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Abstract

Spectral super-resolution (SSR) aims at generating a hyper-
spectral image (HSI) from a given RGB image. Recently, a
promising direction is to learn a complicated mapping func-
tion from the RGB image to the HSI counterpart using a deep
convolutional neural network. This essentially involves map-
ping the RGB context within a size-specific receptive field
centered at each pixel to its spectrum in the HSI. The focus
thereon is to appropriately determine the receptive field size
and establish the mapping function from RGB context to the
corresponding spectrum. Due to their differences in category
or spatial position, pixels in HSIs often require different-sized
receptive fields and distinct mapping functions. However, few
efforts have been invested to explicitly exploit this prior.

To address this problem, we propose a pixel-aware deep
function-mixture network for SSR, which is composed of a
new class of modules, termed function-mixture (FM) blocks.
Each FM block is equipped with some basis functions, i.e.,
parallel subnets of different-sized receptive fields. Besides, it
incorporates an extra subnet as a mixing function to gener-
ate pixel-wise weights, and then linearly mixes the outputs
of all basis functions with those generated weights. This en-
ables us to pixel-wisely determine the receptive field size and
the mapping function. Moreover, we stack several such FM
blocks to further increase the flexibility of the network in
learning the pixel-wise mapping. To encourage feature reuse,
intermediate features generated by the FM blocks are fused in
late stage, which proves to be effective for boosting the SSR
performance. Experimental results on three benchmark HSI
datasets demonstrate the superiority of the proposed method.

Introduction

Hyperspectral images (HSIs) that capture the reflectance of
scenes with extremely high spectral resolution (Chakrabarti
and Zickler 2011), often contain hundreds or thousands of
spectral bands, where each pixel has a spectrum (Zhang et
al. 2018b). Profiting from the abundant spectral informa-
tion, HSIs have been widely applied to various tasks, e.g.,
classification (Akhtar and Mian 2018), detection (Manolakis
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Figure 1: Existing DCNN based SSR methods and the pro-
posed method. The former often take a fixed-sized receptive
field and learn a universal mapping function for all pixels,
while the latter can adaptively determine the receptive field
size and the mapping function for each pixel.

and Shaw 2002) and tracking (Van Nguyen, Banerjee, and
Chellappa 2010) etc. However, the expense of obtaining
such spectral information is to increase the pixel size on
the sensor, which inevitably limits the spatial resolution of
HSIs (Arad and Ben-Shahar 2016). Thus, it is crucial to
investigate how to generate high-spatial-resolution (HSR)
HSIs.

Different from convnetioanl HSIs super-resolution (Mei
et al. 2017; Zhang et al. 2018a) that directly improves the
spatial resolution of a given HSI, spectral super-resolution
(SSR) (Arad and Ben-Shahar 2016; Xiong et al. 2017)
adopts an alternative way and attempts to produce an HSR
HSI by increasing the spectral resolution of a given RGB
image with satisfactory spatial resolution. Early SSR meth-
ods (Arad and Ben-Shahar 2016; Aeschbacher, Wu, and
Timofte 2017; Jia et al. 2017) often formulate SSR as a
linear inverse problem, and exploit the inherent low-level
statistic of HSR HSIs as priors. However, due to the lim-
ited expressive capacity of their handcrafted prior models,
these methods fail to well generalize to challenging cases.
Recently, witnessing the great success of deep convolutional
neural networks (DCNNs) in a wide range of tasks (Si-
monyan and Zisserman 2014; He et al. 2016; 2017), in-
creasing efforts have been invested to learn a DCNN based
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mapping function to directly transform the RGB image into
an HSI (Alvarez-Gila, Van De Weijer, and Garrote 2017;
Arad and Ben-Shahar 2017; Shi et al. 2018; Fu et al. 2018).
These methods essentially involve mapping the RGB con-
text within a size-specific receptive field centered at each
pixel to its spectrum in the HSI, as shown in Figure 1. The
focus thereon is to appropriately determine the receptive
field size and establish the mapping function from RGB con-
text to the corresponding spectrum. Due to the difference in
category or spatial position, pixels in HSIs often necessitate
collecting different RGB information and adopting various
recovery schemes for SSR. Therefore, to obtain an accurate
DCNN based SSR approach, it is crucial to adaptively deter-
mine the receptive field size and the RGB-to-spectrum map-
ping function for each pixel. However, most existing DCNN
based SSR methods treat all pixels in HSIs equally and learn
a universal mapping function with a fixed-sized receptive
field, as shown in Figure 1.

In this study, we present a pixel-aware deep function-
mixture network for SSR, which is flexible to pixel-wisely
determine the receptive field size and the mapping func-
tion. Specifically, we first develop a new module, termed
the function-mixture (FM) block. Each FM block consists
of some parallel DCNN based subnets, among which one
is termed the mixing function and the remaining are termed
basis functions. The basis functions take different-sized re-
ceptive fields and learn distinct mapping schemes; while the
mixture function generates pixel-wise weights to linearly
mix the outputs of the basis functions. In this way, the pixel-
wise weights can determine a specific information flow for
each pixel and consequently benefit the network to choose
appropriate RGB context as well as the mapping function for
spectrum recovery. Then, we stack several such FM blocks
to further improve the flexibility of the network in learning
the pixel-wise mapping. Furthermore, to encourage feature
reuse, the intermediate features generated by the FM blocks
are fused in late stage, which proves to be effective for boost-
ing the SSR performance. Experimental evaluation on three
benchmark HSI datasets shows the superiority of the pro-
posed approach for SSR.

In summary, we mainly contribute in three aspects. i) We
present an effective pixel-aware deep function-mixture net-
work for SSR, which is flexible to learn the pixel-wise RGB-
to-spectrum mapping. To our best knowledge, this is the first
attempt to explore this in SSR. ii) We design a new FM mod-
ule, which is flexible to plug in any modern DCNN architec-
tures; iii) We demonstrate new state-of-the-art performance
on three benchmark SSR datasets.

Related Work

We first review the existing approaches for SSR and then
introduce some techniques related to this work.

Spectral Super-resolution Early methods mainly fo-
cus on exploiting appropriate image priors to regular-
ize the linear inverse SSR problem. For example, Arad
and Aeschbacher et. al (Arad and Ben-Shahar 2016;
Aeschbacher, Wu, and Timofte 2017) investigated the spar-
sity of the latent HSI on a pre-trained over-complete spectral

dictionary. Jia et. al (Jia et al. 2017) considered the mani-
fold structure of HSIs in a low-dimensional space. Recently,
most methods turn to learning a deep mapping function from
the RGB image to an HSI. For example, Alvarez-Gila et
al. (Alvarez-Gila, Van De Weijer, and Garrote 2017) im-
plemented the mapping function using an U-Net architec-
ture (Ronneberger, Fischer, and Brox 2015) and trained it
based on both the mean-square-error (MSE) loss and the ad-
versarial loss (Goodfellow et al. 2014). Shi et. al (Shi et al.
2018) developed a deep residual network consisting of resid-
ual blocks to learn the mapping function. Despite obtaining
impressive performance for SSR, these methods are limited
by learning a universal RGB-to-spectrum mapping function
for all pixels in HSIs. This leaves space for learning more
flexible and adaptive mapping function.

Receptive Field in DCNNs Receptive field is an impor-
tant concept in the DCNN, which determines the sensing
space of a convolutional neuron. There are many efforts
dedicating to adjusting the size or shape of the receptive
field (Yu and Koltun 2015; Wei et al. 2017; Dai et al. 2017)
to meet the requirement of specific tasks at hand. Thereinto,
dilated convolution (Yu and Koltun 2015) or kernel sepa-
ration (Seif and Androutsos 2018) were often utilized to
enlarge the receptive field. Recently, Wei et. al (Wei et al.
2017) changed the receptive field by inflating or shrinking
the feature maps using two affine transformation layers. Dai
et. al (Dai et al. 2017) proposed to adaptively determine the
context within the receptive field by estimating the offsets
of pixels to the central pixel using an additional convolu-
tion layer. In contrast, we take a totally different direction
and learn the pixel-wise receptive field size by mixing some
basis function with different receptive field sizes.

Multi-column Network Multi-column network (Cireşan,
Meier, and Schmidhuber 2012) is a specicial type of net-
work that feeds the input into several parallel DCNNs (i.e.,
columns), and then aggregates their outputs for final predic-
tion. With the ability of using more context information, the
multi-column network (MCNet) often shows better general-
ization capacity than that with only a single column in var-
ious tasks, e.g., classification (Cireşan, Meier, and Schmid-
huber 2012), image processing (Agostinelli, Anderson, and
Lee 2013), counting (Zhang et al. 2016) etc. Although we
also adopt a similar multi-column structure in our module
design, the proposed network is obviously different from
these existing multi-column networks. First, MCNet em-
ploys a separation-and-aggregation architecture which pro-
cesses the input with parallel columns and then aggregates
the outputs of all columns for output. In contrast, we adopt a
recursive separation-and-aggregation architecture by stack-
ing multiple FM modules, each of which can be viewed as
an enhanced multi-column module, as shown in Figure 1, 3.
Second, when applied to SSR, MCNet still learns a universal
mapping function and fails to flexibly handle each pixel in
an explicit way. In contrast, the proposed FM block incorpo-
rates a mixing function to generate pixel-wise weights and
mix the outputs of all basis functions. This enables to flexi-
bly customize the pixel-wise mapping function. In addition,
we fuse the intermediate feature generated by FM blocks in
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Figure 2: Architecture of the proposed pixel-aware deep function-mixture network. Bicubic denotes the bicubic interpolation
in the spectral domain. FMB denotes the function-mixture block.

the network for feature reuse.

Proposed Network

In this section, we present the technical details of the
proposed pixel-aware deep function-mixture network. As
shown in Figure 2, the proposed network adopts a global
residual architecture as (Kim, Kwon Lee, and Mu Lee
2016a). Its backbone consists of multiple FM blocks and
fuses the intermediate features generated by previous FM
block with skip connections. In the following, we will first
introduce the basic FM block, and then discuss how to in-
corporate multiple FM blocks and the intermediate features
fusion into the network for performance enhancement.

Function-mixture Block

The proposed network essentially establishes a mapping
function from an RGB image to the HSI counterpart, and
thus each FM block implies a mapping subfunction. In this
study, we attempt to utilize the FM block to adaptively
determine the receptive field size and the mapping func-
tion for each pixel, i.e., to obtain a pixel-dependent map-
ping subfunction. To this end, a direct solution is to intro-
duce an additional hypernetwork (Ha, Dai, and Le 2016;
Jia et al. 2016) to generate the subfunction parameters for
each pixel. However, this will incur expensive computational
complexity and great training difficulty (Ha, Dai, and Le
2016). To avoid this problem, we borrow the idea in function
approximation (Cybenko 1989) and assume that all pixel-
dependent subfunctions can be accurately approximated by
mixing some basis functions with pixel-wise weights. Due to
being shared by all subfunctions, these basis functions can
be learned by DCNNs. While the pixel-wise mixing weights
can be viewed as the pixel-wise attention (Sato and Lauro
2014), which also can be directly generated by a DCNN.

Following this idea, we construct the FM block with a
separation-and-aggregation structure, as shown in Figure 3.
First, a convolutional block, i.e. a convolutional layer fol-
lowed by a Rectified Linear Unit (ReLu) (Nair and Hin-
ton 2010), is utilized for initial feature representation. Then,
the obtained features are fed into multiple parallel subnets.
Thereinto, one subnet is utilized to generate the pixel-wise
mixing weights. For simplicity, we term it the mixing func-
tion. While the remaining subnets represent the basis func-
tions. Finally, the outputs of all basis functions are linearly
mixed based on the generated pixel-wise weights. Let xu−1

denote the input for the u-th FM block Fu and n denote the
number of basis functions in Fu. The output xu of Fu can
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Figure 3: Architecture of the proposed function-mixture
block where ki (i = 1, · · · , n) denotes the convoluational
filter size in the i-th basis function fu

i .

be formulated as

xu = Fu(xu−1) =
∑n

i=1

fu
i (x̄

u, θui )⊙ wu(x̄u, ϑu)[i]

s.t., x̄u = Gu(xu−1, ωu),
∑n

i=1

wu(x̄u, ϑu)[i] = 1, wu(x̄u, ϑu) � 0,

(1)
where fu

i (·, θ
u
i ) denotes the i-th basis function parameter-

ized by θui and wu(·, ϑu) represents the mixing function pa-
rameterized by ϑu. When fu

i (x̄
u, θui ) is of size c × h × w

(i.e., channel × height × width), wu(x̄u, ϑu) is of size
n×h×w, and wu(x̄u, ϑu)[i] represents the mixing weights
of size h × w generated for all pixels corresponding to the
i-th basis function. ⊙ denotes the point product. x̄u denotes
the features output by the convolutional block Gu(·, ωu) in
Fu, and ωu represents the convolutional filters. Inspired
by (Everitt 2005), we also require the mixing weights to be
non-negative and the summation across all basis functions is
equal to 1, as shown in Eq. (1).

In this study, we implement the basis functions and the
mixing function by stacking m consecutive convolutional
blocks, as shown in Figure 3. Moreover, we equip these basis
functions with different-sized convolutional filters to ensure
they take different-sized receptive fields and learn distinct
mapping schemes. For the mixing function, we introduce a
Softmax unit at the end to comply with the constraints in
Eq. (1). Apparently, with such a pixel-wise mixture archi-
tecture, the proposed FM block is able to determine the re-
ceptive field size and the mapping function for each pixel.

Multiple FM Blocks

As shown in Figure 2, in the proposed network, we first in-
troduce an individual convolutional block, and then stack
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multiple FM blocks for the intermediate feature represen-
tation and the ultimate output. For an input RGB image x,
the output of the network with p FM blocks can be given as

y = x+ Fp
(

Fp−1
(

· · · F2
(

F1
(

x0
))))

,

s.t., x0 = G0
(

x, ω0
)

,
(2)

where y denotes the generated HSI and x0 represents the
output of the first convolutional block G0(·, ω0) parameter-
ized by ω0. It is worth noting that in this study we increase
the spectral resolution of x to the same as that of y by the
bilinear interpolation. In addition, F1, · · · ,Fp−1 show the
same architecture, while the output of Fp will be adjusted
according to the number of spectral bands in y.

By stacking multiple FM blocks, we can pixel-wisely ad-
just the receptive field size and the mapping function at
multiple levels, thus increase the flexibility of the proposed
network. In addition, considering that each FM block de-
fines the mapping subfunction for each pixel, the ultimate
mapping function obtained by stacking p FM blocks can be
viewed as a composition function of p subfunctions. Since
each subfunction is approximated by the mixture of n basis
functions, the ultimate mapping function can be viewed as
the mixture of np basis functions, which show much larger
expressive capacity than a single FM block in pixel-wisely
fitting a mapping function.

Intermediate Features Fusion

As previously mentioned, the FM blocks in the porposed
network extract different levels of features from the in-
put. Inspired by (Kim, Kwon Lee, and Mu Lee 2016b;
Zhang et al. 2018c), to reuse these intermediate features for
performance enhancement, we employ skip connections to
aggregate the intermediate features generated by each FM
block before the ultimate output block with a concatenation
operation, as shown in Figure 2. To better utilize all of these
features for pixel-wise representation, we introduce an ex-
tra FM block Fc to fuse the concatenation result. With such
an intermediate feature fusion operation, the output of the
proposed network can be reformulated as

y = x+ Fp
(

Fc

([

Fp−1
(

· · · F1
(

x0
))

, · · · ,F1
(

x0
)]))

(3)

Experiment

In this section, we will conduct extensive comparison exper-
iments and carry out an ablation study to demonstrate the
effectiveness of the proposed method in SSR.

Experimental Setting

Datasets In this study, we adopt three benchmark HSI
datasets, including NTIRE (Timofte et al. 2018), CAVE (Ya-
suma et al. 2010) and Harvard (Chakrabarti and Zickler
2011). In NTIRE dataset, there are 255 paired HSIs and
RGB images which have the same spatial resolution, e.g.,
1392 × 1300. Each HSI consists of 31 successive spectral
bands ranging from 400nm to 700nm with a 10nm inter-
val. CAVE dataset contains 32 HSIs. Similar to NTIRE,
each HSI contains 31 spectral bands ranging from 400nm

to 700nm with a 10nm interval but with the spatial resolu-
tion 512 × 512. Harvard dataset is another common bench-
mark for HSIs. It consists of 50 HSIs with spatial resolution
1392×1040. Each image contains 31 spectral bands cap-
tured from 420nm to 720nm with a 10nm interval. For the
CAVE and Havard datasets, inspird by (Dong et al. 2016;
Zhang et al. 2018a), we adopt the spectral response function
of Nikon D700 camera to generate the corresponding RGB
image for each HSI. In the following experiments, we ran-
domly select 200 paired images from the NTIRE dataset as
the training set and the remaining 55 paired images for test-
ing. For the CAVE dataset, we randomly choose 22 paired
images for training and the remaining 10 paired images for
testing. While in the Harvard dataset, 30 paired images are
randomly chosen as the training set and the remaining 20
paired images are utilized for testing.

Comparison Methods In this study, we compare the pro-
posed method with 6 existing methods including the bilin-
ear interpolation (BI) (Hou and Andrews 1978), Arad (Arad
and Ben-Shahar 2016), Aitor (Alvarez-Gila, Van De Wei-
jer, and Garrote 2017), HSCNN+ (Shi et al. 2018), deep
convolution neural network (DCNN) and the multi-column
network (MCNet). Among them, the BI utilizes the bilin-
ear interpolation to increase the spectral resolution of the
input RGB image. The Arad is a sparsity induced conven-
tional SSR method. The Aitor and HSCNN+ are two re-
cent DCNN based state-of-the-art SSR methods, especially
HSCNN+ which is the winner in NTIRE 2018 spectral re-
construction task. The DCNN and MCNet are two baselines
for the proposed method. The DCNN is a variant of the pro-
posed method that is implemented by replacing each FM
block in the proposed method with a convolutional block.
For the MCNet, we implement it following the basic ar-
chitecture in (Zhang et al. 2016) with convolutional blocks.
Moreover, the column number is set as n and the convolu-
tions in n columns are equipped with n kinds of different-
sized filters, which is similar as the proposed method. We
further control the depth of each column to make sure the
model complexity of the MCNet is comparable to the pro-
posed method. By doing this, the only difference between
the MCNet and the proposed network is the network archi-
tecture. For fair comparison, all these DCNN based com-
petitors and the spectral dictionary in the Arad (Arad and
Ben-Shahar 2016) are retrained on the training set utilized
in the experiments.

Evaluation Metrics To objectively evaluate the SSR per-
formance of each method, we employ four standard metrics,
including the root-mean-square error (RMSE), peak signal-
to-noise ratio (PSNR), spectral angle sapper (SAM) and
structural similarity index (SSIM). The RMSE and PSNR
measure the numerical difference between two images. The
SAM computes the average spectral angle between two
spectra from two image at the same spatial position to in-
dicate the spectral reconstruction accuracy. The SSIM is uti-
lized to measure the spatial structure similarity between two
images. In general, a larger PSNR or SSIM and a smaller
RMSE or SAM indicate better performance.

12824



Table 1: Numerical results of different methods on three benchmark SSR datasets. The best results are in bold.

Methods
NTIRE CAVE Harvard

RMSE PSNR SAM SSIM RMSE PSNR SAM SSIM RMSE PSNR SAM SSIM

BI 15.41 25.73 15.30 0.8397 26.60 21.49 34.38 0.7382 30.86 19.44 39.04 0.5887
Arad 4.46 35.63 5.90 0.9082 10.09 28.96 19.54 0.8695 7.85 31.30 8.32 0.8490
Aitor 1.97 43.30 1.80 0.9907 6.80 32.53 17.50 0.8768 3.29 39.21 4.93 0.9671
HSCNN+ 1.55 45.38 1.63 0.9931 4.97 35.66 8.73 0.9529 2.87 41.05 4.28 0.9741

DCNN 1.23 47.40 1.30 0.9939 5.77 34.09 11.35 0.9275 2.88 40.83 4.24 0.9724
MCNet 1.11 48.43 1.13 0.9951 4.84 35.92 8.98 0.9555 2.83 40.70 4.26 0.9689

Ours 1.03 49.29 1.05 0.9955 4.54 36.33 7.07 0.9611 2.54 41.54 3.76 0.9796

(a) BI (b) Arad (c) Aitor (d) HSCNN+ (e) DCNN (f) MCNet (g) Ours

Figure 4: Visual SSR results of the 31-th band and the reconstruction error maps of an example image from the NTIRE dataset
for different methods. The reconstruction error is obtained by computing the mean-square error between two spectrum vectors
from the super-resolution result and the ground truth at each pixel. Best view on the screen.

Implementation Details In the proposed method, we
adopt 4 FM blocks (i.e., including Fc and p=3). Each block
contains n = 3 basis functions. The basis functions and the
mixing functions consist of m=2 convolutional blocks. Each
convolutional block contains 64 filters. In each FM block,
basis functions are equipped with 3 different-sized filters for
convolution, i.e., 3×3, 7×7 and 11×11. While the filter size
in all other convolutional blocks is fixed as 3×3.

In this study, we implement the proposed method on the
Pytorch platform (Ketkar 2017) and train the network using
the following model

min
θ

1

N

∑N

i=1

‖yi − f(xi, θ)‖1, (4)

where {(yi,xi)} denotes the i-th paired HSI and RGB im-
age, respectively. N denotes the number of training pairs.
f denotes the ultimate mapping function defined by the pro-
posed network and θ represents all involved parameters. ‖·‖1
represents the ℓ1 norm based loss. In the training stage, we
employ the Adam optimizer (Kingma and Ba 2014) with the
weight decay 1e-6. The learning rate is initially set as 1e-4
and halved in every 20 epochs. The batch size is 128. We
terminate the optimization at the 100-th epoch.

Performance Evaluation

Performance comparison Under the same experimental
settings, we evaluate all those methods on the testing set
from each benchmark dataset. Their numerical results are
reported in Table 1. It can be seen that these DCNN based
comparison methods often produce more accurate results

than the interpolation or the sparsity induced SSR method.
For example, on the NTIRE dataset, the RMSE of the Aitor
and HSCNN+ are less than 2.0 while that of the BI and
Arad are higher than 4.0. Nevertheless, the proposed method
obviously outperforms these DCNN based competitors. For
example, compared with the state-of-the-art HSCNN+, the
proposed method reduces the RMSE by 0.52 and improves
the PSNR by 3.19db on the NTIRE dataset. This profits from
the ability of the proposed method in adaptively determin-
ing the receptive field size and the mapping function for
each pixel. With such an ability, the proposed method is able
to handle each pixel more flexibly. Moreover, since various
mapping functions can be approximated by the mixture of
the learned basis functions, the proposed method can better
generalize to the unknown pixels.

In addition, as shown in Table 1, the proposed method also
performs better than two baselines, i.e., DCNN and MCNet.
For example, on the NTIRE dataset, the PSNR obtained by
the proposed method is higher than that of DCNN and MC-
Net by 1.89db and 0.86db. Since the only difference between
the proposed method and DCNN is the discrepancy between
the convolutional block and the proposed FM block, the su-
periority demonstrates that the proposed FM block is much
powerful than the convolutional block for SSR. Similarly,
the advantage of the proposed method over MCNet clarifies
that the proposed network architecture is more effective than
the multi-column architecture in SSR.

To further clarify the conclusions above, we visualize
some SSR results of different methods in Figure 4 and Fig-
ure 5. As can be seen, the proposed method recovers more
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(a) BI (b) Arad (c) Aitor (d) HSCNN+ (e) DCNN (f) MCNet (g) Ours

Figure 5: Visual SSR results of the 28-th band and the reconstruction error maps of an example image from the CAVE dataset
for different methods. The reconstruction error is computed as Figure 4.

(a) NTIRE (b) Spectra (c) CAVE (d) Spectra (e) Havard (f) Spectra

Figure 6: Recovered spectra form the super-resolution results of the proposed method on three example images chosen from
three datasets. In each image, we select four different positions and plot the curves of the recovered spectra (i.e., denoted by
dash lines) and the corresponding ground truth spectra (i.e., denoted by solid lines).

details and produces smaller reconstruction error than other
competitors. In addition, we sketch some spectrum curves
recovered by the proposed method in Figure 6, where the
produced spectra are very close to the ground truth.

(a) F1 (b) F2 (c) Fc (d) F3

Figure 7: Pixel-wise weights generated by the mixing func-
tion in different FM blocks of the proposed network. Figures
in each column show the weight maps for three basis func-
tions (from top to bottom: fu

1
, fu

2
and fu

3
). For visualization

convenience, we normalize each weight map into the range
[0,1] using the inner maximum and minimum values.

Pixel-wise mixing weights In this study, we mix the out-
puts of the basis functions with pixel-wise weights to adap-
tively learn the pixel-wise mapping. To validate that the
proposed method can effectively produce the pixel-wise
weights as expected, we choose an example image from the
NTIRE and visualize the produced pixel-wise weights in

each FM block, as shown in Figure 7. We can find that, i)
pixels from different categories or spatial positions are often
given different weights. For example, in the second weight
map generated by F1, the weights for the pixels from ’road’
are obviously smaller than that for the pixels from ’tree’. ii)
Pixels from the same category are pone to be given similar
weights. For example, pixels from ’road’ are given similar
weights in each weight map in Figure 7 (a)(b). To further
clarify these two observations, we visualize the weight maps
of some other images generated by the FM block F2 in Fig-
ure 8, where similar phenomenon can be observed. iii) In the
intermediate FM blocks (i.e., F1 and F2 in Figure 7), the
high level block (e.g., F2) can distinguish finer difference
between pixels than the low level block (e.g., F1), viz., only
highly similar pixels will be assigned to similar weights. iv)
Due to being forced to match the output, in the weight maps
generated by the ultimate output block F3, the weight dif-
ference between pixels from various categories is not as ob-
vious as that in previous FM block (e.g., F1 and F1), as
shown in Figure 7(a)(b)(d).

According to the above observations, we can conclude
that the proposed network can effectively generate the pixel-
wise mixing weights and thus is able to pixel-wisely deter-
mine receptive field size and mapping function.

Ablation study

In this part, we carry out an ablation study on the NTIRE
dataset to demonstrate the effect of the different ingredients,
the number of basis functions and the number of FM blocks
on the proposed network.
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(a) Image (b) f2

1 (c) f2

2 (d) f2

3

Figure 8: Pixel-wise weights generated by the mixing func-
tion in the FM block F2 on different images. In each row,
figures from left to right denote the input RGB image and
three generated weight maps corresponding to the basis
functions f2

1
, f2

2
and f2

3
. For visualization convenience, we

normalize each weight map into the range [0,1] using the
inner maximum and minimum values.

Table 2: Effect of pixel-wise mixture & intermediate feature
fusion in the proposed network.

Methods RMSE PSNR SAM SSIM

Ours w/o mix 1.10 48.44 1.16 0.9950
Ours w/o fusion 1.05 48.97 1.09 0.9953
Ours 1.03 49.29 1.05 0.9955

Effect of Different Ingredients In the proposed network,
there are two important ingredients, namely the pixel-wise
mixture and the intermediate feature fusion. To demonstrate
their effectiveness, we compare the proposed method with
its two variants. One (i.e., ’Ours w/o mix’) disables the
pixel-wise mixture in the proposed network, which implies
mixing the outputs of the basis functions with equal weights;
while the other (i.e., ’Ours w/o fusion’) disables the inter-
mediate feature fusion, i.e., removing the skip connections
as well as the FM block Fc. The numerical results are re-
ported in Table 2. It can be seen that the proposed method
obviously outperforms these two variants. This demonstrate
that both the pixel-wise mixture and the intermediate feature
fusion are crucial for the proposed network.

Table 3: Effect of the number n of basis functions and the
number p of FM blocks.

Methods RMSE PSNR SAM SSIM

Ours (n =1) 1.47 45.82 1.57 0.9913
Ours (n =2) 1.08 48.76 1.10 0.9952
Ours (n =3) 1.03 49.29 1.05 0.9955
Ours (n =5) 0.98 49.87 1.00 0.9958

Ours (p =2) 1.05 48.95 1.09 0.9954
Ours (p =3) 1.03 49.29 1.05 0.9955
Ours (p =4) 1.05 49.42 1.05 0.9954
Ours (p =6) 1.00 49.59 1.02 0.9956

Effect of the Number of Basis Functions In the above
experiments, we fix the number of basis functions as n = 3
in each FM block. Intuitively, increasing n will enlarge the
expressive capacity of the basis fictions and thus lead to bet-
ter performance, vice versa. To validate this, we evaluate the
proposed method on the NTIRE dataset using different n,
i.e., n =1, 2, 3 and 5. The obtained numerical results are
provided in Table 3. As can be seen, the reconstruction accu-
racy gradually increases as the number n of basis functions
increases. When n =1, the proposed method degenerates
to the convolutional blocks based network, which shows the
lowest reconstruction accuracy in Table 3. When n increases
to 5, the obtained RMSE is even lower than 1.0 and the
PSNR is close to 50db. Since a larger n often incur higher
computational complexity, we can make a balance between
the accuracy and efficiency by tuning n to customize the pro-
posed network for a specific device.

Effect of the Number of FM Blocks In addition to the
number of basis functions, the model complexity of the pro-
posed method also depends on the number p of the FM
blocks. To demonstrate the effect of p, we evaluate the pro-
posed method on the NTIRE dataset using different number
of FM blocks, i.e., p=2,3,4 and 6. The obtained numerical
results are reported in the second part of Table 3. Similar as
the case of n, the performance of the proposed method can
be gradually improved as the number p of FM blocks in-
creases. We also find an interesting thing, increasing n may
be more effective than increasing p in terms of boosting the
performance of the proposed method.

Conclusion

In this study, to flexibly handle the pixels from different cat-
egories or spatial positions in HSIs, we present a pixel-aware
deep function-mixture network for SSR, which is composed
of multiple FM blocks. Each FM block consists of one mix-
ing function and some basis functions, which are imple-
mented as parallel DCNN based subnets. Thereinto, the ba-
sis functions take different sized receptive fields and learn
distinct mapping schemes; while the mixing function gener-
ates the pixel-wise weights to linearly mix the outputs of all
these basis functions. This enables to pixel-wisely determine
the receptive field size and mapping function. Moreover, we
stack several such FM block in the network to further in-
crease its flexibility in learning the pixel-wise mapping. To
boost the SSR performance, we also fuse the intermediate
features generated by the FM blocks for feature reuse. With
extensive experiments on three benchmark SSR datasets, the
proposed method shows superior performance over several
existing state-of-the-art competitors. It is worth noting that
in the future the idea in this study also can be generalized
to other tasks requiring pixel-wise modelling, e.g., semantic
segmentation, colorization etc.
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