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Abstract

Pixel-based video coding

Johannes Olsson Sandgren

This paper studies the possibilities of extending the pixel-based compression
algorithm LOCO-I, used by the lossless and near lossless image compression standard
JPEG-LS, introduced by the Joint Photographic Experts Group (JPEG) in 1999, to
video sequences and very low bit-rates. Bitrates below 1 bit per pixel are achieved
through skipping signaling when the prediction of a pixels sufficiently good. The pixels
to be skipped are implicitly detected by the decoder, minimizing the overhead.
Different methods of quantization are tested, and the possibility of using vector
quantization is investigated, by matching pixel sequences against a dynamically
generated vector tree. Several different prediction schemes are evaluated, both linear
and non-linear, with both static and adaptive weights.   Maintaining the low
computational complexity of LOCO-I has been a priority. The results are compared
to different HEVC implementations with regards to compression speed and ratio.
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Sammanfattning på svenska

De dominerande videokomprimeringsstandarderna idag, som H.26x, är blockbaserade,
och har förhållandevis hög beräkningsmässig komplexitet, framförallt i kodningsfasen. I
följande text utforskas möjligheten att utöka en välkänd algoritm, LOCO-I, för pixel-
baserad komprimering så att komprimering lägre än 1 bit per pixel blir möjlig. LOCO-I
har låg komplexitet, både beräkningsmässigt och implementationsmässigt och har visat
god felfri kompression. Den utökade algoritmen jämförs med HEVC med avseende på
komprimeringsgrad och hastighet.

Det finns olika möjligheter att representera en bildsekvens som ett digitalt objekt. I
denna text berörs endast YUV420p-formatet, med 8 bitars färgdjup. Det innebär att en
bild representeras av ett byte-fält, med en byte för varje pixel i luminanskanalen, samt en
byte för var fjärde pixel för var och en av de båda krominanskanalerna. En filmsekvens
representeras av en följd av bilder.

Bildkomprimering bygger, precis som all datakomprimering, på eliminering av statistiskt
redundant data. Genom att skatta den relativa frekvensen av ett givet värde i vårt
byte-fält, kan detta värde representeras av ett kodord så att det ursprungliga fältet kan
representeras exakt av ett kortare fält. Frekventa värden ges då kortare kodord, icke-
frekventa värden längre. Detta är felfri, eller icke-destruktiv, komprimering. Om vi låter
inbördes liknande värden i fältet representeras av samma kodord, en kvantisering av vär-
dena, kan bättre komprimering uppnås, till kostnaden av att det ursprungliga fältet en
inte kan återskapas exakt. Det kallas förstörande komprimering.

I LOCO-I, algoritmen som ligger till grund för denna studie, är en pixelbaserad metod,
så varje pixel kodas individuellt. Den är även en kontextbaserad metod. Det innebär i
detta sammanhang att man för varje pixel låter de kringliggande pixlarna beskriva den
kontext i vilken pixeln uppkommer. Sedan används de kringliggande pixlarna för att
prediktera värdet hos den pixel som skall kodas. Differensen mellan det predikterade
värdet och det faktiska värdet, residualen, är det som faktiskt kodas. Denna residual blir
först kvantiserad, och sedan tilldelad en Golomb-Rice kod. Avkodaren kan skapa samma
prediktion, och sedan återskapa det ursprungliga värdet genom att till detta värde addera
den avkodade residualen.

För att uppnå komprimering lägre än 1 bit per pixel måste vissa pixlar återskapas utan
någon explicit information signaleras, eftersom det kortaste meddelandet som kan skickas
för en given pixel är en bit långt. Detta uppnås genom enbart använda det predikter-
ade värdet för de pixlar där residualen underskrider ett givet gränsvärde. När kodaren
detekterar en sådan residual räknar den antalet efterföljande pixlar där residualen är
mindre än gränsvärdet, där 0 är ett möjligt antal. Detta antal signaleras sedan till avko-
daren. När avkodaren detekterar en residual mindre än gränsvärdet läser den så det antal
efterföljande pixlar för vilka enbart prediktion skall användas.
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Resultaten visar att för komprimering under 1 bit per pixel ger den studerade algoritmen i
storleksordningen dubbla antalet bitar givet samma visuella kvalitet, jämfört med H.265s
testmodell. Komprimeringshastigheten är markant högre jämfört med testmodellen, och
snarlik den hos Ericssons interna c65-modell.
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1. Introduction

1.1. Motivation

With the continual increase of video streaming, efficient compression becomes increasingly
important, and with the dominant and fastest growing part being hand-held devices such
as smart phones or tablets, decoding must not be prohibitively computationally complex.
Currently, the most common codec (that is, coder/decoder) used in video compression
is AVC, Advanced Video Coding, formalized by the standards H.264/MPEG-4 Part 10.
This standard was formally finalized 2003 in [1], and is thus fairly mature, though it has
seen several revisions over the years, see http://www.itu.int/rec/T-REC-H.264.

Following AVC comes HEVC, High Efficiency Video Coding, defined in [2], released in
2013. It describes itself as an evolution of the existing video coding Recommendation
H.26x family of codecs, developed to meet the growing need for higher compression of
moving pictures for various applications, including different kinds of Internet streaming
such as videoconferencing and television broadcasting.

While it remains to be seen if HEVC can succeed in replacing AVC, the time right after
a standard has been completed might be suitable to look in new directions for areas of
possible improvements. This report investigates the possibilities of pixel-based Image
compression, as opposed to block-based, which currently is the most commonly used, for
example in the H.26x family. Pixel-based encoding has previously been used in lossless
image coding, cf. [3], [4], but to the best of the author’s knowledge, no studies have been
made applying such techniques to lossy video coding. The LOCO-I algorithm, described
in [3], has been extended to handle bitrates below 1 bit per pixel. The reason for this
study was that we hoped the algorithm would benefit from the relatively low imple-
mentational and computational complexity of the original, while offering the possibility
of higher compression. It is possible that the improved modeling gained by looking at
individual pixels could lead to improved quality, but too complex modeling might lead
to prohibitively expensive computations. We shall refer to this extended algorithm as
LOCO-II.

In the following report is developed a pixel-based schemes with different types of modeling
and encoding. The techniques used in [3] is used as a basis for a scheme for lossy video
compression. It shall then be compared to HEVC with regards to such factors as encoding
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speed, decoding speed, compression and image quality, both subjective and with regards
to standard measures, e.g. Peak Signal to Noise Ratio, PSNR.

1.2. Organization of the Report

This rapport will be organized as follows: in chapter 2 I will have a short introduction
to the field of digital images and image compression, to establish a sufficient foundation
for the theory in the following chapters. In chapter 3 will be outlined the basic workings
LOCO-I algorithm, described in [3]. Section 3.2 gives a very rudimentary introduction to
HEVC, with the purpose of highlighting some of the critical differences. In chapter 4 the
extensions made to the algorithm to allow for lossy encoding video sequences. Chapter 5
presents the tests and comparisons made between the different methods, the conclusions
drawn from the tests and discusses possible venues for improvement. Sample code and
function call graphs are provided in Appendix A.
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2. Introduction to Digital Images and

Image compression

This section is attempting to provide the basics of digital images, and image compression.
Both being major fields in their own right, here the goal is to give enough of a foundation
to allow the main work to be accessible. For a more complete treatment, the author
recommends [5] and [6].

2.1. Digital Images

A digital image is a quantized representation of a “true” image, that is, divided into
discrete parts, generally stored on some kind of computer memory. The quantization is
twofold.

2.1.1. Space

First, an image needs to be sampled in the spatial dimensions, since they, at least to us,
appear to be continuous. The way this is generally done is through a rectangle with the
sampled points positioned on the rectangle grid. This sampling results in a set of points,
or “pixels”, picture elements, with associated positions, being a discrete representations
of the image, often called a raster graphics image or bitmap. The more pixels used to
represent the image, the finer the granularity of the resulting picture, thus allowing for
higher detail in representing the original image. It is common to classify images by the
number of pixels, the “pixel count”, and to represent this by giving the number of pixels
used to represent the width times the number used for the height. The relation between
the width and the height is known as the aspect ratio.

In older videos, 4:3 was the most common aspect ratio, as that was the most common ratio
of TVs and computer displays at the time. Common pixel counts were 1024x768, 800x600
and 640x480 pixels. Today, videos generally have ratios of 16:10 or 16:9, and pixel counts
of 1920x1200 and 1280x800 or 1920x1080 and 1280x720 pixels, respectively.

9



2.1.2. Color

Secondly, an image is sampled in the visible spectrum, that is, the range of the electro-
magnetic wavelengths visible to humans, generally taken to be between 390 and 700nm.
While different color models are possible, in digital images one generally either uses the
RGB-space or the YCbCr-space. In the RGB-space one uses three numbers to represent
the intensity of the three colors red, green and blue, respectively. These three values
are sampled for every pixel of the image. The weighted sum of these variables form the
luminance Y , that is, luminous intensity or “black and white portion” of that pixel. A
high luminance is interpreted as white, a low as black. Together, this triple is able to rep-
resent the colors of the visible spectrum. In practice, the RGB-variables need be altered
to compensate for properties of human vision, gamma coded. The same weight sum of
gamma corrected variables is called Luma, Y ′. In general, we will use the prime symbol
to denote gamma corrected values. When used on a computer, the most common way
of encoding this space, taking gamma coding into account, is the sRGB-standard. This
scheme will use 8 bits to encode each pixel from a variable, or component, R’,G’ and B’,
leading to a value between 0 and 255. This requires 24 total bits for each pixel of the
image.

In the YCbCr-space, the luminance is described explicitly through the Y-variable. The
remaining two variables, Cr and Cb, describe the chrominance, or color differences. In
practice, the Luma is used, rather than the luminance, giving us the space Y’CbCr.
If the weights used to define the luma are fixed, a transform from this space and the
R’G’B’-space is possible. If we let the three weight be kr, kg and kb for red, green and
blue respectively, and require the weights to sum to 1, we let

Y ′ = krR
′ + kgG

′ + kbB
′

and
Cr = 1

2
B′−Y ′

1−kb

Cb = 1
2
R′−Y ′

1−kr

We may reconstruct the RGB-space through

R′ = Y ′ + 2(1− kr)Cr
B′ = Y ′ + 2(1− kb)Cb
G′ = Y ′ − 2

kg
(1− kr)krCr − 2

kg
(1− kb)kbCb

Using the conventions above, following the BT.601 standard we let

Y ′ = 0.299R′ + 0.587G′ + 0.114B′

Cb = 0.564(B′ − Y ′)
Cr = 0.713(R′ − Y ′)

and the inverse transform

R′ = Y ′ + 1.402Cr
B′ = Y ′ + 1.772Cb
G′ = Y ′ − 0.714Cr − 0.344Cb
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So far we have not had any motivation for the transformations into the Y’CbCr color
space. The real benefit of this space is the observation that humans are less sensitive to
chroma compared to luma. Having the luma coded explicitly allows us to give it higher
resolution compared to the chromatic variables, or equally, use a lower resolution to the
chromatic variables. For historical reasons, we call the sampling giving full resolution
of all the components 4:4:4. The idea is that given 4 pixels gather into a square block,
macropixels. For full resolution, all four of the pixels are encoded for every component.
For the 4:2:2 format, the luma uses full encoding for each macropixel, but the Cb and Cr
components only store information for 2 of the pixels, effectively halving the resolution
of those components. The intuition offered by the names of those two sampling schemes
cannot be used with the following very common scheme, 4:2:0. Here, luma still has full
resolution, but rather than halving the resolution of Cb and not encoding Cr at all, one
value for Cb and one value for Cr is stored for each macropixel.

Figure 2.1.: The sampling schemes 4:4:4 (to the left), 4:2:2 (middle) and 4:2:0 (to the
right). The black dot is a luma pixel, the blue and red dots are Cr and Cb
pixels, respectively.

Using the 4:2:0 scheme, as will be the norm throughout this text, to encode 4 pixels we
use 32 bits to encode the luma, 8 for Cr and 8 for Cb, that is 48 bits for 4 pixels or 12
bits for each pixel on average, compared to 24 for the full resolution encoding. There are
some different standards as to the sequence in which the values are store on a computer.
In this work, we shall assume that the structure storing the image first gives all the luma
values, then all the values of Cr, then Cb. This is shown in figure 2.2.
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Figure 2.2.: Illustration of 4:2:0 coding, courtesy of wikipedia.org

2.1.3. Motion pictures

By showing images in sequence the illusion of motion is created. When the original video
sequence is created quantization is once again used to divide continuous (at least to us)
time into a finite number of parts. We measure this temporal sampling rate in frames
per second, or fps. The required frame rate varies upon application, with 25-30 being
used for television. Higher frame rate obviously requires more stored information, taking
up more space and being slower to transfer. Different kinds of sampling (progressive and
interlaced) are not considered here.

2.2. Compression and Coding

The field of data compression is quite vast, and this introduction somewhat brief. Its
purpose is mainly to give some intuition and basic notation, and develop the theory
further as it is needed. Some basics of probability theory are assumed.

First, to develop some intuition, let us consider a naive way of encoding a message of finite
length. We might count the words of the message, and note their frequency. To represent
this message as compactly as possible, it would make sense to express the most frequent
words with very few letters, while it might be permissible to record a very infrequent
word using more letters. In a message with n different words, let us denote the relative
frequency of the i:th word, occurring m times, as m

n
= pi. If we would try and assign

to such a word a code with length −log(pi), we see that the length of the code would
approach 0 as the rate of the word approaches 1 (every word is the same), and grow
larger the more infrequent the word is. The motivation for this choice of representation is
founded in information theory, pioneered by Shannon in [7]. Given the above scheme, the
total length for the whole message would be

∑

−pilog(pi), the sum of all lengths times
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their frequencies, which is also the entropy of the message. According the Shannon’s
source coding theorem, this is a lower bound for representing this message, and we thus
refer to it as the theoretically optimal code, given that base. If the frequencies of the
words cannot be explicitly known, the p is instead taken to be the probability of finding
the word in the message. For image and video coding, then, our task is to represent the
image in such a way that the probabilities assigned to the code words, in this case either
single or blocks of pixels, can be estimated sufficiently well, and then code them.

Outlined this way, we have not spent any time thinking about how the recipient of the
coded message would decode it. Indeed, if the coded message is viewed as a stream, the
recipient may have no way of knowing where one word ends and the next begin, if they
have different lengths. Using the naive scheme outlined above, we would have to transmit
a “code book”, telling the receiver how the message is to be decoded, and use some form
of delimiter sign, indicating the end of a word. This additional information obviously
takes away from the compression.

In the next two sections follow an introduction of such coding schemes, allowing for exact
reconstruction of the original message, lossless compression. The final section introduces
a lossy compression method, quantization.

2.2.1. Golomb coding

Golomb coding attempts to deal with the separation issue by ensuring that no code-word
is itself a prefix of any other code-word, making it a so called prefix-free code. Specifically,
it is a variable-length prefix code, as we want our words to have the property of being
shorter if they are very common in the message. While not suitable in every case, Golomb
coding tend to do well when the words to be decoded are close to geometric probability
distribution, which we will take advantage of later. There are different ways to present
Golomb codes, and for our purpose, we will use a variation know as Golomb-Rice codes.

The way a Golomb-Rice code works, is that given a number, n, and an encoding parameter
2k, we form the quotient q = ⌊n/2k⌋ and the residual r = n − q ∗ 2k. The quotient is
encoded by q consecutive zeroes, followed by a one. The residual is encoded by writing
it in binary form using k digits. The whole word is then the quotient followed by the
residual. In a general Golomb code, the encoding parameter can take any value, the
Rice coding states that it must be a power of two, making it simpler to implement on a
computer, at the potential cost of efficiency.

As an example, for k = 0, the number 0 would be encoded by 0 zeroes (the quotient)
followed by a one, and then the residual coded using 0 digits, giving us a simple 1. In
general for k = 0, for a number n, we would get n zeroes followed by a one. For k = 3
we would get:
k=3, n=7 → q = 0, r = 7 encoded as 1111

13



k=3, n=8 → q = 1, r = 0 encoded as 01000
k=3, n=9 → q = 1, r = 1 encoded as 01001

From this example we see that the length of the coded message will depend on both
the original message and the parameter. To make this scheme efficient, one either has
to find a value k which minimizes the average word-length over the message, or try to
calculate a good value for k in such a way that the decoder can reconstruct it without side
information. In chapter 3, we shall see how this is managed in the LOCO-I algorithm.

2.2.2. Universal codes

Universal codes are similar to Golomb coding, also being prefix-free codes. While Golomb
coding is useful when true probability distribution is close to geometric, it might do a
poor job for other distributions; Golomb coding is not universal. A universal code has
the property that the lengths of the code words are bounded with respect to the optimal
code as long as the true distribution is monotonic. This makes them useful even if the
true probability distribution cannot be determined. Two well-known universal coding
schemes were used in this work, Elias gamma coding and Elias delta coding, which are
reasonably fast and easy to implement. The idea behind them is outlined below. For a
more thorough presentation, see [8].

In Elias gamma coding we code number n by first writing ⌊log2(n)⌋ zeros, a one, and
then the number n − 2⌊log2(n)⌋ in binary, using ⌊log2(n)⌋ digits. It is not hard to see
that this will use 2⌊log2(n)⌋ + 1 bits to encode the number n. A limitation is that
only positive integers may be encoded this way. One solution is to make the bijection
{0, 1,−1, 2,−2, . . . } → {1, 2, 3, 4, 5, . . . }. This bijection maps positive numbers to even
integers, making the transformation easy to implement. If only the zero is wanted, it is
enough to add a one to each number. The decoding should be straight forward.

In Elias delta coding, to encode n we again compute ⌊log2(n)⌋. But instead of writing
that many zeroes, we encode the number ⌊log2(n)⌋ + 1, which must be greater than 0,
with Elias gamma coding, as above. To the resulting binary representation, we append
the residual n − 2⌊log2(n)⌋ in binary, again using ⌊log2(n)⌋ digits. Regarding the Elias
gamma code as a prefix, we see that we need 2⌊log2(⌊log2(n)⌋+1)⌋+1 for the prefix and
⌊log2(n)⌋ for the suffix, 2⌊log2(⌊log2(n)⌋+1)⌋+1+ ⌊log2(n)⌋ bits total. As n grows, this
bound will be tighter than the one for Elias gamma coding. To decode, we first decode a
number N from a bit-stream using Elias gamma coding. Then read the N − 1 following
bits as a binary number R and form the sum 2(N−1) +R. Giving the similarities to Elias
gamma coding, the same limitations apply, as well as the same solutions.
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2.2.3. Quantization

Another way to allow compression is to reduce the number of words we recognize. If
several words are similar enough, we could represent them all using the same word, and
thus also encode them all using them same word, with average fewer bits. However, in-
formation is forever lost through this process, resulting in “lossy” compression, compared
to the above situations where the original message could be restored exactly, “loss-less”
compression. A quantization as outlined above could be performed in many ways, de-
pending on the form of the data to be compressed. In image coding we attempt to encode
sequences of numbers, and will generally measure similarity through some sort of distance
or length. We briefly outline two methods.

In scalar quantization we take a number x and maps it unto another number so that
x→ A[x]. This value can then be mapped to a number Q[x], the reconstructed value of
x. The error introduced by this, |x−Q[x]|, is called the distortion-measure. It is intuitive
that we want to design our quantization process in such a way that the average distortion
is minimized. For non-integer numbers, rounding is one example of quantization, with an
easily derived upper limit for the rate distortion. For integers, dividing and multiplying
by a number greater than one and rounding the result will result in a similar quantization,
with distortion being bounded by the number in question. This process can be visualized
by imagining placing bins of a certain size along the real axis, assigning numbers to the
corresponding bin. If the bins are of equal size, as they will with the above method, we
say that the quantization is uniform.

In vector quantization, we interpret a sequence of numbers as a vector, and use the
distance between the vectors to determine similarity. Given a set of base vectors, each
observed vector is then represented through the closest base vector. This can be visualized
through imagining the base vectors as points in space, interpreting the space around the
points as bins similar to the scalar case. Those with some knowledge of clustering should
recognize the similarities. The management of the base vectors is critical to the usability
of such a method. Again, we may use the distance as a distortion measure, wishing to
minimize its average over the message.

In either case, minimizing the average rate-distortion generally requires some knowledge
of the original message. It would seem reasonable that the more common words should
be quantized in a way resulting in lower rate-distortion as compared to more uncommon
words. In chapter 4 we shall examine this more closely.
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3. Introduction to Relevant Algorithms

3.1. LOCO-I

In this section we shall present an overview of the LOCO-I algorithm, originally presented
in [3], which forms the basis for the JPEG-LS coding scheme. The aim is to focus on the
intuition behind the different components, while also providing enough depth to follow
the rational for extensions presented in chapter 4. The first component treated will be
prediction, then context modeling, and finally we will tie them together when the encoding
scheme is presented. For a thorough description of the implementation, see [9]. Where
this description differs from that in [3], which it does for certain conventions, this paper
will follow [9], and the same conventions will be used when discussing the extensions of
the scheme.

3.1.1. Prediction

In Chapter 2, we stated that knowing probability distribution of the words to be coded
allows us minimize the overall length of the message. However, relying solely on this
technique does not yield the best results, as straight up estimating this probability dis-
tribution is generally not feasible. In most “interesting” images, the value of a pixel is
dependent on its neighbors, and thus its probability would be conditional on the values
of those pixels. This correlation between pixels can be interpreted as redundancy in the
representation of the image. However, removing such redundancies will allow us both to
reduce the length of the message, but also, as it turns out, to better model the distribution
of the words to be coded.

One way of removing such redundancy is to make a prediction of the word to be coded
given previously observed words, and then forming the residual, that is, the difference
between the prediction and the actual word. Such a residual will be decorrelated with
regards to the prediction used. If it is also reasonably small, or equally, the prediction
is reasonably good, a significant amount of reduction of redundancy is observed. The
resulting residual image is observed to have significantly lower entropy compared to the
original, and approximately follows a Laplacian distribution, for further discussion see
[10].
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As previously discussed, LOCO-I is a pixel-based coding scheme, and as such the sequence
of words to be encoded will be the prediction residual of each pixel. This prediction will
be based on the four surrounding pixels, the causal template of the pixel in question. The
structure of this causal template is shown in figure 3.1. If we attempt to code the pixels
in raster scan order, the whole causal template is known, except when x is on the top
row, or left- or rightmost column. In those cases, default values are used.

c b d
a x ←− current pixel

Figure 3.1.: The causal template for LOCO-I

The scheme used for predicting the pixel x in LOCO-I is referred to as Median Edge
Detection, MED. Given the layout of figure 3.1, the prediction of x, which we call x̂, will
be:

x̂ =







min(a, b) if c ≥ max(a, b)
max(a, b) if c ≤ min(a, b)
a+ b− c otherwise.

We then form the residual ǫ by taking x−x̂. This prediction attempts to detect horizontal
or vertical edges in the image. This can be motivated as follows. When c and b both
have a value higher or lower than that of a, there might be a horizontal edge above x,
and we guess that x is similar to a. Else a and c both might be larger or smaller than
b, and there might be a vertical edge to the left of x, and we would use b as our guess.
Otherwise c lies between a and b, and we predict that the region is some kind of plane,
using a+ b− c as our prediction, which given our knowledge of the relations between a, b
and c will be a mean of sorts.

90 200 d
100 x

(a) c is smaller than the lesser of a and b,
and we use the greater value (b) as a
guess for x, estimating a vertical edge.

210 200 d
100 x

(b) c is larger than the greater of a and b,
and we use the smaller value (a) as a
guess for x.

Figure 3.2.: Example of MED predictions.

We note that d has not been used for this prediction. It will be used for context modeling,
described in the next section, and also in our extended prediction schemes, see chapter
4.

3.1.2. Context

We may also use the causal template in a more general way. First we form the differences
D1 = d − b,D2 = b − c,D3 = c − a. The intuition is that we try and capture the
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characteristics of the picture around x with these differences. We call this the context
in which x occurs. By estimating the probability of a context occurring in the picture,
we attempt to further improve the prediction of x, as well as calculate the Golomb
parameter k, as we shall see in the next section. First however, we note that the range of
these differences is [−255, 255], or 29−1 different values. For three differences, this would
allow us (29−1)3 different contexts. It would be reasonable to assume that most of these
contexts would be visited rarely if at all, and thus our estimation of the probability of
such a context occurring will not be good. This is sometimes called context dilution.

To avoid this we want to significantly reduce the number of contexts. An easy way to
achieve such a reduction is by quantizing the intervals. The default intervals suggested
are [−255,−21], [−20,−7], [−6,−3], [−2,−1], [0], [1, 2], [3, 6], [7, 20], [21, 255], 9 intervals,
36 different contexts. The basis for this choice is the desire for the regions to be ap-
proximately equiprobable, as this will maximize the information provided on the pixel
by the context, given certain assumptions, see [11]. Furthermore, as we assume that
P (ǫ = ∆ | [D1, D2, D3]) = P (ǫ = −∆ | [−D1,−D2,−D3]), we merge contexts with op-
posite signs, leading to a further reduction, giving us 365 contexts. Both encoder and
decoder take note of such a merger and signal it by flipping the sign of the residual.

For each context we want to keep track of four statistics, the number of times the context
has occurred, N , the accumulated sum of magnitudes of residuals, A, the accumulated
sum of residuals, B, and a prediction correction value C. This correction uses B to
evaluate the trends of the prediction (positive B means the predictions are too low,
negative B that they are too high, overall) and either increases or decreases C by one to
counter these trends, if necessary. This correction is then added to the prediction.

3.1.3. Encoding

Given pictures using 8 bits per pixel, the residuals we form could potentially range from
-255 to 255, in the worst case. However, it is possible to reduce this range. This will be
done by mapping the interval [−255,−129] onto the interval [0, 127], by adding 256, and
the interval [129, 255] onto [−128,−1], by subtracting 256, so that the residuals will lie
in the interval [−128, 127]. The reason this is reversible is that the same prediction is
known to both the encoder and the decoder.

If the residual is non-negative, we have two cases:
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1. It was not caused by mapping.
Then the prediction was smaller than x. We gain x by adding the residual to x̂.

2. It was caused by the mapping.
Then the original value was a large negative number, the prediction was larger than x,
and adding this value to the prediction would then result in a value larger than 255. So
by taking the modulus 255, we indeed get the original value.

If the residual is negative, we again have two cases:

1. It was not caused by mapping.
Then the prediction was larger than x. By adding this negative value to the prediction
we get the original value.

2. It was caused by the mapping.
Then the original value was a large positive number, the prediction underestimated x,
and adding this value to x̂ gives us a negative number. Again we may take the modulus
255 to get the original value.

Thus we see that by taking the modulus of the sum of the mapped residual and the
prediction, we get the original pixel value. Moreover, this mapping does not significantly
affect the Laplace-like behavior of the approximated probability distribution.

LOCO-I was designed to be a lossless algorithm, it does however define a mode of quan-
tization for the prediction residuals, the “Near-lossless” mode. Given our residual ǫ, it
defines the quantization ǫ̂ = (ǫ + δ)/(2 · δ + 1) if ǫ > 0, and ǫ̂ = −(ǫ − δ)/(2 · δ + 1)
otherwise, where δ is the quantization parameter known to both encoder and decoder.
The residual is reconstructed through ǫ̂ · (2 · δ + 1) = R(ǫ). Note that this quantization
should be performed on the ranges used for the range reduction above, so that the whole
operation is scaled down. The residual is then mapped to a non-negative number. This
is done by mapping non-negative R(ǫ) to odd numbers through the mapping 2R(ǫ) + 1,
and negative R(ǫ) to even numbers through the mapping −2(R(ǫ) + 1).

Now we want to encode this mapped residual using the Golomb-Rice scheme. The original
is assumed to be close to a Laplacian, or two-sided geometric distribution centered at
zero. As we will only code integer values, which are non-negative after mapping, we
hope that they approximately follow a (one-sided) geometric distribution, for which the
Golomb-Rice scheme is suited. However, it remains for us to determine the parameter
k, ideally in such a way that the code-length is minimized. One of the strong points of
LOCO-I is the possibility to use the context statistics to calculate a good estimate for
the optimal value of k in a very efficient manner. Omitting most of the technical detail,
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it is shown in [3] that for a pixel with context statistics A and N , k should be computed
as k = min{k′ | 2k

′

N ≥ A}, which may be realized through the following line in the C
programming language

for ( k=0; (N<<k)<A; k++);

The LOCO-I also features a “run” mode, which attempts to achieve increase efficiency
for “smooth” regions, as identified by the [0, 0, 0]-context. For each consecutive pixel, as
long as we remain in this context or reaches the end of a line, the run continues. These
conditions are detectable by the decoder, so no side information needs to be sent. When
a run ends, its length is encoded, again use a Golomb-Rice scheme.

3.2. Key differences to HEVC

A reasonably complete technical background to HEVC is well beyond the scope of this
work, but since the implementation in this work is intended to be compared to HEVC,
it might be worth highlighting mayor conceptual differences. The first to touch upon is
that HEVC, like most video codecs, operate on several pixels simultaneously, generally
from a square of neighboring pixels. We refer to such all such constructs as a block. In
very simplified terms, the video source to be coded is subjected to a prediction step, a
transform step, a quantization step and a coding step. For a more complete overview of
the major ideas of the H.26x family of standards, see [12].

We focus on those differences between HEVC and LOCO-I which stems from their block-
based and pixel-based natures, respectively. The difference in entropy coding, for exam-
ple, is not really touched upon, since it would not be a conceptual challenge to extended
LOCO-I to use arithmetic coding rather than Golomb-Rice coding. The differences in
quantization were touched upon in section 2.2.3. Rather, the differences to be discussed
are in the decorrelating steps. First we discuss the differences in spatial prediction or
decorrelation, then temporal.

3.2.1. Transform

At the heart of coding is probability estimation, either explicit or implicit. As noted
above, this will generally require some kind of decorrelation. Prediction could be seen as
some implicit form of implicit decorrelation transform. In the H.26x family, this trans-
form is more explicit. Readers familiar with statistics and principal component analysis
(PCA) might be recognize the concept of using transforms (in that case Karhunen-Loève
transform, KLT) to decorrelate variables. In the case of KLT, it can be shown to have
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the property of decorrelating the variables, but it has other properties which makes it
unsuitable for image coding. In this field, discrete versions of the wavelet transform and
cosine transform sees more usage. By regarding a block as some discrete values of a
two-dimensional vector function, the transformation can be carried out through a series
of matrix multiplications.

In a pixel-based scheme, using transforms would have to work quite differently. See [13]
for a more thorough discussion of transforms.

3.2.2. Motion compensation

We also expect pixels in a frame to depend on previous frames in most video sources. The
simplest form of temporal prediction is to use the previous frame as basis for the predic-
tion. Directly subtracting one from the other will leave residuals representing the motion
of the picture. Further compression is possible if this motion could be compensated for,
and thus block-based coders use some form of motion estimation and compensation.

Motion estimation is the act of trying to match the contents of a block in one frame
with a block in a previous frame so that the residual is minimized. Intuitively, we try to
find the position of the moving object in the previous frame. The block in the previous
frame (known to the decoder) could thus be used as basis for a prediction, by signaling
the motion vector relative to the current block, along with the residual of the prediction.
This technique is known as motion compensation.

Various techniques exist to improve the estimation, such as variable block sizes and sub-
pixel estimation. It is clear that using smaller blocks allow for more precise prediction,
but since the searching becomes more time-consuming and the motion vector must be
sent as overhead, the costs may outweigh the benefits. Signaling vectors on a per pixel
basis is prohibitively expensive, and thus motion compensation must be designed quite
differently for pixel-based coding.
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4. Proposed Improvements

In this section we shall cover the extensions which have been made to the JPEG-LS stan-
dard implementation, referenced in [9]. Our implementation conforms to this standard,
except that it does not read a file header, and that by default it will assume that the
input file uses 4:2:0 chroma subsampling, as described above. It is however possible to
set the height and width for each component individually. The chromatic components
are treated the same way as the luma component. The codec will assume that the com-
ponents follow sequentially. Also, the use of run mode is restricted, for further details see
section 4.2. For ease of use, we shall refer to the extended implementation as LOCO-II.

The code similar to that in [9] will not be repeated here. Larger blocks of code or
pseudocode appear in the Appendix, so as not to disturb the flow of the text.

Generally in LOCO-II, keeping the low complexity has been a priority. In particular, the
way the next pixel is acquired and the way the causal template is updated has received
special consideration. In combination with the desire to handle subsampling, certain
changes compared to the specification has been made. This is outlined in pseudocode in
Code segment 1. The way multiple frames are handled is outlined in Code segment 2.

4.1. Quantization

In many applications, the bitrates offered by lossless coding are prohibitively expensive.
The following section shall outline the different methods of quantization investigated in
this project. In the first subsection, we look at scalar quantization, which is supported by
the standard, and discuss possible improvements there. The second subsection discusses
the role of vector quantization, a common technique in block based coding, and the
possibilities of using similar schemes in pixel-based encoding.

4.1.1. Scalar Quantization

The original JPEG-LS offers scalar quantization through its “Near-lossless” mode, as dis-
cussed in 3. However, it is useful to differentiate the quantization around 0, which is often
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done through a “dead-zone”, see [14]. We may imagine that the bin around 0 is larger.
Work such as [15], [16] indicate that for a Laplacian distribution, the rate-distortion is
minimized through the use of a uniform quantizer with dead-zone, a DZ+UTQ. The exact
parameter values would depend on the specific distribution in question.

Thus, the original JPEG-ls implementation is extended with the scheme from [16] in the
following way. Using similar notation as in chapter 3, calling the “dead-zone” variable z,
we introduce a quantization

ǫ̂ = sign(ǫ) ·max(0, ⌊
| ǫ |

δ
−

z

2
+ 1⌋)

and the single-offset reconstruction of the quantization as

R(ǫ) =

{

0 for ǫ̂ = 0,
sign(ǫ̂) · (δ · (| ǫ̂ |+ z

2
− 1) + δ

2
) for ǫ̂ 6= 0

As in the Near-lossless mode, this quantization must be applied to mapping ranges when
using this quantization mode. This quantization mode, using a dead-zone of 2 is generally
observed to be better than Near-lossless as bitrates get lower, the difference is however
not drastic. See chapter 5 for detailed tests.

4.1.2. Vector Quantization

A goal of this thesis was to investigate the possibility of using vector quantization in pixel
based coding. In block based coding it is quite natural to let a macro block serve as a
vector, but for our coding scheme, it is much less clear what a natural choice of a vector
would be like. Besides the fact the we code each pixel individually, our coding is also
sequential, so that the reconstructed value of a pixel depends both on the transmitted
residual and the causal template, that is, the surrounding pixel, which in turn are pre-
viously reconstructed values. If we would attempt to use a naive method consisting of a
code-book of vectors, we would have to make extensive alterations, as outlined below.

Imagine the coder produces a vector of residuals, and then uses the code-book to find the
closest code vector. For the encoder and decoder to use the same value, the encoder would
possibly need to go back and update the first residual, which would then potentially alter
the following residuals, potentially changing the vector to a point where another vector
would have been a better fit. This method is not further considered in this work.

A way to avoid the above problem would be for the encoder to determine an appropriate
vector incrementally. This could be facilitated by structuring the code-book like a tree.
The distance would then have to be incrementally calculated. This also would make it
possible to consider vectors of variable length. A drawback would be that using one value
to check for similarity would probably not make sense given vectors with large difference
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in dimensionality. A way around this could be to evaluate distance element wise, using
the Chebyshev metric rather than the Euclidean metric.

Considering the tree scheme further, we need to consider how it would be used by the
decoder. Given a tree structure of vectors as described above, how would the decoder
navigate this tree to reconstruct the image. Rather than sending information for every
node visited, it would seem better to use a pointer, stored in some lookup table, to reach
the correct leaf. Using this scheme, two things are of interest. First, the indices of the
table with short code words should correspond to common vectors. It would also be
desirable to use small code word indices to point to long vectors. This will allow us to
maximize the information per bit of code. Sorting the table with regards to those two
goals would be important.

The question is then how such a tree could be constructed. While several alternatives
exist, this work only investigates the possibility of gradually constructing the tree based
on observed values in the picture being coded, at both encoder and decoder side. If no
child of the current node is similar enough, the observed residual is inserted as a child in
that node, and the current node is set to be the root of the tree. If a similar child exists,
that node would become current. Then the next residual would be considered, the whole
process repeated until the tree is sufficiently populated. After that point, only indices of
relevant leaves would be transmitted, until the whole image has been coded, or the tree
requires further updates. This could be signaled through a spare index.

However, lack of time prevented the full realization of such a scheme. A rudimentary
implementation was used in some initial testing, but suffered heavily compared to the
regular quantization mode, both with regards to compression and execution speed. Some
reflections and possible ideas for a better scheme are given in section 6.1.4.

4.2. Skip mode

Given a functioning pixel-based scheme, one of the first necessary extensions is to allow
for bit-rates below 1bpp, that is, using on average less than one bit to represent one
pixel, to even begin to compete with HEVC. This would necessitate that for some pixels,
no information at all is coded. The way this is done is through a “skip mode”; when
the prediction is good enough, the decoder should use only the prediction. It seems
reasonable to assume that for smooth parts of the image, the residuals should lie close to
zero, so for this smooth part we get a sequence of some length, being somewhat close to
the zero-vector of that same length. Thus, by signaling the length of this “skip-vector”
we could achieve a useful quantization.

To make such a scheme work, certain difficulties need to be overcome. First, we need
a functioning signaling scheme, so that the decoder can detect the beginning of such a
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vector without any side information. This is done by using sufficiently small residuals, in
the absolute value sense, as starting points of such “skip-vectors”. Secondly, we need some
efficient code-book scheme. In this case, we only use zero-vectors of different lengths, so
using some universal code to give the length seems efficient. Below is a description of
how this is carried out.

1. The encoder uses an error cut-of value, which is either a default value, or sent in a
header to the decoder.

2. If the absolute value of the residual is smaller than the cut-of value, the encoder
enters a skip mode.

3. During the skip mode, a counter keeps track of the number of skipped pixels.

4. When an error greater than the cut-of value is detected by the encoder, the skip
mode ends. At this time, the number of skipped pixels is coded, using some universal
code.

The decoder is extended in the following way.

1. The decoder acquires the cut-of value, either through a header or as a default.

2. When a residual with absolute value smaller than the cut-of value is decoded, the
decoder immediately reads the code word from the coded stream, which is the
number of skipped pixels.

3. For that number of pixels, only the predicted value is used to reconstruct the pixel.

4. The following pixel is treated as normal.

Of course, for vectors of length zero, we will certainly increase the code length, as we
need minimum one bit to signal that. However, for all pictures tested in this study, there
exists enough “skip-vectors” of sufficient length to achieve values below 1bpp. Also, as
quantization becomes coarser, more residuals will be reconstructed into a value smaller
than the cut-of, and thus increases the frequency and length of such vectors. Experiments
were carried out with both Elias gamma and Elias delta code, however the results were
almost identical for both cases.

One problem with this scheme is that it will alter the distribution of transmitted residual,
since a vast majority the residuals below the cut-of value are never transmitted. The
exact resulting distribution has been hard to classify, but it is possible that the context
modeling and the calculation of the Golomb-Rice parameter could be altered to account
for this new distribution. Two options were attempted in this study.
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First, a transformation of the resulting distribution was attempted, by mapping values
larger than the cut-of to smaller values, since they are now more probable than the
original model assumes. This did however lead to worse compression. The values below
the cut-of are still common enough to warrant the smallest code words, even though many
are “eaten” by the ‘skip-vector.

The second attempt tried to update the contexts with zeros for the skipped pixels, since
they are effectively quantized to that value. This also led to worse compression. Most
likely the second quantization makes the values significantly different from those normally
occurring in those contexts.

Another problem with the skip mode is that it does not get along with run mode described
in chapter 3. They are both schemes which attempt to take advantage of smooth regions
of an image; however, run mode would be entered first, since it is detected before any
residual is calculated. But it is a lossless scheme, and as such we would expect it to
have worse compression, which is also observed in practice, with run mode generally
having twice the compression for higher levels of quantization. Thus, for the tests and
comparisons presented in this report, if skip mode is enabled, run mode is disabled.

4.3. Prediction

This section discusses various approaches to improve prediction. In general, the limiting
factor of more powerful prediction is computational complexity, leading to degradation
of run speed. For certain schemes, the difficulty of avoiding signaling overhead must be
overcome. In the first subsection spatial prediction is covered, in the second temporal
prediction.

4.3.1. Spatial Prediction

The use of skip mode increases the importance of prediction. The better the predic-
tions, the longer runs we get and the more frequently they appear. The MED-scheme of
the LOCO-I algorithm is a compromise between the desire for accurate prediction and
complexity constraint. LOCO-II allows for higher complexity, so improved schemes for
prediction is desirable.

The following schemes are implemented without extending the causal template, that is,
we do not use more pixels surrounding the pixel currently being coded. They are based
on the ideas in [17] and [18], which attempts to extend the MED-scheme to detect certain
diagonal edges.
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The intuition is as follows. Given the small causal template, we can only reasonably
detect diagonal edges with angles 45 ◦ and 135 ◦ respectively.

c b d
a x

(a) 45
◦ degree edge

c b d
a x

(b) 135
◦ degree edge

Figure 4.1.: Example of MED predictions.

To detect those within the basic prediction scheme, we examine the three original cases,
as outlined in chapter 3.

1. c ≥ max(a, b)
This normally detects and edge to higher values either to the left or above x, so the only
diagonal possibility would be a compromise, that is a 45 ◦ edge from a to b with c having
higher value. Thus x should be predicted to be lower than either a or b

2. c ≤ min(a, b)
This case is similar to the above, except that now c have the lower value, and thus x
should be higher than a or b.

3. c between a and b.
In this case a possible diagonal edge must have a 135 ◦ angle. To get a good prediction of
such an edge, should it exist, we really need to use the value of x to get a good prediction.
Since that value cannot be known to the decoder, no improvement is attempted for this
case.

But for cases (1.) and (2.), the existence of diagonal edges could mean that the use of
the highest or lowest value from a and b will not be high or low enough to capture that
edge. Thus we need conditions to detect the existence of such an edge. One indication
could be that the differences b− d, and c− d are large enough. Large positive differences
could mean an edge such as described in case (1.), while large negative differences could
indicate and edge from case (2.) Two different approximations for x are attempted, the
actually implementation described in 4.

Other indications could be that c is far enough from a and b, as this speaks against
vertical or horizontal edges. If at the same time d < b and a is sufficiently larger than b,
and egde such as in (1.) is likely, with a being on the high side and b, d and x on the low
side. Otherwise, if the difference between a and b is small enough while c being much
smaller than a or b, case (2.) could be possible, with a, b and x being on the high side of
the edge. This is realized in 5. For this last prediction method, d is strongly featured in
predicting x.
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As noted in [17], while this extended prediction gives smaller errors in the mean square
sense, taken over the picture as a whole, this does not lead to a similar reduction in
compression. Given that our context modeling is optimized for a certain prediction
implementation, the derived parameter values might in many cases not be ideal for the
resulting error residual, and thus no practical gain in compression is observed. Taking
the skip mode into account, better prediction could lead to better quality at similar rates
of compression, but in practice, the effects are very small, and vary for different rates of
quantization.

A goal for this thesis was to investigate how machine-learning techniques could be used
to aid compression. An obvious area of application could be the prediction step. Rather
than improving the MED-scheme, it could be possible to predict the pixel x using the
causal template as input to some kind of artificial neural network. It has been shown
that there are different flavors of neural nets capable of acting as universal approximators,
e.g. [19], [20], [21]. The Radial Basis Function Networks in particular might be promising.
However, certain limitations are immediate. The first is to what extent the value of pixel
x really is a function of its causal context, that is, does a specific causal context always
result in the same value for x. This does not appear likely, see below. Furthermore,
the computational aspect would be an obvious limitation, even when using pre-trained
nets, especially so for pixel based coding. Given these limitations a more sophisticated
machine-learning approach does not seem suitable to this particular implementation.
However, using the weighted sum as a prediction is feasible. Two different schemes of
doing this are explored.

In the first method, the weights are calculated adaptively through the coding process.
One obvious limitation here is computational complexity. A simple variation inspired by
ALCM [22] is attempted here. The template is provided equal initial weights, which are
updated by a constant factor depending on the sign of the residual. A positive sign would
indicate too low of a prediction, and then we increment the largest weight and decrement
the smallest weight. A negative sign indicates a too high prediction, and we decrement
the largest weight and increment the smallest weight. The weights should initially sum
to 1, and this scheme should preserve that property. In case of ties in value, the order of
priority given by their template pixel is c, b, d, a and finally the constant weight.

In the other approach we consider finding the weights as a curve-fitting problem. As-
suming the weights to be linear, we try to optimize them through linear least square
multivariate regression. Results, obtained through R statistical software, are shown in
Code segment 3, where the proposed weights are the estimates for the coefficients. Despite
apparent significance, the outliers are both numerous and quite large in value. Visual
inspection casts serious doubts of x being a linear function of a, b, c, d. Fitting x to a
polynomial of the causal template was not attempted.

However, neither method resulted in better average prediction, much less better compres-
sion. Test where done both with and without the constant term, and in the first case
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different modifying values. The second scheme was closer in both prediction in compres-
sion, and might improve further with a larger causal template. Trying different linear
functions for each case of the MED-scheme did not improve the prediction. It would seem
that the MED-scheme is quite robust in its predictive capabilities, also noted in [23].

4.3.2. Temporal prediction

Given our extension into video sequences, the use of temporal prediction would seem be an
obvious way to improve the prediction. A naive way would be to use the corresponding
pixel in the previous frame. In practice however the improvement using this method
is quite modest. For all pictures tested, the mean sum of the squared residuals using
temporal prediction was higher than when using spatial prediction methods. For pictures
with large static backgrounds, the difference was smaller, see 4.1.

city 0 city 15 vidyo1 0 vidyo1 15
MED 25.25 73.74 6.51 48.5
pre frame 172.48 208.28 23.45 65.8

Table 4.1.: MSE of different prediction methods at different levels of quantization.

Investigation showed that temporal prediction would be better for some pixels, and an
overall better prediction for all considered video sequences could be achieved by using a
weighted mean of two predictions. Such a weighting scheme is also present in many of
the schemes using more advanced temporal prediction presented below.

More generally, it would be desirable to extend our algorithm to use some form of motion
estimation and compensation. But similar to the case of vector quantization, coding each
pixel individually places certain restrictions, as signaling a vector for each pixel would be
prohibitively expensive.

Work has been done in [24] and [25] to extend the methods of LOCO-I to video coding,
though the focus in those works is on lossless coding. The idea in [24] is to establish
a number of temporal contexts, similar to the spatial contexts used in LOCO-I, to aid
prediction. In [25] the two previous frames are used to detect motion. Given complexity
constraints however, neither was considered for LOCO-II.

As an alternative to the methods above tests were made to investigate the possibility of a
simpler context to detect when the naive temporal prediction outlined above give better
prediction for an individual pixel. The condition investigated is when the two predictions
are sufficiently different, the motivation being that for static regions temporal prediction
would be better, but spatial prediction would be better for the dynamic regions. Then
hopefully the difference in predictive power would be large and significant enough for the
decoder to detect. Six cases were thus considered:
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1. The prediction interval is large enough and temporal prediction is better.

2. The prediction interval is large enough and the predictions are the same.

3. The prediction interval is large enough and spatial prediction is better.

4. The prediction interval is small enough and temporal prediction is better.

5. The prediction interval is small enough and the predictions are the same.

6. The prediction interval is small enough and spatial prediction is better.

The frequency of these cases for sequences “vidyo1.yuv” and “city.yuv” are shown in figure
4.2, using first lossless coding and then moderate quantization. For the idea to work, we
would want a high frequency of fours compared to fives and sixes. However this is only
really observed for the lossless “vidyo1.yuv”, with the predictive advantage of using the
previous frame diminishing heavily when using quantized values. For “city.yuv” it is hard
to detect any scenario where temporal prediction is clearly better. While it is possible
to tune the parameters, this scheme was not considered promising enough for further
investigation.
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(a) Proportion of predictions of each type for the city.yuv sequence at lossless (left) and quantized
(right). Spatial prediction is better more often no matter the prediction interval.

(b) Proportion of predictions of each type for the vidyo1.yuv sequence at lossless (left) and
quantized (right). For lossless and close predictions, temporal predictions are more accurate,
but the difference disappears when quantization increases.

Figure 4.2.: Prediction tests. Numbers correspond to the six cases enumerated above.
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5. Tests and Comparisons

In this chapter, we present the test material.

In order to investigate the performance of JPEG-LS when extended to handle lossy video
coding, the parameters of interest are computational complexity and compression effi-
ciency. To investigate the computational complexity the Boost.Chrono C++ libraries are
used to measure the encoding time.

Compression (in bits per pixel, bpp) must be with regards to visual quality to be a
meaningful measure. The chosen measure is the mean squared error (MSE) difference
between the original and compressed image.

While this is by no means a perfect measure of visual quality, it is widely used, and
thus facilitates easy comparisons. Results are presented as luminance MSE as a function
of bpp. They are compared to the HEVC reference video codec (HM), available at
https://hevc.hhi.fraunhofer.de/HM-doc/, as well as the internal Ericsson HEVC
codec (c65). The config settings for HM are given in A.1 and A.2, with QP varying from
0 to 50 over the tests. c65 was run at default settings.

The results are presented in the following section.

5.1. Coding speed

Figure 5.1 shows compression speed for three different sequences. Only LOCO-II and
c65 are taken into consideration; HM is orders of magnitude slower, taking over a minute
to compress one frame of “crowdrun”. The tests were run on an Intel Core i5-2540M
CPU @ 2.60GHz, running Windows 7 Enterprise. Values are taken as an average over
10 runs, but the numbers should still be interpreted with caution; the values often had a
coefficient of variation greater than 40%.
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Figure 5.1.: Compression speed at various rates

5.2. Compression Rates

Figure 5.2 shows plots showing the compression of one frame of various sequences. Table
5.1 gives a lossless comparison between the standards which support lossless coding. For
rates below 1 bit per pixel, LOCO-II reaches the same visual quality as c65 at roughly
twice the size. HM is smaller still. The relative performance is similar through the
different images.
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Figure 5.2.: 1 frame comparisons

sequence Bpp HM Bpp LOCO-II

City 4.1451 3.45949
crowdrun 4.9769 4.51617
race 4.6222 4.04525
vidyo1 3.0942 2.54662

Table 5.1.: comparison of lossless compression
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Compression when coding 10 frames of a sequence, at different quantization, is shown in
figure 5.3. Images are chosen to highlight the impact of temporal prediction. The lack
temporal prediction for LOCO-II is clear, as maintain acceptable visual quality at far
lower bitrates. We also see the relative difference in compression increase for images for
which it is relatively easy to exploit the temporal redundancies, such as city.yuv, compared
to images where it is hard, such as crowdrun.yuv. Table 5.2 illustrates that HM needs
fewer bits compared to LOCO-II when taking advantage of temporal prediction.
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Figure 5.3.

sequence Bpp HM Bpp LOCO-II

City 3.33255 3.6507
crowdrun 4.14605 4.53552
foreman_cif 2.76252 3.28237

Table 5.2.: comparison of lossless compression, 10 frames
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5.3. Subjective visual quality

Figures 5.4 and 5.5 show examples of LOCO-II using somewhat harsher compression.
The artifacts are quite distinct from those of HEVC, having a smeared rather than a
blocky look. Figure 5.4 also show that the sub-sampled components degenerate quicker
compared to the luminance, giving the image a reddish tint. Per default, they use the
same quantization values. Figure 5.5 show the effect of coding the chromatic components
with lower quantization. The difference is also shown in comparing figure 5.6 and figure
5.7, the improved quality comes at a ∼ 15% cost in compression.

In the author’s opinion, these figures also show the limitation of PSNR as an objective
measure. At very similar PSNR-values, the images look quite different, with the artifacts
of LOCO-II being quite harsh on the background textures, while adapting quite well to
details such as facial features, and letters, one example being the text on the bottle in
the lower right corner. HEVC does a much better job of keeping the background smooth,
while losing much of the detail.

Figure 5.4.: vidyo1 coded with HEVC (top) compared to Loco-II (bottom), at similar
bitrates.
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Figure 5.5.: LOCO-II using adapted quantization for sub-sampled components (top), reg-
ular quantization (middle) and an HEVC at similar MSE (bottom)
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Figure 5.6.: Foreman_cif at decreasing bitrates, with LOCO-II above and c65 below.
Leftmost image is coded using ∼3.4bpp, middle image ∼0.65 and rightmost
∼0.35.

Figure 5.7.: Foreman_cif at decreasing MSE, with LOCO-II, using compensation for the
chromatic components, above and c65 below.
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6. Discussion and conclusions

6.1. Further work

In this section is discussed the areas of LOCO-II where the need for improvement is
greatest. Besides identifying features which due to timing constraints did not end up
featuring in LOCO-II, the author has tried to identify works which might serve as a basis
for further additions.

6.1.1. Arithmetic coding

There exists highly successful implementation of pixel-based context-based arithmetic
coding such CALIC [4], which could serve as a basis for pixel-based arithmetic video
coding. One issue is that CALIC is reported be of much higher complexity [26], with
only very minor decrease in compression, at least for lossless compression.

6.1.2. Complexity reduction

It might be possible to make a faster implementation of LOCO-II. One obvious area
of improvement would be threading the coding of the components, which is one of the
most obvious things missing in LOCO-II. The coding of the luminance should account
for roughly two thirds of the computation time for 4:2:0 images; parallelism thus could
at most reduce it by 33%. It might also possible to achieve higher speed through restruc-
turing of the code, though such attempts have been unsuccessful in this study. A rough
estimate of the number of operations per pixel points at the context modeling being the
most expensive part. Another possibility would be to consider a scheme with lower com-
plexity compared to LOCO-I. One candidate could be SFALIC [26], using a much faster
modeling scheme. A higher coding speed could potentially allow for techniques deemed
too expensive in LOCO-II, such as Radial basis function networks used for prediction, or
one of the temporal prediction schemes.
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6.1.3. Redundancy reduction

While improving the spatial prediction appears difficult, temporal modeling is an area
which requires much improvement. Lossless attempts can be found in [27] [24] [25].
The unmodified LOCO-I is used as reference in [24], [25], reporting between 15-20%
improvement. Both would require a more general framework of handling the previous
frames compared to what exists in LOCO-II. In [28] pixel-based spatial prediction is
combined with block-based temporal prediction, which might prove useful, though this
scheme is also lossless. It also features integer wavelet transform to further decorrelate
the pixels. In all cases, executing speed would be an issue.

6.1.4. Vector quantization

The scheme outlined for vector quantization in 4.1.2 might be implemented in such a
way as to be usable, through more clever algorithms or data-structures. However, the
time to update the table must be kept very low. It might also be feasible to use some
sort of pre-constructed tree. By making an analogy between commonly occurring vectors
and the idea of string mining from data mining, it might be possible to construct such a
tree giving good coverage over relevant image material using some frequent string mining
scheme.

6.2. Conclusions

The results show that LOCO-II doesn’t reach the compression of HEVC, and also fails
to quite reach the encoding speed of c65 on many compression rates. The speeds might
be possible to surpass through threading, but it is quite unlikely that the compression
could be matched, especially while preserving a low computational complexity.

An advantage of LOCO-II is that it is much simpler to implement, and for some ap-
plications, possibly that details are better preserved. We have not yet identified any
application where LOCO-II would be the best choice.
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A. Appendix

Code 1 LOCO-II dataflow representation of the coding of one frame

digital source

image data

context

modelling
prediction

error

encoding

compressed

image data

skip

mode

Code 2 LOCO-II dataflow of the coding of several frames

previous or

empty frame

current frame
frame

encoding
coded frame
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Code 3 Regression on causal template
Call:

lm(formula = x ~ a + b + c + d)

Residuals:

Min 1Q Median 3Q Max

-225.517 -3.211 -0.151 3.016 267.864

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.4954516 0.0121578 40.75 <2e-16 ***

a 0.8178917 0.0003096 2641.92 <2e-16 ***

b 0.4101013 0.0006848 598.91 <2e-16 ***

c -0.4159833 0.0005049 -823.86 <2e-16 ***

d 0.1820444 0.0004420 411.85 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 6.376 on 3066619 degrees of freedom

Multiple R-squared: 0.9717, Adjusted R-squared: 0.9717

F-statistic: 2.635e+07 on 4 and 3066619 DF, p-value: < 2.2e-16

Code 4 Extended MED predictor with diagonal edge detection

i f ( c >= max(a , b ) ){
i f ( a <= b)

return a ;
else i f ( ( b−d)>=10 && ( c−a)>=10)

return (1∗d+2∗b )/(1+2) ;
else

return b ;
}

else i f ( c <=min(a , b ) ){
i f ( a>=b)

return a ;
else i f ( ( d−b) >= 10 && (a−c ) >= 10)

return (1∗d+2∗b )/(1+2) ;
else

return b ;
}

else

return a+b−c ;
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Code 5 Extended MED predictor with diagonal edge detection

i f ( c >= max(a , b ) ){
i f ( a <= b)

return a ;
else i f ( ( b−d)>=10 && ( c−a)>=10)

return ( a+b+d)/(1+2) ;
else

return b ;
}

else i f ( c <=min(a , b ) ){
i f ( a>=b)

return a ;
else i f ( ( d−b) >= 10 && (a−c ) >= 10)

return ( a+b+d)/(1+2) ;
else

return b ;
}

else

return a+b−c ;

Code 6 Extended MED predictor with diagonal edge detection

i f ( c>=max(a , b ) )
{

i f ( c−max(a , b) > 10 && d < b && a−b >= 5)
return (d+min (a , b)>>1);

else

return min(a , b ) ;
}

else i f ( c <= min(a , b ) )
{

i f (10 <= d−b && d−b <= 50 && abs ( ( b−a)<= 10) && min(a , b)−c >= 5)
return (d+max(a , b)>>1);

else

return max(a , b ) ;
}

else

return a+b−c ;
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Listing A.1: HEVC Test Model (HM) config file for intra coding

#======== F i l e I /O =====================
2 Bit s t r eamFi l e : s t r . bin

ReconFile : r e c . yuv
4

#======== Pr o f i l e ================
6 P r o f i l e : main

8 #======== Unit d e f i n i t i o n ================
MaxCUWidth : 64

10 MaxCUHeight : 64
MaxPartitionDepth : 4

12 QuadtreeTULog2MaxSize : 5

14 QuadtreeTULog2MinSize : 2

16 QuadtreeTUMaxDepthInter : 3
QuadtreeTUMaxDepthIntra : 3

18

#======== Coding St ruc ture =============
20 In t raPer i od : 1

DecodingRefreshType : 0
22 GOPSize : 1

24

#=========== Motion Search =============
26 FastSearch : 1

SearchRange : 64
28 HadamardME : 1

FEN : 1
30 FDM : 1

32 #======== Quantizat ion =============
QP : 40

34 MaxDeltaQP : 0
MaxCuDQPDepth : 0

36 DeltaQpRD : 0
RDOQ : 1

38 RDOQTS : 1

40 #=========== Deblock F i l t e r ============
Deb lock ingF i l t e rCont ro lPre s en t : 0

42 LoopFi l terOf fset InPPS : 0
LoopF i l t e rD i sab l e : 0
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44 LoopFi l terBetaOf f set_div2 : 0
LoopFi l terTcOffset_div2 : 0

46 Deb lock ingF i l t e rMet r i c : 0

48 #=========== Misc . ============
Interna lBi tDepth : 8

50

#=========== Coding Tools =================
52 SAO : 1

AMP : 1
54 TransformSkip : 1

TransformSkipFast : 1
56 SAOLcuBoundary : 0

58 #============ S l i c e s ================
SliceMode : 0

60

62

SliceArgument : 1500
64

66

68 LFCrossSl iceBoundaryFlag : 1

70

#============ PCM ================
72 PCMEnabledFlag : 0

PCMLog2MaxSize : 5
74 PCMLog2MinSize : 3

PCMInputBitDepthFlag : 1
76 PCMFilterDisableFlag : 0

78 #============ Ti l e s ================
UniformSpacingIdc : 0

80

NumTileColumnsMinus1 : 0
82 ColumnWidthArray : 2 3

NumTileRowsMinus1 : 0
84 RowHeightArray : 2

86 LFCrossTileBoundaryFlag : 1
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88

#============ WaveFront ================
90 WaveFrontSynchro : 0

92

#=========== Quantizat ion Matrix =================
94 S c a l i n gL i s t : 0

S c a l i n gL i s t F i l e : s c a l i n g_ l i s t . txt
96

#============ Lo s s l e s s ================
98 TransquantBypassEnableFlag : 1

CUTransquantBypassFlagValue : 1
100

### DO NOT ADD ANYTHING BELOW THIS LINE ###
102 ### DO NOT DELETE THE EMPTY LINE BELOW ###

Listing A.2: HEVC Test Model (HM) config file for lowdelay coding

#======== F i l e I /O =====================
2 Bit s t r eamFi l e : s t r . bin

ReconFile : r e c . yuv
4

#======== Pr o f i l e ================
6 P r o f i l e : main

8 #======== Unit d e f i n i t i o n ================
MaxCUWidth : 64

10 MaxCUHeight : 64
MaxPartitionDepth : 4

12 QuadtreeTULog2MaxSize : 5

14 QuadtreeTULog2MinSize : 2

16 QuadtreeTUMaxDepthInter : 3
QuadtreeTUMaxDepthIntra : 3

18

#======== Coding St ruc ture =============
20 In t raPer i od : −1

DecodingRefreshType : 0
22 GOPSize : 4

24 Frame1 : B 1 3 0.4624 0 0
0 4 4 −1 −5 −9 −13 0
Frame2 : B 2 2 0.4624 0 0
0 4 4 −1 −2 −6 −10 1

46



−1 5 1 1 1 0 1
26 Frame3 : B 3 3 0.4624 0 0

0 4 4 −1 −3 −7 −11 1
−1 5 0 1 1 1 1
Frame4 : B 4 1 0 .578 0 0
0 4 4 −1 −4 −8 −12 1
−1 5 0 1 1 1 1

28

#=========== Motion Search =============
30 FastSearch : 1

SearchRange : 64
32 BipredSearchRange : 4

HadamardME : 1
34 FEN : 1

FDM : 1
36

#======== Quantizat ion =============
38 QP : 32

MaxDeltaQP : 0
40 MaxCuDQPDepth : 0

DeltaQpRD : 0
42 RDOQ : 1

RDOQTS : 1
44

#=========== Deblock F i l t e r ============
46 Deb lock ingF i l t e rCont ro lPre s en t : 0

LoopFi l terOf fset InPPS : 0
48 LoopF i l t e rD i sab l e : 0

LoopFi l terBetaOf f set_div2 : 0
50 LoopFi l terTcOffset_div2 : 0

Deb lock ingF i l t e rMet r i c : 0
52

#=========== Misc . ============
54 Interna lBi tDepth : 8

56 #=========== Coding Tools =================
SAO : 1

58 AMP : 1
TransformSkip : 1

60 TransformSkipFast : 1
SAOLcuBoundary : 0

62

#============ S l i c e s ================
64 SliceMode : 0
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SliceArgument : 1500
66 LFCrossSl iceBoundaryFlag : 1

68 #============ PCM ================
PCMEnabledFlag : 0

70 PCMLog2MaxSize : 5
PCMLog2MinSize : 3

72 PCMInputBitDepthFlag : 1
PCMFilterDisableFlag : 0

74

#============ Ti l e s ================
76 UniformSpacingIdc : 0

78 NumTileColumnsMinus1 : 0
ColumnWidthArray : 2 3

80 NumTileRowsMinus1 : 0
RowHeightArray : 2

82

LFCrossTileBoundaryFlag : 1
84

86 #============ WaveFront ================
WaveFrontSynchro : 0

88

90 #=========== Quantizat ion Matrix =================
Sca l i n gL i s t : 0

92 S c a l i n gL i s t F i l e : s c a l i n g_ l i s t . txt

94 #============ Lo s s l e s s ================
TransquantBypassEnableFlag : 0

96 CUTransquantBypassFlagValue : 0

98 #============ Rate Control ======================
RateControl : 0

100 TargetBi t rate : 1000000
KeepHie ra rch i ca lB i t : 2

102 LCULevelRateControl : 1
RCLCUSeparateModel : 1

104 In i t i a lQP : 0
RCForceIntraQP : 0

106

### DO NOT ADD ANYTHING BELOW THIS LINE ###
108 ### DO NOT DELETE THE EMPTY LINE BELOW ###
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