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Pixel Classification Using Variable String Genetic
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Abstract—The concept of chromosome differentiation,
commonly witnessed in nature as male and female sexes, is
incorporated in genetic algorithms with variable length strings
for designing a nonparametric classification methodology. Its
significance in partitioning different landcover regions from
satellite images, having complex/overlapping class boundaries, is
demonstrated. The classifier is able to evolve automatically the
appropriate number of hyperplanes efficiently for modeling any
kind of class boundaries optimally. Merits of the system over the
related ones are established through the use of several quantitative
measure.

Index Terms—Genetic algorithms, hyperplane fitting, pattern
recognition, quantitative indices, remote sensing images.

I. INTRODUCTION

CLASSIFICATION of pixels for partitioning different land-
cover regions is an important problem in the realm of satel-

lite imagery. Satellite images usually have a large number of
classes with overlapping and nonlinear class boundaries. Fig. 1
shows, as a typical example, the complexity in scatter plot of
932 points belonging to seven classes taken from the Systeme
Probatoire d’Observation de la Terre (SPOT) image of a part of
the city of Calcutta. Therefore, for appropriate modeling of such
nonlinear and overlapping class boundaries, the utility of an ef-
ficient search technique is evident. Moreover, it is desirable that
the search technique does not need to assume any particular dis-
tribution of the data set and/or classa priori probabilities.

Genetic algorithms (GAs) [1] are randomized search and op-
timization techniques guided by the principles of evolution and
natural genetics. They are efficient, adaptive and robust search
processes, producing near optimal solutions and have a large
amount of implicit parallelism. The utility of GAs in solving
problems that are large, multimodal and highly complex has
been demonstrated in several areas [2]. Since satellite images
usually have highly nonlinear and overlapping class boundaries,
application of GAs for searching for the appropriate ones, par-
ticularly under nonparametric conditions (i.e., without assuming
class distributions anda priori probabilities), seems appropriate
and natural.

In the present article, such an attempt is made by demon-
strating the effectiveness of a GA-based classifier, called the
variable string length GA with chromosome differentiation
(VGACD)-classifier, in partitioning different landcover re-
gions. In designing the VGACD-classifier, the concepts of

Manuscript received January 11, 2000; revised May 3, 2000.
The authors are with Machine Intelligence Unit, Indian Statis-

tical Institute, Calcutta, India (e-mail: sanghami@www.isical.ac.in;
sankar@www.isical.ac.in).

Publisher Item Identifier S 0196-2892(01)01172-X.

Fig. 1. Scatter plot for a training set of SPOT image of Calcutta containing
seven classes (1,� � �,7).

variable length strings in GAs (VGAs) [3] and chromosome
differentiation into two classes, male (M) and female (F),
have been integrated for approximating the class boundaries
of a given training data set nonparametrically by an optimum
number of hyperplanes such that the number of misclassified
points is minimized. Unlike the conventional GAs, in VGACD,
the length of a string is not fixed. Moreover, two classes of
chromosomes exist in the population. The crossover, imple-
menting a kind of restricted mating, and mutation operators are
accordingly defined. The fitness function rewards a string with
smaller number of misclassified samples, as well as smaller
number of hyperplanes. A comparison, in terms of several
quantitative measures [4] and visual quality of the classified
images, of the VGACD-classifier with VGA-classifier, i.e.,
the one incorporating variable string lengths but without
chromosome differentiation, and those based on the k-NN rule
and the Bayes maximum likelihood (ML) ratio is provided for
SPOT image of a part of the city of Calcutta.

II. DESCRIPTION OF THEVGACD-CLASSIFIER

A. Principle of Hyperplane Fitting

As mentioned, the classifier attempts to place a number
of hyperplanes in the feature space appropriately such that
the number of misclassified training points is minimized.
From elementary geometry, the equation of a hyperplane in

-dimensional space ( ) is given by

(1)

where . Here, is
the angle that the projection of the unit normal in the

space makes with the axis. Since
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0, so the -tuple specifies a hyperplane
uniquely in -dimensional space. An appropriate binary en-
coding is adopted for these parameters corresponding to a
hyperplane. For details, the reader may refer to [5].

In variable string length GAs, a chromosome encodes the
parameters of several hyperplanes, whose number may vary in
the range [1, ], where is chosen to be suitably high.
Note that the choice of will affect the convergence time
of the algorithm, not its classification performance. This is in
contrast to the earlier fixed string length version of the genetic
classifier [5], where the number of hyperplanes(not just an
estimate of the upper bound) had to be specifieda priori. The
performance of the classifier depended heavily on the value of

chosen, since an overestimate led to close or overfitting of the
training data, with resultant loss of generalization capability.

B. Incorporation of Chromosome Differentiation in Variable
String Length GAs

In conventional GAs, since no restriction is placed upon the
selection of mating pair for crossover operation, often chromo-
somes with similar characteristics are mated. Therefore, no sig-
nificant new information is gained out of this process, and the
result is wastage of computational resources. In VGACD, we
try to alleviate this problem by distinguishing the chromosomes
into two categories, M and F (determined by two additional bits
called class bits), and therefore two populations. These two pop-
ulations are initially generated in such a way that they are max-
imally apart. Crossover is restricted only between individuals
from these two populations. Since, as a result of this process, we
allow crossover only between dissimilar individuals, a higher
level of diversity is likely to be introduced and subsequently
maintained in the system. This will in turn result in faster infor-
mation interchange between the chromosomes, and therefore,
faster convergence of the algorithm. Interestingly, an analogy
of this concept of chromosome differentiation exists in natural
genetic systems, in the widely witnessed phenomenon of male
and female sexes.

As mentioned above, two additional bits called class bits are
used to distinguish the chromosomes into two classes, M and
F. If the class bits contain either 01 or 10, the corresponding
chromosome is called an M chromosome, and if it contains
00, the corresponding chromosome is called an F chromosome.
These bits are not allowed to assume the value 11 (this is in
analogy with the X and Y chromosomes in natural genetic sys-
tems, where XY/YX indicates male, while XX indicates fe-
male). The remaining bits are called data bits, which may be
either 1, 0, or # (do not care). The data bits encode the parame-
ters of hyperplanes, where 1 . The structure
of a chromosome in VGACD is shown in Fig. 2.

Population Initialization: Two separate populations, one
containing the M chromosomes (M population) and the other
containing the F chromosomes (F population), are maintained
over the generations. The sizes of these two populations,
and , respectively, may vary. Let , where is
fixed (equivalent to the population size of conventional GA).
Initially, we considered 2. The M population is
first generated in such a way that the first two chromosomes

Fig. 2. Structure of a chromosome in GACD.

encode the parameters of 1 and hyperplanes, respectively.
The remaining chromosomes encode the parameters of
hyperplanes where 1 . For these chromosomes,
one of the two class bits, chosen randomly, is initialized to 0
and the other to 1. The data bits of the F chromosomes are
initially generated in such a way that the hamming distance
between the M and F populations (in terms of the data bits) is
maximum. The hamming distance between two chromosomes

and , denoted by , is defined as the number of
bit positions in which the two chromosomes differ. Hamming
distance between two populations and , denoted by

, is defined as follows:

Fitness Computation:Let represent the maximum
prespecified number of hyperplanes that may be required to
model the decision boundary of a given data set andthe
number of hyperplanes encoded in chromosome. Using the
parameters of the hyperplanes encoded in a chromosome, the
region in which each training pattern point lies is determined
based on (1). A region is said to provide the demarcation for
class , if among the points that lie in this region, a majority
belong to class . Other points that lie in this region are
considered to be misclassified. All ties are resolved arbitrarily.
The misclassifications associated with all the regions (for
these hyperplanes) are summed up to provide the total
misclassification for the string. If is the size of the
training data, then the fitness of theth string, , is defined as

, where . A string with
zero hyperplane is defined to have zero fitness. Maximization
of the fitness function ensures the minimization of, primarily,
the number of misclassified points and then the number of
hyperplanes.

Genetic Operators:Since the strings have variable length,
the operators crossover and mutation are newly defined as fol-
lows.

Crossover: Two strings and having lengths and are
selected from the M and F populations, respectively. Let .
Then string is padded with #s so as to make the two lengths
equal. Conventional crossover like single point crossover, two
point crossover [1] is now performed over these two strings with
probability . The following two cases may now arise.

1) All the hyperplanes in the offspring are complete. A hy-
perplane in a string is called complete if either all the bits
corresponding to it are defined (i.e., 0s and 1s) or all are
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#s. Otherwise, i.e., if the bits corresponding to a hyer-
planes are a combination of 1s, 0s, and #s, it is incom-
plete.).

2) Some hyperplanes are incomplete.

In the second case, let number of defined bits (either 0 or
1) and total number of bits per hyperplane. Then, for each
incompletehyperplane,all the#sareset todefinedbits (either0or
1 randomly) with probability . Otherwise, all the defined bits
are set to # with probability (1 ). Thus, each hyperplane
in the offspring becomes complete. Subsequently, the string is
rearranged so that all the #s are pushed to the end. Each parent
contributes one class bit to the offspring. Since the F parent can
only contribute a 0 (its class bits being 00), the class of the child is
primarily determined by the M parent, which can contribute a 1
(yielding an M child) or a 0 (yielding an F child) depending upon
the bit position (among the two class bits) of the M parent chosen.
This process is performed for both the offspring, whereby either
two M or two F or one M and one F offspring will be generated.
Theseareput intherespectivepopulations.

Mutation: In order to introduce greater flexibility in the
method, the mutation operator is defined in such a way that it
can both increase and decrease the string length. Only the data
bits, and not the class bits, are considered for mutation. The
strings are first padded with #s such that the resultant length
becomes equal to , where (proportional to )
is the maximum possible number of data bits in a string. Now
for each defined bit position, it is determined whether conven-
tional mutation [1] can be applied or not with probability .
Otherwise, the position is set to # with probability . Each
undefined position is set to a defined bit (randomly chosen)
according to another mutation probability .

Note that mutation may again result in some incomplete
hyperplanes, and these are handled in a manner as done
for crossover operation. Also, mutation may yield strings
having all #s indicating that no hyperplanes are encoded in
it. Consequently, this string will have fitness 0 and will
be automatically eliminated during selection. The details are
available in [3].

III. PIXEL CLASSIFICATION OF SPOTIMAGE

The 512 512 image considered in this experiment has three
bandsviz., green band of wavelength 0.50–0.59m, red band
of wavelength 0.61–0.68m, and near infrared band of wave-
length 0.79–0.89 m. The design set comprises 932 points be-
longing to seven classes that are extracted from the above image.
The seven classes are turbid water (TW), pond water (PW), con-
crete (Concr.), vegetation (Veg), habitation (Hab), open space
(OS), and roads (including bridges) (B/R). In the first part of
the experiment, a percentage of these 932 points (30%, 50%,
and 80%) are used for training, while the remaining are used for
the purpose of testing. In the second part, the trained classifier
(using 80% of the data set for training) is utilized for classifying
the pixels in the 512 512 image.

The numbers of bits used to represent an angle and the per-
pendicular distance are 8 and 16, respectively. Roulette wheel
selection is adopted to implement the proportional selection
strategy for a population size of 20. Single point crossover is

TABLE I
PERFORMANCE OFVGACD-CLASSIFIER FOR SOMETYPICAL GA

PARAMETER VALUES. HERE, “perc” = 30, AND � IS KEPT VARIABLE IN

THE RANGE [0.015, 0.333]

TABLE II
COMPARATIVE RESULTS IN TERMS OFRECOGNITION SCORE“recog” (%)

AND KAPPA VALUES (%). HERE, “perc” INDICATES PERCENTAGE OF

DATA USED FORTRAINING

applied with a fixed crossover probability . and are
also kept fixed (note that we have experimented with several
combination of these values, the results of which are reported
in Table I). We have kept since we would like the
chancesof increasing or decreasing the numberof hyperplanes in
achromosometobesame.Or, inotherwords, itwouldbeundesir-
able to inflictanyexternalbias to thealgorithm ineitherdirection.
The conventional mutation operation is performed on a bit by bit
basis for varying mutation probability values () in the range
[0.015, 0.333], which was found to provide good performance
in previous experiments [3], [5]. The algorithm is terminated if
the population contains at least one string with no misclassified
points.Otherwise, thealgorithmisexecutedfor3000generations.

Table I shows the performance of the VGACD-classifier for
some typical values of , , and when the algorithm is
initiated from the same state (i.e., with the same chromosomes
in the initial population). The mutation probability value is kept
variable within the range [0.015, 0.333]. As can be seen from the
table, the performance of the VGACD-classifier is best when

and . Results in the subsequent
tables and figures are therefore shown corresponding to only
the said parameter values.

The performance of the genetic classifiers is compared with
those of the Bayes ML classifier (capable of handling overlap-
ping classes) assuming normal distribution of the data set for
each class with different covariance matrices anda priori prob-
abilities for the classes and the k-NN classifier (well known
for generating highly nonlinear boundaries through piecewise
linear segments) with k . It is known that as the number of
training patterns goes to infinity, if the values of k and k/can
be made to approach infinity and 0, respectively, then the k-NN
classifier approaches the optimal Bayes classifier [6]. One such
value of k for which the limiting conditions are satisfied is .
Also, as demonstrated later in Fig. 4(d)–(f), the performance of
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the k-NN rule is found to improve with the value of k, being the
best for k for the SPOT data.

Table II presents the comparative results of the different clas-
sifiers for different percentages of training data, and
15 for the genetic classifiers. Note that the choice of , as
long as it is sufficiently high, is not crucial for the performance
of the genetic classifiers. Results are provided in terms of two
measures, the percentage recognition scores and kappa values
[4]. The classwise recognition scores for the different classifiers
when perc 80% are shown in Table III. Table IV presents, as
an example, the confusion matrix obtained for the 80% training
data corresponding to the Bayes classifier.

As seen from Table II, the performance of the VGACD-classi-
fier isalwaysbetter thanthatof theVGA-classifier, irrespectiveof
the percentage of data used for training. This indicates that incor-
poration of the conceptof chromosome differentiation leads toan
improvementinperformanceofthevariablestringlengthGAclas-
sifier as well. Overall, the performance of the VGACD-classifier
is foundtobebetter thanorcomparable to thatof thek-NNrule for
30%and80%trainingdata,while for50%trainingdata, thek-NN
ruleoutperformedallotherclassifiers.

From the classwise scores shown in Table III, it is found that
the VGACD-classifier recognizes the different classes consis-
tently with a high degree of accuracy. On the contrary, the other
classifiers can recognize some classes very nicely, while for
some other classes their scores are much poorer. An example,
the Bayes ML classifier provides 100% accuracy for the classes
TW and PW, its scores for classes B/R and Hab. are only 36.36%
and 49.55%, respectively.

Fig. 3 demonstrates the variation of the number of points
misclassified by the best chromosome with the number of
generations for the VGACD-classifier and VGA-classifier
(when 80). As is seen from Fig. 3, both the classifiers
consistently reduce the number of misclassified points. The
best value is obtained just after the 1700 and 1900 iterations
for VGACD-classifier and VGA-classifier, respectively. Incor-
porating the concept of chromosome differentiation therefore
helps in faster convergence of the algorithm, since any given
value of the number of misclassified points is achieved earlier
by the VGACD-classifier than the VGA-classifier (if at all).

Fig. 4(a)–(f) provide, as an illustration, the results obtained
by the different classifiers (including results for k-NN rule with
k 1 and 3) for partitioning the 512 512 image by zooming
a characteristic portion of the image containing the race course
(a triangular structure). Here, 80% of the design set is used for
training. Table V provides the classwise and overall values of
an index, called [7], which is the ratio of the total variation
and within class variation. The higher this value is, the better
the performance of the classifier.

As seen from the figures, although all the classifiers (with the
exception of k 1 for k-NN rule) are able to identify the race
course, only the VGACD-classifier and the VGA-classifier are
abletoidentifyatriangular lighteroutline(whichisanopenspace,
corresponding to the tracks) within the race course properly. The
performance of k-NN rule is found to gradually improve with
the value of k, being the best for k . On inspection of the
full classified images, it was found that the Bayes ML classifier
tends to overestimate the roads in the image. This is also reflected

TABLE III
COMPARATIVE CLASSWISERECOGNITIONSCORES(%) FOR “perc”= 80.

TABLE IV
CONFUSIONMATRIX FOR TRAINING DATA OF SPOT IMAGE OF CALCUTTA

OBTAINED USING BAYES ML CLASSIFIER

Fig. 3. Variation of the number of points misclassified by the best chromosome
with generations for VGACD-classifier and VGA-classifier.

in Table V, where this class is seen to have low beta value and
hence low homogeneity corresponding to the Bayes classifier.
On the other hand, the VGA-classifier tends to confuse between
the classes bridges and roads (B/R) and pond water (PW). It was
revealed on investigation that a large amount of overlap exists
between the classes Concr and B/R on the one hand (in fact, the
latter class has been extracted from the former), and PW and B/R
on the other hand. This is also evident from Table IV, where 27%
and20%of thepointsbelonging to theclassB/Rwent toclassPW
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Fig. 4. Classified SPOT image of Calcutta (zooming the race course,
represented by “R” on the first figure, only) using (a) VGACD-classifier,
H = 15, final value ofH = 13, (b) VGA-classifier, H = 15, final
value ofH = 10, (c) Bayes ML classifier, (d) k-NN rule,k = 1, (e) k-NN rule,
k = 3, (f) k-NN rule, k=

p
n.

TABLE V
CLASSWISE ANDOVERALL � VALUES FOR DIFFERENTCLASSIFIERS

and Concr., respectively.These problemswere notevident for the
caseof theVGACD-classifier.Alsonote that theoverallvalue is
largest for this classifier and is worst for the Bayes ML classifier

(from Table V), thereby indicating the significant superiority of
theformer.Theindividual valuesforalltheclassesconsistently
showthat theregionswiththehighestandlowesthomogeneityare
theclassesTWandConcr., respectively.

IV. CONCLUSIONS

The concepts of variable string length and chromosome dif-
ferentiation in GAs have been integrated for the development
of a nonparametric classifier which can approximate well any
kind of highly nonlinear boundaries (e.g., in remote sensing im-
ages) by evolving automatically an optimum number of hyper-
planes. Unlike the k-NN rule, where k needs to be supplied,
the genetic classifiers with variable length strings do not re-
quire the number of hyperplanes to be specified to model var-
ious landcover boundaries, while providing good region parti-
tioning. Moreover, unlike the Bayes ML classifier, no assump-
tion on class distributions is needed here.

An interesting analogy of the concept of chromosome differ-
entiation can be found in the sexual differentiation found in na-
ture. The class bits in VGACD are chosen in tune with the way
the X and Y chromosomes help to distinguish the two sexes.
Because the initial M and F populations are generated so that
they are at a maximum hamming distance from each other, and
crossover is restricted only between individuals of these two
classes, VGACD appears to be able to strike a greater balance
between exploration and exploitation of the search space. This
is in contrast to its asexual version. It is because of this fact that
the former is consistently seen to outperform the latter.

With regard to timing requirements, it may be noted that the
genetic classifiers take significantly large amount of time during
training. However, the time taken during testing is very small.
On the contrary, the k-NN rule (with k ) takes significant
amount of time for testing, while for the Bayes classifier both the
training and testing times are quite small. As an illustration, the
VGA-classifier took 515.76 s during training on a DEC-Alpha
machine (when 3000 iterations were executed). Note that the
problem is compounded by the fact that no appropriate criterion
for terminating GAs is available in the literature. The k-NN rule
took 659.90 s when it was tested on the full SPOT image of Cal-
cutta, whereas for the VGA-classifier and the Bayes ML classi-
fier these values were 3.54 s and 2.06 s, respectively.
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