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Pixel Classification Using Variable String Genetic
Algorithms with Chromosome Differentiation
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Abstract—The concept of chromosome differentiation,
commonly witnessed in nature as male and female sexes, is ool 22 2
incorporated in genetic algorithms with variable length strings ' 2
for designing a nonparametric classification methodology. Its a5 2 2%
significance in partitioning different landcover regions from 2 22 24
satellite images, having complex/overlapping class boundaries, is “T g,
demonstrated. The classifier is able to evolve automatically the
appropriate number of hyperplanes efficiently for modeling any
kind of class boundaries optimally. Merits of the system over the aor
related ones are established through the use of several quantitative
measure.
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I. INTRODUCTION Fig. 1. Scatter plot for a training set of SPOT image of Calcutta containing
seven classes (%,,7).

LASSIFICATION of pixels for partitioning different land-
C coverregions is an important problem in the realm of satel-
lite imagery. Satellite images usually have a large number
classes with overlapping and nonlinear class boundaries. Fi

riable length strings in GAs (VGAS) [3] and chromosome
iqerentiation into two classes, male (M) and female (F),

shows, as a typical example, the complexity in scatter plot ve peen in'te_grated for approximating'the class bouqdaries
932 points belonging to seven classes taken from the Syste given training data set nonparametrically by an optimum
Probatoire d’Observation de la Terre (SPOT) image of a partrE)Lf’_mbe_r of_hyp_erplanes_ such that the _number of _m|scla53|f|ed
the city of Calcutta. Therefore, for appropriate modeling of su Ints Is m|n|m|zed_. Un_I|ke the. conventional GAs, in VGACD,
nonlinear and overlapping class boundaries, the utility of an &pe length of a S‘,””Q is not fixed. .Moreover, two classgs of
ficient search technique is evident. Moreover, itis desirable t romosomes exist n the pop_ula'uon. The CTOSSOVer, imple-
the search technique does not need to assume any particularragr-mn_g akind _Of restrlctet_d mating, and mutation operr_;\tors are
tribution of the data set and/or clagriori probabilities. accordingly defined. T_he fltn_egs function rewards a string with
Genetic algorithms (GAs) [1] are randomized search and :En_lwaller number of misclassified sar_nplesZ as well as smaller
timization techniques guided by the principles of evolution a mber of hyperplanes. A comparison, in terms of several

natural genetics. They are efficient, adaptive and robust seaftfantitative measures [4] and visual quality of the classified

processes, producing near optimal solutions and have a Ia'r?@ges’ of the VGACD-classifier with VGA-classifier, i.e.,

amount of implicit parallelism. The utility of GAs in solvingt € one mcorporatmg yanable string lengths but without
problems that are large, multimodal and highly complex hgglromosome dlffere_nt|at|on, a_nd those base_d on the !('NN rule
been demonstrated in several areas [2]. Since satellite ima 89 th? Bayes maximum I'ke“_hOOd (ML) ratio is provided for
usually have highly nonlinear and overlapping class boundarig¥, ©T image of a part of the city of Calcutta.

application of GAs for searching for the appropriate ones, par-

ticularly under nonparametric conditions (i.e., without assuming II. DESCRIPTION OF THEVGACD-CLASSIFIER

class distributions anapriori probabilities), seems appropriatea. Principle of Hyperplane Fitting

and natural, As mentioned, the classifier attempts to place a number

In the present article, such an attempt is made by demor}—h erplanes in the feature space appropriately such that
strating the effectiveness of a GA-based classifier, called the yperp P bprop y

! . . . .. _the number of misclassified training points is minimized.
variable string length GA with chromosome d|fferent|at|or?:r0m elementary geometry, the equation of a hyperplane in
(VGACD)-classifier, in partitioning different landcover re- dimensional spaceX{ —X’ —...— Xx)is given b
gions. In designing the VGACD-classifier, the concepts & pacei — A2 N)I1S9g y

Bran + Poxn_1+ -+ Brzr =4 (1)
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0, so theN-tuple (w1, as, ---an—_1, d) specifies a hyperplane

uniquely in N-dimensional space. An appropriate binary en-
coding is adopted for thes® parameters corresponding to a s 000
hyperplane. For details, the reader may refer to [5]. .
In variable string length GAs, a chromosome encodes\he 2 class bits | data bis encoding the parameters of H; hyperplanes
parameters of several hyperplanes, whose number may vary in 00 F chromosome
the range [1H,,.«], Where H,,.« IS chosen to be suitably high. 01,10 - M chromosome

Note that the choice off ..., will affect the convergence time
of the algorithm, not its classification performance. This is ifig. 2. Structure of a chromosome in GACD.
contrast to the earlier fixed string length version of the genetic

classifier [5], where the number of hyperplanés(not just an encode the parameters of 1 alg... hyperplanes, respectively.

est|fm ate of thef ltjﬁ pe: bOl.Jf.nd) dhad t(()j bc? ﬁpec.'fqmotrr']' Thel The remaining chromosomes encode the parameter#;of
pertormance ot the classitier depended heavily on the vajue perplanes where & H; < H,,.. For these chromosomes,

fI_chosedn, tSInC('atr? n ovelies?lmate I]?d 0 cIo?e cir overﬁturgtci.:)ft e of the two class bits, chosen randomly, is initialized to O
raining data, with resultant loss ot generalization capability. 5y the other to 1. The data bits of the F chromosomes are

initially generated in such a way that the hamming distance
B. Incorporation of Chromosome Differentiation in Variable between the M and F populations (in terms of the data bits) is
String Length GAs maximum. The hamming distance between two chromosomes
) ) o ¢; andco, denoted byh(eq, ¢2), is defined as the number of
In conventional GAs, since no restriction is placed upon thgy positions in which the two chromosomes differ. Hamming

selection of mating pair for crossover operation, often chromgisiance between two populatiodd and P,, denoted by
somes with similar characteristics are mated. Therefore, no S}Q—Pb P), is defined as follows:

nificant new information is gained out of this process, and the

result is wastage of computational resources. In VGACD, we

try to alleviate this problem by distinguishing the chromosomes( P, P;) = Z Z hici, ¢;), Ve, € P, Ve €PR.

into two categories, M and F (determined by two additional bits i

called class bits), and therefore two populations. These two pop-

ulations are initially generated in such a way that they are max-Fitness Computationiet H,,.. represent the maximum

imally apart. Crossover is restricted only between individuaR§especified number of hyperplanes that may be required to

from these two populations. Since, as a result of this process, W@del the decision boundary of a given data set &hdhe

allow crossover only between dissimilar individuals, a highdilumber of hyperplanes encoded in chromosamesing the

level of diversity is likely to be introduced and subsequentljarameters of the hyperplanes encoded in a chromosome, the

maintained in the system. This will in turn result in faster infort€gion in which each training pattern point lies is determined

mation interchange between the chromosomes, and theref@@sed on (1). A region is said to provide the demarcation for

faster convergence of the algorithm. Interestingly, an analogl@ssy. if among the points that lie in this region, a majority

of this concept of chromosome differentiation exists in naturBelong to classj. Other points that lie in this region are

genetic systems, in the W|de|y witnessed phenomenon of mﬁ@SiderEd to be misclassified. All ties are resolved arbitrarily.

and female sexes. The misclassifications associated with all the regions (for
As mentioned above, two additional bits called class bits aff¢ese H; hyperplanes) are summed up to provide the total

used to d|St|ngu|Sh the chromosomes into two C|asse5, M d’mﬁclassificationmissi for the String. Ifn is the size of the

F. If the class bits contain either 01 or 10, the correspondifigining data, then the fitness of tité string, fit;, is defined as

chromosome is called an M chromosome, and if it contaidf4t; = (n —miss;) — aH;, wherea = 1/Huax. A string with

00, the corresponding chromosome is called an F chromoso@0 hyperplane is defined to have zero fitness. Maximization

These bits are not allowed to assume the value 11 (this isdhthe fithess function ensures the minimization of, primarily,

analogy with the X and Y chromosomes in natural genetic sy number of misclassified points and then the number of

tems, where XY/YX indicates male, while XX indicates felyperplanes.

male). The remaining bits are called data bits, which may beGenetic Operators:Since the strings have variable length,

either 1, 0, or # (do not care). The data bits encode the pararﬁ@ operators crossover and mutation are newly defined as fol-

ters of H; hyperplanes, where & H; < Hy.x. The structure lows.

of a chromosome in VGACD is shown in Fig. 2. Crossover: Two strings and j having lengthd; and{; are
Population Initialization: Two separate populations, oneselected fromthe M and F populations, respectivelyZLet /;.

containing the M chromosomes (M population) and the othéfen string: is padded with #s so as to make the two lengths

containing the F chromosomes (F population), are maintaingégual. Conventional crossover like single point crossover, two

over the generations. The sizes of these two populatigys, Point cr_o_ssover[l] is now performed over these two_strings with

andp, respectively, may vary. Lat,, + p; = p, wherep is probability ... The following two cases may now arise.

fixed (equivalent to the population size of conventional GA). 1) All the hyperplanes in the offspring are complete. A hy-

Initially, we considereg,,, = p; = p/2. The M population is perplane in a string is called complete if either all the bits

first generated in such a way that the first two chromosomes corresponding to it are defined (i.e., Os and 1s) or all are
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#s. Otherwise, i.e., if the bits corresponding to a hyer- TABLE |

planes are a combination of 1s, Os, and #s, it is incom- PERFORMANCE OFVGACD-CLASSIFIER FOR SOMETYPICAL GA
! ! ! PARAMETER VALUES. HERE, “perc’ = 30, AND f,,, 1S KEPT VARIABLE IN

plete.). THE RANGE [0.015, 0.333]

2) Some hyperplanes are incomplete. . .

Inthe second case, let = number of defined bits (either O or te | #my | tm, | %o Recognition Score
1) andt = total number of bits per hyperplane. Then, for each 061 02 | 02 76.98
incomplete hyperplane, allthe #s are setto defined bits (either O or 07 Lool oot 52.16
1 randomly) with probability: /¢. Otherwise, all the defined bits - : : -
are set to # with probability (& («/t)). Thus, each hyperplane 0810101 83.38
in the offspring becomes complete. Subsequently, the string is 0.8 02 | 0.2 80.48
rearranged so that all the #s are pushed to the end. Each parent 08 | 0.01 | 0.01 81.40
contributes one class bhit to the offspring. Since the F parent can
only contribute a 0 (its class bits being 00), the class of the child is
primarily determined by the M parent, which can contribute a 1 TABLE I ) i
(yielding an M child) or a 0 (yielding an F child) depending upon C(i'\l\/jlgAli):E\F:E\'/?AELSLllelz_gs(ol/':)TEHi’\I:Z ?ggif?ﬁggﬁgﬁss;ﬁig% C()OF/(’)
the bit position (among the two class bits) of the M parent chosen. DATA USED FORTRAINING
This process is performed for both the offspring, whereby either i .
two M or two F or one M and one F offspring will be generatec perc | VGACD-classifier | VGA-classifier Bayes k-NN
Theseare put inthe respective populations. recog kappa recog | kappa | recog | kappa | recog | kappa

Mutation: In order to introduce greater flexibility in the 30 {8338 | s1.56 |80.94| 76.56 | 82.16 | 78.38 | 82.77 | 78.94
method, the mutation operator is defined in such a way thal 55 1gs01 | 82.16 | 8436 | 81.07 | 85.86 | 82.85 | 83.01 | 85.34
can both increase and decrease the string length. Only the ¢ 5 Tgeco T s707 | 8412 | s0.62 | 86.24 | 83.98 | 39.41 | 8713
bits, and not the class bits, are considered for mutation. T.=
strings are first padded with #s such that the resultant length
becomes equal td,,.., where L., (proportional toH,,.,.) applied with a fixed crossover probability.. 1, andg,,, are
is the maximum possible number of data bits in a string. Noalso kept fixed (note that we have experimented with several
for each defined bit position, it is determined whether convenembination of these values, the results of which are reported
tional mutation [1] can be applied or not with probability,. in Table I). We have kepi,,,, = p,,, Since we would like the
Otherwise, the position is set to # with probability,,. Each chances ofincreasing or decreasing the number of hyperplanesin
undefined position is set to a defined bit (randomly choseajchromosometobe same. Or,inotherwords, itwould be undesir-
according to another mutation probabiljty;,., . able toinflictany external bias to the algorithmin either direction.

Note that mutation may again result in some incompleféhe conventional mutation operation is performed on a bit by bit
hyperplanes, and these are handled in a manner as dbasis for varying mutation probability valugs,{) in the range
for crossover operation. Also, mutation may yield string®.015, 0.333], which was found to provide good performance
having all #s indicating that no hyperplanes are encoded imprevious experiments [3], [5]. The algorithm is terminated if
it. Consequently, this string will have fitness 0 and will the population contains at least one string with no misclassified
be automatically eliminated during selection. The details apwints. Otherwise, the algorithmisexecutedfor 3000 generations.
available in [3]. Table | shows the performance of the VGACD-classifier for
some typical values qi., j,,, andu,,, when the algorithm is
initiated from the same state (i.e., with the same chromosomes
in the initial population). The mutation probability value is kept

The 512x 512 image considered in this experiment has thre@riable within the range [0.015, 0.333]. As can be seen from the
bandsviz., green band of wavelength 0.50-0.56&, red band table, the performance of the VGACD-classifier is best when
of wavelength 0.61-0.68m, and near infrared band of wavey:. = 0.8 and,,,, = i, = 0.1. Results in the subsequent
length 0.79-0.8%:m. The design set comprises 932 points beables and figures are therefore shown corresponding to only
longing to seven classes that are extracted from the above imabe.said parameter values.

The seven classes are turbid water (TW), pond water (PW), conThe performance of the genetic classifiers is compared with
crete (Concr.), vegetation (Veg), habitation (Hab), open spait®mse of the Bayes ML classifier (capable of handling overlap-
(0S), and roads (including bridges) (B/R). In the first part gfing classes) assuming normal distribution of the data set for
the experiment, a percentage of these 932 points (30%, 508%ch class with different covariance matrices aiori prob-

and 80%) are used for training, while the remaining are used fabilities for the classes and the k-NN classifier (well known
the purpose of testing. In the second part, the trained classifier generating highly nonlinear boundaries through piecewise
(using 80% of the data set for training) is utilized for classifyinginear segments) with= +/n. It is known that as the number of
the pixels in the 51 512 image. training patterns goes to infinity, if the values of k and k/can

The numbers of bits used to represent an angle and the per-made to approach infinity and 0, respectively, then the k-NN
pendicular distance are 8 and 16, respectively. Roulette whelalssifier approaches the optimal Bayes classifier [6]. One such
selection is adopted to implement the proportional selectienlue of k for which the limiting conditions are satisfiedj5:.
strategy for a population size of 20. Single point crossover Adso, as demonstrated later in Fig. 4(d)—(f), the performance of

Ill. PIXEL CLASSIFICATION OF SPOTIMAGE
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the k-NN rule is found to improve with the value of k, being the TABLE Il

best for k= \/ﬁ for the SPOT data. COMPARATIVE CLASSWISE RECOGNITION SCORES(%) FOR “perc” = 80.
Table Il presents the comparative results of the different clas = =

sifiers for different percentages of training data, difgd., = Class Recognition Scores

15 for the genetic classifiers. Note that the choicédgf,, as VGACD-classifier | VGA-classifier | Bayes | k-NN

long as it is sufficiently high, is not crucial for the performance Ty, 100.00 100.00 100.00 | 100.00

of the genetic classifiers. Results are provided in terms of tw: W 93.03 59,55 10600 1 96,07

measures, the percentage recognition scores and kappa val i : . :

[4]. The classwise recognition scores for the different classifier Concr 80.83 91.42 91.42 | 92.53

when perc= 80% are shown in Table Ill. Table IV presents, as veg 92.29 85.31 88.45 | 94.21

an example, the ponfusion matrix obtail_w_ed for the 80% trainin Hab 70.73 43.75 49.55 | 62.50
data corresponding to the Bayes classifier. -

As seen from Table Il, the performance of the VGACD-classi- 08 94.73 87.27 8947 | 9474
fierisalways betterthanthat ofthe VGA-classifier, irrespectiveo B/R 72.72 21.35 36.36 | 45.45
the percentage of data used for training. This indicates thatincor-
poration of the concept of chromosome differentiation leads toan TABLE IV
improvementinperformance ofthevariable stringlength GA clas—conrusionMaTrIX FOR TRAINING DATA OF SPOT MAGE OF CALCUTTA
sifier as well. Overall, the performance of the VGACD-classifier OBTAINED USING BAYES ML CLASSIFIER
isfoundto be betterthan or comparable tothat ofthe k-NN rule f~~

Recognized as

30% and 80% training data, while for 50%training data, the k-N W PW C Vee Hab OS B
rule outperformed all other classifiers. oner Vee Ta /R
From the classwise scores shown in Table Ill, it is found th: W 100 0 0 6 0 0 0
the VGACD-classifier recognizes the different classes consi PW |0 115 11 0 2 8 12
tently with a high degree of accuracy. On the contrary, the oth Concr | 0 11 116 0 0 0 4
classifiers can recognize some classes very nicely, while 1 ;... Veg |0 0 0 173 2% 3 0
some other classes their scores are much poorer. An exam _—r . 0 0 2 o 1

the Bayes ML classifier provides 100% accuracy for the class
TW and PW, its scores for classes B/R and Hab. are only 36.3¢ 0s 1o 5 0 5 64 0
and 49.55%, respectively. B/R |0 11 8 0 0 22

Fig. 3 demonstrates the variation of the number of points
misclassified by the best chromosome with the number of s
generations for the VGACD-classifier and VGA-classifier
(whenpere = 80). As is seen from Fig. 3, both the classifiers
consistently reduce the number of misclassified points. The
best value is obtained just after the 1700 and 1900 iterations
for VGACD-classifier and VGA-classifier, respectively. Incor-
porating the concept of chromosome differentiation therefore
helps in faster convergence of the algorithm, since any given
value of the number of misclassified points is achieved earlier

_________

.....................

VGACD-classitier

by the VGACD-classifier than the VGA-classifier (if at all). sy
Fig. 4(a)—(f) provide, as an illustration, the results obtained = e}
by the different classifiers (including results for k-NN rule with s}

k = 1 and 3) for partitioning the 512 512 image by zooming

a characteristic portion of the image containing the race course
(a triangular structure). Here, 80% of the design set is used for ~ ° 5% 1000 eﬁfm 2000 2500 00

training. Table V provides the classwise and overall values of

an index, called3 [7], which is the ratio of the total variation rig.3. variation of the number of points misclassified by the best chromosome
and within class variation. The higher this value is, the bettwith generations for VGACD-classifier and VGA-classifier.

the performance of the classifier.

As seen from the figures, although all the classifiers (with thie Table V, where this class is seen to have low beta value and
exception of k=1 for k-NN rule) are able to identify the racehence low homogeneity corresponding to the Bayes classifier.
course, only the VGACD-classifier and the VGA-classifier ar®n the other hand, the VGA-classifier tends to confuse between
abletoidentifyatriangularlighteroutline (whichisanopen spacthe classes bridges and roads (B/R) and pond water (PW). It was
corresponding to the tracks) within the race course properly. Trevealed on investigation that a large amount of overlap exists
performance of k-NN rule is found to gradually improve witthetween the classes Concr and B/R on the one hand (in fact, the
the value of k, being the best fork /n. On inspection of the latter class has been extracted from the former), and PW and B/R
full classified images, it was found that the Bayes ML classifieon the other hand. This is also evident from Table IV, where 27%
tendsto overestimate the roadsintheimage. Thisis also reflecésd 20% of the points belonging to the class B/R wentto class PW

20+
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(from Table V), thereby indicating the significant superiority of
theformer. TheindividuaiB valuesforallthe classes consistently
showthattheregionswiththe highestandlowesthomogeneity are
the classes TWand Concr., respectively.

IV. CONCLUSIONS

The concepts of variable string length and chromosome dif-
ferentiation in GAs have been integrated for the development
of a nonparametric classifier which can approximate well any
kind of highly nonlinear boundaries (e.g., in remote sensing im-
ages) by evolving automatically an optimum number of hyper-
planes. Unlike the k-NN rule, where k needs to be supplied,
the genetic classifiers with variable length strings do not re-
quire the number of hyperplanes to be specified to model var-
ious landcover boundaries, while providing good region parti-
tioning. Moreover, unlike the Bayes ML classifier, no assump-
tion on class distributions is needed here.

An interesting analogy of the concept of chromosome differ-
entiation can be found in the sexual differentiation found in na-
ture. The class bits in VGACD are chosen in tune with the way
the X and Y chromosomes help to distinguish the two sexes.
Because the initial M and F populations are generated so that
they are at a maximum hamming distance from each other, and
crossover is restricted only between individuals of these two
classes, VGACD appears to be able to strike a greater balance
between exploration and exploitation of the search space. This
is in contrast to its asexual version. It is because of this fact that
the former is consistently seen to outperform the latter.

With regard to timing requirements, it may be noted that the
genetic classifiers take significantly large amount of time during
training. However, the time taken during testing is very small.
On the contrary, the k-NN rule (with ¥ /n) takes significant
amount of time for testing, while for the Bayes classifier both the
training and testing times are quite small. As an illustration, the

Fig. 4. Classified SPOT image of Calcutta (zooming the race coursgGA-classifier took 515.76 s during training on a DEC-Alpha

represented by “R” on the first figure, only) using (a) VGACD-classifier

Hoax = 15, final value ofH = 13, (b) VGA-classifier H,.x = 15, final
value ofH = 10, (c) Bayes ML classifier, (d) k-NN rulé;, = 1, (e) k-NN rule,
k = 3, (f) k-NN rule, k= /n.

TABLE V

CLASSWISE AND OVERALL 3 VALUES FOR DIFFERENT CLASSIFIERS
Class | VGACD-classifier | VGA-classifier | Bayes | k-NN
™ 96.01 47.68 113.06 | 73.65
PW 4.66 3.15 16.38 | 14.01

Concr 1.32 1.15 1.22 1.25

Veg 2.88 3.32 2.07 2.69

Hab 1.50 1.59 1.50 1.31
0S 10.33 8.03 8.82 11.84
B/R 11.60 22.62 5.19 8.99
Overall 3.1932 2.8738 2.5847 | 2.9061

machine (when 3000 iterations were executed). Note that the
problem is compounded by the fact that no appropriate criterion
for terminating GAs is available in the literature. The k-NN rule
took 659.90 s when it was tested on the full SPOT image of Cal-
cutta, whereas for the VGA-classifier and the Bayes ML classi-
fier these values were 3.54 s and 2.06 s, respectively.
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