie algebra representation, so(3), with the

translation of z-axis [3]. Except for methods that predict

projected points of the 3D bounding box, which requires

further computations for the PnP algorithm, the direct re-

gression is computationally efficient since it does not re-

quire additional computation for the pose. The drawback of

these methods, however, is the lack of correspondences that

can be useful to generate multiple pose hypotheses for the

robust estimation of occluded objects. Furthermore, sym-

metric objects are usually handled by limiting the range

of viewpoints, which sometimes requires additional treat-

ments, e.g., training a CNN for classifying view ranges [24].

Xiang et al. [32] propose a loss function that computes the

average distance to the nearest points of transformed mod-

els in an estimated pose and an annotated pose. However,

searching for the nearest 3D points is time consuming and

makes the training process inefficient.

The second method is to match features to find the near-

est pose template and use the pose information of the tem-

plate as an initial guess [8]. Recently, Sundermeyer et

al. [28] propose an auto-encoder network to train implicit

representations of poses without supervision using RGB

images only. Manual handling of symmetric objects is not

necessary for this work since the implicit representation

can be close to any symmetric view. However, it is diffi-

cult to specify 3D translations using rendered templates that

only give a good estimation of rotations. The size of the

2D bounding box is used to compute the z-component of

3D translation, which is too sensitive to small errors of 2D

bounding boxes that are given from a 2D detection method.

The last method is to predict 3D locations of pixels or

local shapes in the object space [2, 15, 22]. Brachmann et

al. [2] regress 3D coordinates and predict a class for each

pixel using the auto-context random forest. Oberwerger et

al. [22] predict multiple heat-maps to localize the 2D pro-

jections of 3D points of objects using local patches. These

methods are robust to occlusion because they focus on lo-

cal information only. However, additional computation is

required to derive the best result among pose hypotheses,

which makes these methods slow.

The method proposed in this paper belongs to the last

category that predicts 3D locations of pixels in the object

frame as in [1, 2]. Instead of detecting an object using local

patches from sliding windows, an independent 2D detection

network is employed to provide areas of interest for target

objects as performed in [28].

Generative models Generative models using auto-

encoders have been used to de-noise [31] or recover the

missing parts of images [33]. Recently, using Generative

Adversarial Network (GAN) [5] improves the quality of

generated images that are less blurry and more realistic,

which are used for the image-to-image translation [13], im-

age in-painting and de-noising [11, 23] tasks. Zakharov et

al. [34] propose a GAN based framework to convert a real

depth image to a synthetic depth image without noise and

background for classification and pose estimation.

Inspired by previous work, we train an auto-encoder ar-

chitecture with GAN to convert color images to coordinate

values accurately as in the image-to-image translation task

while recovering values of occluded parts as in the image

in-painting task.
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Figure 2. An overview of the architecture of Pix2Pose and the training pipeline.

3. Pix2Pose

This section provides a detailed description of the net-

work architecture of Pix2Pose and loss functions for train-

ing. As shown in Fig. 2, Pix2Pose predicts 3D coordinates

of individual pixels using a cropped region containing an

object. The robust estimation is established by recovering

3D coordinates of occluded parts and using all pixels of an

object for pose prediction. A single network is trained and

used for each object class. The texture of a 3D model is not

necessary for training and inference.

3.1. Network Architecture

The architecture of the Pix2Pose network is described in

Fig. 2. The input of the network is a cropped image Is us-

ing a bounding box of a detected object class. The outputs

of the network are normalized 3D coordinates of each pixel

I3D in the object coordinate and estimated errors Ie of each

prediction, I3D, Ie = G(Is), where G denotes the Pix2Pose

network. The target output includes coordinate predictions

of occluded parts, which makes the prediction more robust

to partial occlusion. Since a coordinate consists of three val-

ues similar to RGB values in an image, the output I3D can

be regarded as a color image. Therefore, the ground truth

output is easily derived by rendering the colored coordinate

model in the ground truth pose. An example of 3D coor-

dinate values in a color image is visualized in Fig. 1. The

error prediction Ie is regarded as a confidence score of each

pixel, which is directly used to determine outlier and inlier

pixels before the pose computation.

The cropped image patch is resized to 128×128px with

three channels for RGB values. The sizes of filters and

channels in the first four convolutional layers, the encoder,

are the same as in [28]. To maintain details of low-level

feature maps, skip connections [27] are added by copying

the half channels of outputs from the first three layers to

the corresponding symmetric layers in the decoder, which

results in more precise estimation of pixels around geomet-

rical boundaries. The filter size of every convolution and

deconvolution layer is fixed to 5×5 with stride 1 or 2 de-

noted as s1 or s2 in Fig. 2. Two fully connected layers are

applied for the bottle neck with 256 dimensions between

the encoder and the decoder. The batch normalization [12]

and the LeakyReLU activation are applied to every output

of the intermediate layers except the last layer. In the last

layer, an output with three channels and the tanh activation

produces a 3D coordinate image I3D, and another output

with one channel and the sigmoid activation estimates the

expected errors Ie.

3.2. Network Training

The main objective of training is to predict an output that

minimizes errors between a target coordinate image and a

predicted image while estimating expected errors of each

pixel.

Transformer loss for 3D coordinate regression To re-

construct the desired target image, the average L1 distance

of each pixel is used. Since pixels belonging to an object

are more important than the background, the errors under

the object mask are multiplied by a factor of β (≥ 1) to

weight errors in the object mask. The basic reconstruction

loss Lr is defined as,

Lr =
1

n

[

β
∑

i∈M

||Ii3D − Iigt||1 +
∑

i/∈M

||Ii3D − Iigt||1

]

, (1)

where n is the number of pixels, Iigt is the ith pixel of the

target image, and M denotes an object mask of the target

image, which includes pixels belonging to the object when

it is fully visible. Therefore, this mask also contains the

occluded parts to predict the values of invisible parts for

robust estimation of occluded objects.

The loss above cannot handle symmetric objects since it

penalizes pixels that have larger distances in the 3D space

without any knowledge of the symmetry. Having the advan-

tage of predicting pixel-wise coordinates, the 3D coordinate

of each pixel is easily transformed to a symmetric pose by

multiplying a 3D transformation matrix to the target image

directly. Hence, the loss can be calculated for a pose that
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Figure 3. An example of the pose estimation process. An image and 2D detection results are the input. In the first stage, the predicted

results are used to specify important pixels and adjust bounding boxes while removing backgrounds and uncertain pixels. In the second

stage, pixels with valid coordinate values and small error predictions are used to estimate poses using the PnP algorithm with RANSAC.

Green and blue lines in the result represent 3D bounding boxes of objects in ground truth poses and estimated poses.

has the smallest error among symmetric pose candidates as

formulated by,

L3D = min
p∈sym

Lr(I3D, RpIgt), (2)

where Rp ∈ R
3x3 is a transformation from a pose to a sym-

metric pose in a pool of symmetric poses, sym, including

an identity matrix for the given pose. The pool sym is as-

sumed to be defined before the training of an object. This

novel loss, the transformer loss, is applicable to any sym-

metric object that has a finite number of symmetric poses.

This loss adds only a tiny effort for computation since a

small number of matrix multiplications is required. The

transformer loss in Eq. 2 is applied instead of the basic re-

construction loss in Eq. 1. The benefit of the transformer

loss is analyzed in Sec. 5.7.

Loss for error prediction The error prediction Ie esti-

mates the difference between the predicted image I3D and

the target image Igt. This is identical to the reconstruction

loss Lr with β = 1 such that pixels under the object mask

are not penalized. Thus, the error prediction loss Le is writ-

ten as,

Le =
1

n

∑

i

||Iie − min
[

Li
r , 1

]

||22, β = 1. (3)

The error is bounded to the maximum value of the sigmoid
function.

Traininig with GAN As discussed in Sec. 2, the net-

work training with GAN generates more precise and real-

istic images in a target domain using images of another do-

main [13]. The task for Pix2Pose is similar to this task since

it converts a color image to a 3D coordinate image of an

object. Therefore, the discriminator and the loss function

of GAN [5], LGAN, is employed to train the network. As

shown in Fig. 2, the discriminator network attempts to dis-

tinguish whether the 3D coordinate image is rendered by a

3D model or is estimated. The loss is defined as,

LGAN = logD(Igt) + log(1−D(G(Isrc))), (4)

where D denotes the discriminator network. Finally, the

objective of the training with GAN is formulated as,

G∗ = argmin
G

max
D

LGAN(G,D) + λ1L3D(G) + λ2Le(G),

(5)

where λ1 and λ2 denote weights to balance different tasks.

4. Pose prediction

This section gives a description of the process that com-

putes a pose using the output of the Pix2Pose network. The

overview of the process is shown in Fig. 3. Before the esti-

mation, the center, width, and height of each bounding box

are used to crop the region of interest and resize it to the

input size, 128×128px. The width and height of the region

are set to the same size to keep the aspect ratio by taking

the larger value. Then, they are multiplied by a factor of

1.5 so that the cropped region potentially includes occluded

parts. The pose prediction is performed in two stages and

the identical network is used in both stages. The first stage

aligns the input bounding box to the center of the object

which could be shifted due to different 2D detection meth-

ods. It also removes unnecessary pixels (background and

uncertain) that are not preferred by the network. The sec-

ond stage predicts a final estimation using the refined input

from the first stage and computes the final pose.

Stage 1: Mask prediction and Bbox Adjustment In this

stage, the predicted coordinate image I3D is used for speci-

fying pixels that belong to the object including the occluded
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parts by taking pixels with non-zero values. The error pre-

diction is used to remove the uncertain pixels if an error

for a pixel is larger than the outlier threshold θo. The valid

object mask is computed by taking the union of pixels that

have non-zero values and pixels that have lower errors than

θo. The new center of the bounding box is determined with

the centroid of the valid mask. As a result, the output of the

first stage is a refined input that only contains pixels in the

valid mask cropped from a new bounding box. Examples

of outputs of the first stage are shown in Fig. 3. The refined

input possibly contains the occluded parts when the error

prediction is below the outlier threshold θo, which means

the coordinates of these pixels are easy to predict despite

occlusions.

Stage 2: Pixel-wise 3D coordinate regression with errors

The second estimation with the network is performed to

predict a coordinate image and expected error values us-

ing the refined input as depicted in Fig. 3. Black pixels in

the 3D coordinate samples denote points that are removed

when the error prediction is larger than the inlier thresh-

old θi even though points have non-zero coordinate values.

In other words, pixels that have non-zero coordinate values

with smaller error predictions than θi are used to build 2D-

3D correspondences. Since each pixel already has a value

for a 3D point in the object coordinate, the 2D image coordi-

nates and predicted 3D coordinates directly form correspon-

dences. Then, applying the PnP algorithm [17] with RAN-

dom SAmple Consensus (RANSAC) [4] iteration computes

the final pose by maximizing the number of inliers that have

lower re-projection errors than a threshold θre. It is worth

mentioning that there is no rendering involved during the

pose estimation since Pix2Pose does not assume textured

3D models. This also makes the estimation process fast.

5. Evaluation

In this section, experiments on three different datasets

are performed to compare the performance of Pix2Pose

to state-of-the-art methods. The evaluation using

LineMOD [8] shows the performance for objects without

occlusion in the single object scenario. For the multiple ob-

ject scenario with occlusions, LineMOD Occlusion [1] and

T-Less [9] are used. The evaluation on T-Less shows the

most significant benefit of Pix2Pose since T-Less provides

texture-less CAD models and most of the objects are sym-

metric, which is more challenging and common in industrial

domains.

5.1. Augmentation of training data

A small number of real images are used for training

with various augmentations. Image pixels of objects are ex-

tracted from real images and pasted to background images

that are randomly picked from the Coco dataset [20]. Af-

Figure 4. Examples of mini-batches for training. A mini-batch is

altered for every training iteration. Left: images for the first stage,

Right: images for the second stage.

ter applying the color augmentations on the image, the bor-

derlines between the object and the background are blurred

to make smooth boundaries. A part of the object area is

replaced by the background image to simulate occlusion.

Lastly, a random rotation is applied to both the augmented

color image and the target coordinate image. The same aug-

mentation is applied to all evaluations except sizes of oc-

cluded areas that need to be larger for datasets with occlu-

sions, LineMOD Occlusion and T-Less. Sample augmen-

tated images are shown in Fig. 4. As explained in Sec. 4, the

network recognizes two types of inputs, with background in

the first stage and without background pixels in the second

stage. Thus, a mini-batch is altered for every iteration as

shown in Fig. 4. Target coordinate images are rendered be-

fore training by placing the object in the ground truth poses

using the colored coordinate model as in Fig. 1.

5.2. Implementation details

For training, the batch size of each iteration is set to 50,

the Adam optimizer [16] is used with initial learning rate

of 0.0001 for 25K iterations. The learning rate is multi-

plied by a factor of 0.1 for every 12K iterations. Weights

of loss functions in Eq. 1 and Eq. 5 are: β=3, λ1=100

and λ2=50. For evaluation, a 2D detection network and

Pix2Pose networks of all object candidates in test sequences

are loaded to the GPU memory, which requires approxi-

mately 2.2GB for the LineMOD Occlusion experiment with

eight objects. The standard parameters for the inference

are: θi=0.1, θo=[0.1, 0.2, 0.3], and θre=3. Since the values

of error predictions are biased by the level of occlusion in

the online augmentation and the shape and size of each ob-

ject, the outlier threshold θo in the first stage is determined

among three values to include more numbers of visible pix-

els while excluding noisy pixels using samples of training

images with artificial occlusions. More details about param-

eters are given in the supplementary material. The training

and evaluations are performed with an Nvidia GTX 1080

GPU and i7-6700K CPU.

2D detection network An improved Faster R-CNN [6,

26] with Resnet-101 [7] and Retinanet [19] with Resnet-

50 are employed to provide classes of detected objects with
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ape bvise cam can cat driller duck e.box* glue* holep iron lamp phone avg

Pix2Pose 58.1 91.0 60.9 84.4 65.0 76.3 43.8 96.8 79.4 74.8 83.4 82.0 45.0 72.4

Tekin [29] 21.6 81.8 36.6 68.8 41.8 63.5 27.2 69.6 80.0 42.6 75.0 71.1 47.7 56.0

Brachmann [2] 33.2 64.8 38.4 62.9 42.7 61.9 30.2 49.9 31.2 52.8 80.0 67.0 38.1 50.2

BB8 [24] 27.9 62.0 40.1 48.1 45.2 58.6 32.8 40.0 27.0 42.4 67.0 39.9 35.2 43.6

Lienet30% [3] 38.8 71.2 52.5 86.1 66.2 82.3 32.5 79.4 63.7 56.4 65.1 89.4 65.0 65.2

BB8ref [24] 40.4 91.8 55.7 64.1 62.6 74.4 44.3 57.8 41.2 67.2 84.7 76.5 54.0 62.7

Implicitsyn [28] 4.0 20.9 30.5 35.9 17.9 24.0 4.9 81.0 45.5 17.6 32.0 60.5 33.8 31.4

SSD-6Dsyn/ref [14] 65 80 78 86 70 73 66 100 100 49 78 73 79 76.7

Radsyn/ref [25] - - - - - - - - - - - - - 78.7

Table 1. LineMOD: Percentages of correctly estimated poses (AD{D|I}-10%). (30%) means the training images are obtained from 30% of

test sequences that are two times larger than ours. (ref) denotes the results are derived after iterative refinement using textured 3D models

for rendering. (syn) indicates the method uses synthetically rendered images for training that also needs textured 3D models.

2D bounding boxes for all target objects of each evaluation.

The networks are initialized with pre-trained weights using

the Coco dataset [20]. The same set of real training im-

ages is used to generate training images. Cropped patches

of objects in real images are pasted to random background

images to generate training images that contain multiple

classes in each image.

5.3. Metrics

A standard metric for LineMOD, AD{D|I}, is mainly

used for the evaluation [8]. This measures the average dis-

tance of vertices between a ground truth pose and an esti-

mated pose. For symmetric objects, the average distance to

the nearest vertices is used instead. The pose is considered

correct when the error is less than 10% of the maximum 3D

diameter of an object.

For T-Less, the Visible Surface Discrepancy (VSD) is

used as a metric since the metric is employed to benchmark

various 6D pose estimation methods in [10]. This metric

measures distance errors of visible parts only, which makes

the metric invariant to ambiguities caused by symmetries

and occlusion. As in previous work, the pose is regarded

as correct when the error is less than 0.3 with τ=20mm and

δ=15mm.

5.4. LineMOD

For training, test sequences are separated into a training

and test set. The divided set of each sequence is identical

to the work of [2, 29], which uses 15% of test scenes, ap-

proximately less than 200 images per object, for training.

A detection result, using Faster R-CNN, of an object with

the highest score in each scene is used for pose estimation

since the detection network produces multiple results for

all 13 objects. For the symmetric objects, marked with (*)

in Table 1, the pool of symmetric poses sym is defined as,

sym= [I,Rπ
z ], where Rπ

z represents a transformation matrix

of rotation with π about the z-axis.

The upper part of Table 1 shows Pix2Pose significantly

Method Pix2Pose
Oberweger†

[22]

PoseCNN†

[32]

Tekin

[29]

ape 22.0 17.6 9.6 2.48

can 44.7 53.9 45.2 17.48

cat 22.7 3.31 0.93 0.67

driller 44.7 62.4 41.4 7.66

duck 15.0 19.2 19.6 1.14

eggbox* 25.2 25.9 22.0 -

glue* 32.4 39.6 38.5 10.08

holep 49.5 21.3 22.1 5.45

Avg 32.0 30.4 24.9 6.42

Table 2. LineMOD Occlusion: object recall (AD{D|I}-10%). (†)

indicates the method uses synthetically rendered images and real

images for training, which has better coverage of viewpoints.

outperforms state-of-the-art methods that use the same

amount of real training images without textured 3D mod-

els. Even though methods on the bottom of Table 1 use a

larger portion of training images, use textured 3D models

for training or pose refinement, our method shows competi-

tive results against these methods. The results on symmetric

objects show the best performance among methods that do

not perform pose refinement. This verifies the benefit of the

transformer loss, which improves the robustness of initial

pose predictions for symmetric objects.

5.5. LineMOD Occlusion

LineMOD Occlusion is created by annotating eight ob-

jects in a test sequence of LineMOD. Thus, the test se-

quences of eight objects in LineMOD are used for train-

ing without overlapping with test images. Faster R-CNN is

used as a 2D detection pipeline.

As shown in Table 2, Pix2Pose significantly outperforms

the method of [29] using only real images for training. Fur-

thermore, Pix2Pose outperforms the state of the art on three

out of eight objects. On average it performs best even

7673



Input RGB only RGB-D

Method Pix2Pose
Implicit

[28]

Kehl

[15]

Brachmann

[2]

Avg 29.5 18.4 24.6 17.8

Table 3. T-Less: object recall (eVSD < 0.3, τ = 20mm) on all test

scenes using PrimeSense. Results of [15] and [2] are cited from

[10]. Object-wise results are included in the supplement material.

though methods of [22] and [32] use more images that are

synthetically rendered by using textured 3D models of ob-

jects. Although these methods cover more various poses

than the given small number of images, Pix2Pose robustly

estimates poses with less coverage of training poses.

5.6. T­Less

In this dataset, a CAD model without textures and a re-

constructed 3D model with textures are given for each ob-

ject. Even though previous work uses reconstructed models

for training, to show the advantage of our method, CAD

models are used for training (as shown in Fig. 1) with real

training images provided by the dataset. To minimize the

gap of object masks between a real image and a rendered

scene using a CAD model, the object mask of the real im-

age is used to remove pixels outside of the mask in the ren-

dered coordinate images. The pool of symmetric poses sym

of objects is defined manually similar to the eggbox in the

LineMOD evaluation for box-like objects such as obj-05.

For cylindrical objects such as obj-01, the rotation com-

ponent of the z-axis is simply ignored and regarded as a

non-symmetric object. The experiment is performed based

on the protocol of [10]. Instead of a subset of the test se-

quences in [10], full test images are used to compare with

the state of the art [28]. Retinanet is used as a 2D detection

method and objects visible more than 10% are considered

as estimation targets [10, 28].

The result in Table 3 shows Pix2Pose outperforms the-

state-of-the-art method that uses RGB images only by a sig-

nificant margin. The performance is also better than the best

learning-based methods [2, 15] in the benchmark [10]. Al-

though these methods use color and depth images to refine

poses or to derive the best pose among multiple hypotheses,

our method, that predicts a single pose per detected object,

performs better than these methods without refinement us-

ing depth images.

5.7. Ablation studies

In this section, we present ablation studies by answer-

ing four important questions that clarify the contribution of

each component in the proposed method.

How does the transformer loss perform? The obj-05 in

T-Less is used to analyze the variation of loss values with

respect to symmetric poses and to show the contribution of

Figure 5. Variation of the reconstruction loss for a symmetric ob-

ject with respect to z-axis rotation using obj-05 in T-Less [9].

Transformer loss L1-view limits L1

55.2 47.2 33.4

Table 4. Recall (evsd < 0.3) of obj-05 in T-Less using different

reconstruction losses for training.

the transformer loss. To see the variation of loss values,

3D coordinate images are rendered while rotating the ob-

ject around the z-axis. Loss values are computed using the

coordinate image of a reference pose as a target output Igt

and images of other poses as predicted outputs I3D in Eq. 1

and Eq. 2. As shown in Fig. 5, the L1 loss in Eq. 1 produces

large errors for symmetric poses around π, which is the rea-

son why the handling of symmetric objects is required. On

the other hand, the value of the transformer loss produces

minimum values on 0 and π, which is expected for obj-05

with an angle of symmetry of π. The result denoted by view

limits shows the value of the L1 loss while limiting the z-

component of rotations between 0 and π. The pose that ex-

ceeds this limit is rotated to a symmetric pose. As discussed

in Sec. 1, values are significantly changed at the angles of

view limits and over-penalize poses under areas with red in

Fig. 5, which causes noisy predictions of poses around these

angles. The results in Table 4 show the transformer loss

significantly improves the performance compared to the L1

loss with the view limiting strategy and the L1 loss without

handling symmetries.

What if the 3D model is not precise? The evaluation

on T-Less already shows the robustness to 3D CAD mod-

els that have small geometric differences with real objects.

However, it is often difficult to build a 3D model or a CAD

model with refined meshes and precise geometries of a tar-

get object. Thus, a simpler 3D model, a convex hull cov-

ering out-bounds of the object, is used in this experiment

as shown in Fig. 6. The training and evaluation are per-

formed in the same way for the LineMOD evaluation with

synchronization of object masks using annotated masks of

real images. As shown in the top-left of Fig. 6, the perfor-

mance slightly drops when using the convex hull. However,

the performance is still competitive with methods that use
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Figure 6. Top: the fraction of frames within AD{D|I} thresholds

for the cat in LineMOD. The larger area under a curve means bet-

ter performance. Bottom: qualitative results with/without GAN.

3D bounding boxes of objects, which means that Pix2Pose

uses the details of 3D coordinates for robust estimation even

though 3D models are roughly reconstructed.

Does GAN improve results? The network of Pix2Pose

can be trained without GAN by removing the GAN loss in

the final loss function in Eq. 5. Thus, the network only at-

tempts to reconstruct the target image without trying to trick

the discriminator. To compare the performance, the same

training procedure is performed without GAN until the loss

value excluding the GAN loss reaches the same level. Re-

sults in the top-left in Fig. 6 shows the fraction of correctly

estimated poses with varied thresholds for the ADD metric.

Solid lines show the performance on the original LineMOD

test images, which contains fully visible objects, and dashed

lines represent the performance on the same test images

with artificial occlusions that are made by replacing 50%

of areas in each bounding box with zero. There is no sig-

nificant change in the performance when objects are fully

visible. However, the performance drops significantly with-

out GAN when objects are occluded. Examples in the bot-

tom of Fig. 6 also show training with GAN produces robust

predictions on occluded parts.

Is Pix2Pose robust to different 2D detection networks?

Table 5 reports the results using different 2D detection

networks on LineMOD. Retinanet and Faster R-CNN

are trained using the same training images used in the

LineMOD evaluation. In addition, the public code and

trained weights of SSD-6D [14] are used to derive 2D detec-

tion results while ignoring pose predictions of the network.

It is obvious that pose estimation results are proportional to

2D detection performances. On the other hand, the portion

of correct poses on good bounding boxes (those that overlap

more than 50% with ground truth) does not change signif-

icantly. This shows that Pix2Pose is robust to different 2D

SSD-6D

[14]

Retina

[19]

R-CNN

[26]

GT

bbox

2D bbox 89.1 97.7 98.6 100

6D pose 64.0 71.1 72.4 74.7

6D pose/2D bbox 70.9 72.4 73.2 74.7

Table 5. Average percentages of correct 2D bounding boxes

(IoU>0.5) and correct 6D poses (ADD-10%) on LineMOD us-

ing different 2D detection methods. The last row reports the per-

centage of correctly estimated poses on scenes that have correct

bounding boxes (IoU>0.5).

detection results when a bounding box overlaps the target

object sufficiently. This robustness is accomplished by the

refinement in the first stage that extracts useful pixels with

a re-centered bounding box from a test image. Without the

two stage approach, the performance significantly drops to

41% on LineMOD when the output of the network in the

first stage is used directly for the PnP computation.

5.8. Inference time

The inference time varies according to the 2D detection

networks. Faster R-CNN takes 127ms and Retinanet takes

76ms to detect objects from an image with 640×480px.

The pose estimation for each bounding box takes approx-

imately 25-45ms per region. Thus, our method is able to

estimate poses at 8-10 fps with Retinanet and 6-7 fps with

Faster R-CNN in the single object scenario.

6. Conclusion

This paper presented a novel architecture, Pix2Pose, for

6D object pose estimation from RGB images. Pix2Pose ad-

dresses several practical problems that arise during pose es-

timation: the difficulty of generating real-world 3D models

with high-quality texture as well as robust pose estimation

of occluded and symmetric objects. Evaluations with three

challenging benchmark datasets show that Pix2Pose signif-

icantly outperforms state-of-the-art methods while solving

these aforementioned problems.

Our results reveal that many failure cases are related to

unseen poses that are not sufficiently covered by training

images or the augmentation process. Therefore, future work

will investigate strategies to improve data augmentation to

more broadly cover pose variations using real images in or-

der to improve estimation performance. Another avenue for

future work is to generalize the approach to use a single net-

work to estimate poses of various objects in a class that have

similar geometry but different local shape or scale.
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