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Abstract. By utilizing intensity information available in images, partial
coverage of pixels at object borders can be estimated. Such information
can, in turn, provide more precise feature estimates. We present a pixel
coverage segmentation method which assigns pixel values corresponding
to the area of a pixel that is covered by the imaged object(s). Start-
ing from any suitable crisp segmentation, we extract a one-pixel thin
4-connected boundary between the observed image components where
a local linear mixture model is used for estimating fractional pixel cov-
erage values. We evaluate the presented segmentation method, as well
as its usefulness for subsequent precise feature estimation, on synthetic
test objects with increasing levels of noise added. We conclude that for
reasonable noise levels the presented method outperforms the achievable
results of a perfect crisp segmentation. Finally, we illustrate the applica-
tion of the suggested method on a real histological colour image.

1 Introduction

By utilizing grey-levels in digital object representations, the loss of information
associated with the process of image segmentation can be significantly reduced.
In our previous work, we explored grey level discrete object representations corre-
sponding to pixel coverage. Such representations are characterized by pixel values
proportional to the (relative) area of a pixel covered by the imaged (presumably
crisp continuous) object. Therefore, pixel values range from 0 (assigned to pixels
having empty intersection with the object) to 1 (pixels completely covered by the
object). The pixel values strictly between 0 and 1 appear on the (one pixel thick)
border of an object. We conducted a number of studies showing advantages of
this type of object representations, pixel coverage representation, [9], compared
to crisp (binary) digital image representations, especially when it comes to the
precision and accuracy of feature estimations, [8,9].

Encouraging results, proven both theoretically and by empirical studies on
synthetic objects, direct our interest to applications of the developed estimators
on real images. The first step required for such use is an appropriate image seg-
mentation method, i.e., a segmentation method which results in a pixel coverage
representation. In [9] we presented a simple pixel coverage segmentation method,
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primarily as a proof of concept, at that moment leaving fairly unexplored the
potentially wide field of pixel coverage segmentation methods.

In this paper we present a more general approach for pixel coverage segmen-
tation. After giving a brief overview of the existing related results in Section 2,
we introduce in Section 3 the main result of the paper – a novel pixel coverage
segmentation method. The method consists of the combination of an arbitrary
crisp segmentation method with an additional step where pixels on the border
of the object(s) are revisited and their coverage values are computed. In Sec-
tion 4 we present results of evaluation of the proposed segmentation method,
based on a study performed on synthetic data. Finally, in Section 5 we illustrate
application of the proposed segmentation method for quantitative analysis of a
histological image. Section 6 concludes the paper.

2 Background

Image segmentation aims at partitioning the image into a number of components
characterized by a certain intra-component homogeneity and inter-component
discontinuity. In an ideal case a one-to-one correspondence between the set of
intensities and the set of the image components exists and a partitioning can
be based on a straightforward classification of pixel intensities. However, even
in such an ideal case, discretization of the continuous object leads to ambiguous
situations where one pixel—the Voronoi region associated to a point in an integer
grid—may be partly covered by more than one object in the image. The intensity
value of such a pixel is a mixture of the intensities of the corresponding “pure”
components. However, crisp segmentation methods do not allow partial belong-
ingness of a pixel to an object, and therefore a hard decision of the belongingness
has to be made. For the general case, more or less complex and task-dependent
segmentation methods are used, often combining spatial and intensity informa-
tion, or/and some a priori knowledge. Different segmentation methods may deal
with (different types of) noise in different ways; however, the issue of mixed
border pixels remains, being caused by discretization itself.

It is not surprising that the issue of mixed pixels is thoroughly addressed
in remote sensing applications (see, e.g., [3,4,11]). Pixels in remotely sensed
images are of sizes that very often lead to individual pixels being covered by
different classes/objects imaged on the ground. Sub-pixel proportion estimation,
leading to so-called fraction images, is a widely studied problem. Most often used
approaches are linear mixture models and neural networks, the former due to
their simplicity, and the latter when the mixtures in the pixels are non-linear
and more complex, [4].

Interest for sub-pixel segmentation approaches exists in cases of images of
higher resolution as well. In particular, 3D medical image analysis often requires
treatment of partial volume voxels, i.e., voxels that contain not a single tissue,
but rather a mixture of two or more tissue types, [5]. The issue is particularly
studied for MR and PET images of the human brain; it is shown in [6] that
consistently misplacing the tissue borders, in a brain volume having voxels of
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size 1mm3, by only one voxel resulted in volume errors of approximately 30%,
40%, and 60% for white matter, grey matter and cerebrospinal fluid (CSF), re-
spectively. A number of methods were suggested to overcome this limitation, and
to address the issue of partial volume effect corrections. Often used are meth-
ods based on expectation-maximization, e.g. [5], scale-space approaches [12],
wavelets [1], Markov random fields [2], fuzzy techniques, e.g. [10], etc.

Theoretical results derived in [8,9] increase the interest for sub-pixel segmen-
tation approaches in 2D images of higher resolution as well, with a particular
goal to utilize such segmentations for precise feature estimation. Studies and de-
velopment of general and easily accessible pixel coverage segmentation methods
and tools for subsequent analysis have, however, not attracted very much atten-
tion by now. These observations motivate the study reported here of a general
approach, with minimal ties to any particular imaging modality or application,
for augmenting any given crisp segmentation to a pixel coverage segmentation,
providing an easily accessible tool for improved feature estimates for a large
range of applications.

3 Pixel Coverage Segmentation

Let a square grid in 2D be given. The Voronoi region associated to a grid point
(i, j) ∈ �2 is called pixel p(i,j). Pixel coverage digitization is defined in [9] as:

Definition 1. For a given continuous object S ⊂ �2, inscribed into an integer
grid with pixels p(i,j), the pixel coverage digitization of S is

D(S) =
{(

(i, j),
A(p(i,j) ∩ S)

A(p(i,j))

) ∣∣∣∣ (i, j) ∈ �2

}
,

where A(X) denotes the area of a set X.

A pixel coverage representation corresponding to a crisp real object, with a well
defined continuous border is, ideally, characterized by homogeneous regions of
“pure” pixels, completely covered by either object or background, which are
separated by a one pixel thick layer of “mixed” pixels, partially covered by both
object and background. Pure pixels are assigned values 0 (background) and 1
(object), while mixed pixels are assigned values between 0 and 1, in accordance
to their pixel coverage.

A pixel coverage segmentation of an image I into m components ck, k ∈
{1, 2, . . . , m} is

S(I) =
{(

(i, j), α(i,j)

) ∣∣ (i, j) ∈ ID

}
,

where

α(i,j) = (α1, . . . , αm) ,
m∑

k=1

αk = 1 , αk =
A(p(i,j) ∩ Sk)

A(p(i,j))
,

and where Sk ⊂ �2 is the extent of the component ck and ID ⊆ �2 is the image
domain. The continuous sets Sk are, in general, not known, and the values αk

therefore have to be estimated from the image data.



932 N. Sladoje and J. Lindblad

To obtain a pixel coverage segmentation, we propose a method composed of
four steps: (i) application of a crisp segmentation method, appropriately chosen
for the particular task; (ii) selection of pixels to be assigned partial coverage; (iii)
application of a local linear mixture model for “de-mixing” of partially covered
pixels and assignment of pixel coverage values; (iv) ordered thinning of the set
of partly covered pixel to provide one pixel thin 4-connected regions of mixed
pixels.

The first step in the proposed method is expected to provide correct assign-
ment of class belongingness/area coverage to pure pixels. Crisp segmentation
methods are numerous and can be selected to fit the application at hand. We sug-
gest to utilize any appropriate existing segmentation method, and assume that
the resulting segmentation provides a trustworthy result for all but boundary
pixels. Each pixel p(i, j), inner for the component ck, is assigned segmentation-
vectors α(i,j) such that αk = 1 and αl �=k = 0. Even though it is clear that in the
presence of noise inner region pixels are not of accurate reference intensity of a
pure class, but are often exhibiting properties of mixed pixels, the idea is to have
confidence in the used crisp segmentation method up to the dichotomization into
the inner/pure and border pixels. The pixels detected as inner will therefore not
be revisited, or reassigned.

In the second step of the suggested segmentation method, pixels possibly being
intersected by the boundaries of continuous imaged objects are to be detected.
Such pixels are assumed to be mixed, with partial coverage by two or more image
components. In the crisp segmentation in step (i), however, they are assigned
to only one of the components, and are therefore to be revisited and reassigned.
The set B of pixels considered for step (iii) are all pixels which are 4-connected
to a pixel with a different label.

The third step in the pixel coverage segmentation process is computation of
partial coverage values of the (potentially mixed) pixels of the set B. We suggest
to use a linear model, due to its simplicity, and the fact that it corresponds to the
ideal (noise-free) pixel coverage assignment that arises when integrating spatially
distinct signals over finite sized detector elements (e.g. in a digital camera). This
model assumes that the value of a mixed pixel is a convex combination of the
values corresponding to the pure classes ck covering the observed pixel, where
the coefficients in the combination correspond to the proportions of the pure
classes appearing. Note that for imperfect imaging devices, the assumption on
spatially distinct signals may not hold. Given a particular imaging situation, it
is recommended to verify this assumption and possibly act accordingly, e.g. by
incorporating a deconvolution step into the process.

In general, the intensity values of the pure classes are not known, but have
to be estimated from the image data. We suggest to use a local approach when
estimating the values of a class ck. For each pixel observed in the process of
partial coverage assignment, the local pure class representation ck (we use the
same symbol for the class and its intensity representation) is estimated as the
mean value of the pixels in a local neighbourhood of a suitable size which are
classified, according to steps (i) and (ii), as completely belonging to the observed
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class ck. This approach, in our opinion, has two main advantages: i) only the
classes relevant – existing in the neighbourhood of the observed pixel are consid-
ered for a mixture in that pixel, and ii) sensitivity of the pure class description
to intensity variations over the image is decreased; in general, the local within
class variance is smaller than the global one.

The image values of a mixed pixel p = (p1, p2, . . . , pn) (n being the number of
channels of the image) are assumed, in a noise-free environment, to be a convex
combination of the (locally estimated) pure classes ck:

p =
m∑

k=1

αkck ,

m∑
i=k

αk = 1 , αk ≥ 0 , (1)

where each coefficient αk corresponds to the coverage of the pixel p by an object
of a class ck. In a noise-free environment, and if the number m of classes (vari-
ables) is not bigger than the number n + 1 of equations (including the equation∑m

k=1 αk = 1), the problem of partial coverage is solved as a system of linear
equations.

In real imaging conditions noise has to be considered. In the presence of noise,
it is not certain that there exists a (convex) solution to the linear system (1).
Therefore we reformulate the problem to the following optimization problem:

Find a point p∗ of the form p∗ =
m∑

k=1

α∗
kck, such that p∗ is a convex combination

of ck and the distance d(p, p∗) is minimal. We solve the constrained optimization
problem by using Lagrange multipliers method, and we minimize the function

F (α1, . . . , αm, λ) = ‖p−
m∑

k=1

αkck‖2
2
+ λ(

m∑
k=1

αk − 1)

over all αk ≥ 0, for a given pixel p = (p1, . . . , pn) and classes c1, . . . , cm. The
obtained solution α∗ = (α∗

1, . . . , α
∗
m) provides estimated partial coverage of the

pixel p by each of the observed classes ck, k ∈ {1, . . . , m}.
The partial coverage values are computed for all pixels of B. However, since

the set B is not necessarily a one pixel thick set, it may happen that some of its
elements, which should be pure, are assigned partial coverage due to presence
of noise. To reduce the impact of noise, we, in the fourth step, perform thinning
of the set of mixed pixels. We iteratively assign the simply 4-connected pixel of
the current set of mixed pixels which is at a smallest distance to one of the
crisp class vectors to that particular crisp class. The resulting set of pixels is a
4-connected one pixel-thick border between the neighbouring regions.

4 Evaluation and Results

In the previous section we introduced the pixel coverage segmentation method.
Its evaluation addresses accuracy of the proposed assignment of partial coverage
values to the pixels on the border between two objects. Note that in the ideal
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case, assuming continuous pixel coverage values and a noise-free environment,
the suggested model provides exact partial coverage segmentation. In a real
situation, errors are introduced due to quantization and the presence of noise.

Being interested in pixel coverage segmentation primarily for its further use for
precise and accurate feature estimations, we have, in addition to directly testing
the performance of the proposed segmentation method, also evaluated perimeter
and area estimates based on such segmentations. Perimeter is estimated using
the method presented in [9], and area is estimated according to [8].

A synthetic object (Fig. 1(a)) is randomly placed (rotated and translated) at
100 different positions in the square grid (the side of the object is 100 pixels long)
and digitized using pixel coverage digitization. A zoomed-in part of the resulting
object, with a (one-pixel thick) partial coverage at its boundary, as well as its
superimposed crisp discretization, is shown in Fig. 1(b). Each digitization is
subsequently corrupted by increasing levels of additive uncorrelated Gaussian
noise (standard deviation between 0 and 40% of the foreground/background
contrast) providing a total of 900 test images.

To keep the evaluation independent of any particular segmentation method,
tests with synthetic objects are performed using an ideal error free crisp segmen-
tation; a Gauss centre point digitization of the continuous object is used both
as a reference and as a starting crisp segmentation for the proposed method.

A 2D Gaussian weighted neighbourhood with a standard deviation of 2 pixels
(truncated at 10 pixels) is used when estimating the pure class values ck.

To evaluate the pixel coverage segmentation, the assigned coverage values are,
per pixel, compared with the true ones, for increasing amounts of added noise.
The average absolute error,

ε =
1
N

∑
p∈B

|Â(p) − A(p)|

where B is the set of evaluated boundary pixels, N is the cardinality of B, and
Â(p) and A(p) are, respectively, assigned and true coverage for a pixel p ∈ B, is
computed and presented in Fig. 1(d); 100 random displacements of the object
are observed for each level of noise. In Fig. 1(e) we show the relative error of
perimeter estimation for the observed synthetic object for increasing levels of
noise, whereas Fig. 1(f) presents the area estimation on the same test object,
under the same conditions.

As it is visible from the plots in Fig. 1(d-e), the improvement when using
the suggested method, compared to the results obtained for an ideal (noise free)
crisp segmentation, is significant when the standard deviation of the present
noise does not exceed 20%. Above that level, the suggested method does not
provide any improvement in terms of accuracy. It is, however, worth noting that
the precision of the feature estimates (exhibited as low variation of the obtained
results) is significantly higher for the proposed method, and in the case of area
estimation provides improvement of the result for all the observed noise levels.
We note that the perimeter of the test object is overestimated in the presence
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Fig. 1. (a) Continuous synthetic test object. (b) Part of a pixel coverage segmenta-
tion of (a), with superimposed border of its crisp segmentation. (c) Part of the set
B. Grey pixels are removed in the thinning step. Superimposed is the border of the
original continuous object. (d) Average absolute error of pixel coverage values in B for
increasing levels of noise, lines represent means of 100 observations and bars show max
and min errors. (e) and (f) Relative error for the estimated object perimeter and area,
respectively.

of noise (Fig 1(e)). This is not surprising; noise, in almost all cases, leads to a
less smooth boundary of the object, and therefore a longer perimeter.

5 Quantitative Analysis of a Histological Image

In this section we verify applicability of the suggested method on a real image
and compute precise feature estimates based on the resulting segmentation.

The image shown in Fig. 2(a) is a part of material used in a histomorphome-
trical study described in [7]. It contains three regions: a screw-shaped implant,
bone region, and soft tissue. Quantification is performed by measuring the length
of the contact between the implant and the bone region, relative to the overall
length of the implant border, and by measuring the percentage of bone area
in the vicinity of the implant; for a detailed description see [7]. Measurements
obtained manually, by an expert using integrated microscope software and with
higher magnification available, are used as a ground truth.

We applied the proposed pixel coverage segmentation method to segment the
RGB image. First step was to perform a crisp segmentation of the image. For this
illustrative example, it was done manually, to get a good starting segmentation
and to not mix errors from the crisp segmentation process with errors from the
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(a) (b) (c) (d) (e)

Fig. 2. (a): The screw-shaped implant (black), bone (purple with a number of hollow
spaces) and soft tissue (light blue). (b) Part of a crisp (manual) segmentation of (a)
into the three regions. (c) The set B of (grey and black) pixels. Partial coverage values
are assigned to the black pixels. (d) and (e) Pixel coverage segmentations of the soft
tissue and the bone region, respectively.

pixel coverage estimation. A part of the manual segmentation is presented in
Fig. 2(b). The extracted set B is shown in Fig. 2(c) as the union of black and
grey pixels. The grey pixels are detected as pure in the thinning step and only the
one-pixel thick 4-connected region in black is assigned partial coverage values.
The result of the suggested pixel coverage segmentation method is presented in
Fig. 2(d) and 2(e). The first presents segmented soft tissue, whereas the second
shows segmented bone. Grey values, visible on the borders between the regions,
correspond to partial pixel coverage.

Our goal is to obtain bone-implant contact length estimates, as well as bone
area estimates, which provide an improvement in terms of accuracy and preci-
sion, compared to those obtained in [7]. We apply the length estimation method
presented in [9], and the area estimation method presented and analysed in [8],
to the pixel coverage segmentation obtained by the suggested method. While
the estimation of area is straightforward, some adjustments of the length esti-
mation method are required. The method, as presented in [9], is applicable for
estimation of the border between two classes, whereas in the observed exam-
ple there may exist pixels which are partly covered by three classes. To adjust
the method appropriately, we observe the border line as being between the two
classes - implant and non-implant (soft tissue and bone together) - where the

Table 1. Feature estimation results for manual (using integrated microscope software),
crisp [7], and the herein suggested method. See [7] for notation details.

Method Contact length Bone area R Bone area M

Manual 79% 48% 78%
Crisp 88% 50% 81%
Suggested 85% 49% 81%
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existing method is directly applicable. After the border line within a pixel is es-
timated, it is distributed to the two non-implant classes proportionally to their
coverage of that pixel. This approach is attractive due to its simplicity, and is
acceptably accurate. Due to very low number of pixels in the image which are
covered by three classes, potentially introduced errors have minimal impact on
the result. Pixels covered by more than two classes are presumably rare in most
applications.

The results of feature estimates are presented in Table 1. It is clear that the
proposed method provides feature estimates closer to the manual measurements,
here considered to be the ground truth.

6 Conclusions

We present a novel approach for extending an existing crisp segmentation to
a pixel coverage segmentation, where pixels on object boundaries are assigned
values proportional to their coverage by the image components. The evaluation
performed on synthetic images shows that features estimated from the pixel
coverage segmentation are more accurate than what is achieved from the starting
crisp segmentation, for reasonable noise levels. The example performed on a
histological image shows the successful application of the method to a real world
problem. The presented examples are in 2D, but the method is directly applicable
also to higher dimensional image data.
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