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Abstract

We address the task of pixel-level hand detection in the

context of ego-centric cameras. Extracting hand regions in

ego-centric videos is a critical step for understanding hand-

object manipulation and analyzing hand-eye coordination.

However, in contrast to traditional applications of hand de-

tection, such as gesture interfaces or sign-language recog-

nition, ego-centric videos present new challenges such as

rapid changes in illuminations, significant camera motion

and complex hand-object manipulations. To quantify the

challenges and performance in this new domain, we present

a fully labeled indoor/outdoor ego-centric hand detection

benchmark dataset containing over 200 million labeled pix-

els, which contains hand images taken under various illu-

mination conditions. Using both our dataset and a pub-

licly available ego-centric indoors dataset, we give exten-

sive analysis of detection performance using a wide range

of local appearance features. Our analysis highlights the

effectiveness of sparse features and the importance of mod-

eling global illumination. We propose a modeling strategy

based on our findings and show that our model outperforms

several baseline approaches.

1. Introduction

In this work we focus on the task of pixel-wise hand de-

tection from video recorded with a wearable head-mounted

camera. In contrast to a third-person point-of-view cam-

era, such as a mounted surveillance camera or a TV camera,

a first-person point-of-view wearable camera has exclusive

access to first-person activities and is an ideal viewing per-

spective for analyzing fine motor skills such as hand-object

manipulation or hand-eye coordination. Recently, the use of

ego-centric video is re-emerging as a popular topic in com-

puter vision and has shown promising results in such areas

as understanding hand-eye coordination [5] and recogniz-

ing activities of daily living [17]. In order to achieve more

detailed models of human interaction and object manipula-

tion, it is important to detect hand regions with pixel-level

Figure 1. Pixel-level hand detection under varying illumination

and hand pose.

accuracy. Hand detection is an important element of such

tasks as gesture recognition, hand tracking, grasp recogni-

tion, action recognition and understanding hand-object in-

teractions.

In contrast to previous work on hand detection, the ego-

centric paradigm presents a new set of constraints and char-

acteristics that introduce new challenges as well as unique

properties that can be exploited for the task of first-person

hand detection. Unlike static third-person point-of-view

cameras typically used for gesture recognition or sign lan-

guage analysis, the video acquired by a first-person cam-

era undergoes large ego-motion because it is worn by the

user. The mobile nature of the camera also results in im-

ages recorded over extreme transitions in lighting, such as

walking from indoors to outdoors. As a result, the large im-
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age displacement caused by body motion makes it very dif-

ficult to apply traditional image stabilization or background

subtraction techniques. Similarly, large changes in illumi-

nation conditions induce large fluctuations in the appear-

ance of hands. Fortunately, ego-centric videos also have the

property of being user-specific, where images of hands and

the physical world are always acquired with the same cam-

era for the same user. This implies that the intrinsic color

of the hands does not change drastically over time.

The purpose of this work is to identify and address the

challenges of hand detection for first-person vision. To this

end, we present a dataset of over 600 hand images taken

under various illumination and different backgrounds (Fig-

ure 1). Each image is segmented at pixel resolution and the

entire dataset contains over 200 million labeled pixels. Us-

ing this dataset and a publicly available indoor ego-centric

dataset, we perform extensive tests to highlight the pros and

cons of various widely-used local appearance features. We

evaluate the value of modeling global illumination to gener-

ate an ensemble of hand region detectors conditioned on the

illumination conditions of the scene. Based on our finding,

we propose a model using sparse feature selection and an

illumination-dependent modeling strategy, and show that it

out-performs several baseline approaches.

2. Related Work

We give a review of work that aims to generate pixel-

level detections of hand regions from moving cameras. Ap-

proaches for detecting hand regions can be roughly divided

into three approaches: (1) local appearance-based detection,

(2) global appearance-based detection and (3) motion-based

detection.

In many scenarios, local color is a simple yet strong fea-

ture for extracting hand regions and is the most classical

approach for detecting skin-color regions [9]. Jones and

Rehg [8] proposed a mixture of Gaussian model to model

skin and non-skin regions. Their approach was shown to

be effective for extracting skin regions in internet images.

Color models have also been combined with trackers to take

into account both the static and dynamic appearance of skin

[16, 23, 1, 11].

Global appearance-based models detect hands using a

global hand template, where dense or sparse hand templates

are generated from a database 2D images [25] or 2D projec-

tions of a 3D hand model [18, 24, 15]. These methods can

be especially efficient when only a small number of hand

configurations need to be detected [10]. However, when

hands must be detected in various configurations, this ap-

proach usually requires a search over a very large search

space and it may be necessary to enforce a tracking frame-

work to constrain the search.

Motion-based approaches explicitly take into account the

ego-motion of the camera by assuming that hands (fore-

ground) and the background have different motion or ap-

pearance statistics. The advantage of these motion-based

approaches is that they require no supervision or training

[22]. However, since there is no explicit modeling of the

hand, objects being handled by hands are often detected

as foreground. When there is no hand motion or camera

motion, there is no way to disambiguate the foreground

from the background. Methods that attempt to model mov-

ing backgrounds are effective when camera motion is lim-

ited and video stabilization methods can be used to apply

classical background modeling techniques [7, 6]. However,

when there is significant parallax caused by camera motion

and nearby objects, it becomes very difficult to build robust

background models.

In the greater context of activity analysis for ego-centric

vision, the task of extracting hand regions with pixel-level

accuracy will be a critical preprocessing step for many high-

level tasks. As such, we have focused on a local appearance-

based strategy due to the extremely dynamic nature of ego-

centric videos. However, our work is certainly complemen-

tary to other approaches and can used as a strong cue for

initialization.

3. Modeling Hand Appearance

We are interested in understanding how local appearance

and global illumination should be modeled to effectively

detect hand regions over a diverse set of imaging condi-

tions. To this end we evaluate a pool of widely used lo-

cal appearance features, to understand how different fea-

tures affect detection performance. We also examine the

use of global appearance features as a means of represent-

ing changes in global illumination. We explain our local

features and global appearance-based mixture model below.

3.1. Local Appearance Features

Color is a strong feature for detecting skin and has been

the feature of choice for a majority of previous work [9].

Here we evaluate the RGB, HSV and LAB colorspaces

which have been shown to be robust colorspaces for skin

color detection. In contrast to previous work [8] using only

a single pixel color features, we are interested in under-

standing how local color information (color of pixels sur-

rounding the pixel of evaluation) contributes to detection

performance.

We use the response of a bank of 48 Gabor filters (8 ori-

entations, 3 scales, both real and imaginary components)

to examine how local texture affects the discriminability of

skin color regions. One of the typical limitations of color-

based skin detection approaches is the difficulties encoun-

tered with attempting to discriminate against objects that

share a similar color distribution to skin.

Figure 2 shows a visualization of the color feature space

and the color+texture feature space for selected portions of

356935693571



(a) Image regions (b) Color features (c) Color + texture features

Figure 2. Visualization of feature spaces with t-SNE [27]. Skin features in red and the desk features in blue. Texture features allows for

better separation.

an image. Pixel features extracted from a portion of the

hand (marked in red) and a portion of the desk (marked in

blue) are visualized in 2D. Notice how the pixel features ex-

tracted from the hand and desk are completely overlapped

in the color space (Figure 2b). However, by concatenating

the response of 32 Gabor filters (4 orientations, 4 scales) to

the color feature, we can see that the visualization of the

feature space shows better separation between pixels of the

hand and pixels of the desk (Figure 2c). This visualization

suggests that low-level texture can help to disambiguate be-

tween hands and other similar colored objects.

Spatially varying local gradient histograms are the fea-

ture of choice for many computer vision tasks such as object

recognition, image stitching and visual mapping because

they efficiently capture invariant properties of local appear-

ance. We evaluate the 36 dimensional HOG [4] descriptor

and the 128 dimensional SIFT [12] descriptor. We expect

that these gradient histogram descriptors will capture local

contours of hands and also encode typical background ap-

pearance to help improve classification performance.

Binary tests randomly selected from small local image

patches indirectly encode texture and gradients, and have

been proposed as a more efficient way of encoding local

appearance similar to SIFT descriptors. We evaluate the

16 dimensional BRIEF [3] descriptor and a 32 dimensional

ORB [20] descriptor to measure relative performance with

respect to the task of hand region detection.

The use of small clusters of pixels, better known as su-

perpixels, is a preprocessing step used for tasks such as

image segmentation and appearance modeling for tracking

[19, 28]. Since superpixels aggregate local appearance in-

formation through the use of various types of histogram

features (e.g. keypoints, color, texture) they are robust to

pixel-level noise. In our evaluation we encode color, space

and boundary distance as features within a super pixel. The

color descriptor is the mean and covariance of the HSV val-

ues within a super pixel (3+6 dimensions). We use the nor-

malized second-order moment as the shape descriptor (3 di-

mensions). The boundary distance descriptor is the distance

to the nearest super pixel boundary, where we expect there

to be an image edge (1 dimension). For our work, we use

900 super pixels which we found to perform best after a grid

search over various values.

3.2. Global Appearance Modeling

Using a single hand detector to take into account the

wide range of illumination variation and its effect on hand

appearance is very challenging. We show a 2D embedding

of different scenes via the global color histograms using t-

SNE [27]. The visualization shows the large variance in

hand appearance across changes in illumination.

In order to account for different illumination conditions

induced by different environments (e.g. indoor, outdoor,

stairway, kitchen, direct sunlight) we train a collection of

regressors indexed by a global color histogram. The poste-

rior distribution of a pixel x given a local appearance fea-

ture l and a global appearance feature g, is computed by

marginalizing over different scenes c,

p(x|l, g) =
∑

c

p(x|l, c) p(c|g), (1)

where p(x|l, c) is the output of a discriminative global

appearance-specific regressor and p(c|g) is a conditional

distribution of a scene c given a global appearance feature

g.

Different global appearance models are learned using k-

means clustering on the HSV histogram of each training im-

age and a separate random tree regressor is learned for each

cluster. By using a histogram over all three channels of the

HSV colorspace, each scene cluster encodes both the ap-

pearance of the scene and the illumination of the scene. In-

tuitively, we are modeling the fact that hands viewed under

similar global appearance will share a similar distribution in
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Figure 3. Visualization of image space shows the diversity of hand appearance and scene illumination. Different scene categories are

learned by clustering image histograms. Each scene category is used to learn scene-specific hand region detectors.

the feature space. At test time, the conditional p(c|g) is ap-

proximated using an uniform distribution over the n nearest

models (in our experiments we use n=5) learned at training.

4. Analysis

First we evaluate the performance of each local appear-

ance feature by running three different experiments. We

evaluate (1) different patch sizes for color features, (2) fea-

ture selection over feature modality and (3) feature selec-

tion over sparse descriptor elements. Second, we show

how learning a collection of classifiers indexed by different

scene models can increase robustness to changes in illumi-

nation and significantly improve performance. Third, we

compare our approach to several baseline approaches and

show how our approach is better equipped to handle a wide

range of ego-motion and object manipulation.

4.1. Dataset

We compare our approach on both in-house and publicly

available egocentric videos. We generated two datasets to

evaluate the robustness of our system to extreme changes in

illumination and mild camera motion induced by walking

and climbing stairs. We denote these two videos as EDSH1

and EDSH2. They have been recorded in a similar envi-

ronment but each video follows a different path including

both indoor and outdoor scenes. Both hands are purpose-

fully extended outwards for the entire duration of the video

to capture the change in skin color under varying illumina-

tion (direct sun light, office lights, staircase, shadows, etc.).

EDSH1 and EDSH2 are 6 and 3 minutes long, respectively.

An additional video was taken in a kitchenette area

which we denote as EDSH-kitchen, which features large

amounts of ego-motion and hand deformations induced by

the activity of making tea. This video was designed to eval-

uate the performance of our approach under large variations

in camera motion. All in-house videos were recorded at

a resolution of 720p and a speed of 30 FPS. 442 labeled

frames of EDSH1 dataset were used exclusively for model

training.

We also compare our approach on a publicly available

dataset of egocentric activities from the Georgia Tech Ego-

centric Activity (GTEA) dataset [6]. We used the fore-

ground hand masks available on the project site to compute

scores for their proposed hand detection algorithm. The la-

beled portion of the GTEA dataset includes results for a sin-

gle user performing three activities, which include making

tea, making a peanut butter sandwich and making coffee.

Since the GTEA dataset was created primarily as an activ-

ity recognition dataset, it contains very little camera mo-

tion and is taken in the same environment (i.e. sitting at a

desk) under static illumination. The videos range from 2 to

4 minutes in length and the resolution was down-sampled to

720p to match our in-house data. The coffee sequence was

used as training when testing on the tea and peanut butter

sequence and the tea sequence was used for training when

testing on the coffee sequence.

As a performance metric, the F-score (harmonic mean
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Table 1. LAB color feature patch size evaluation using F1-score.

Patch Size → 1× 1 3× 3 5× 5 7× 7 9× 9

EDSH2 0.732 0.755 0.765 0.769 0.768

EDSH-Kitchen 0.769 0.794 0.800 0.796 0.805

GTEA-Coffee 0.858 0.873 0.880 0.884 0.888

GTEA-Tea 0.827 0.857 0.865 0.870 0.880

GTEA-Peanut 0.743 0.767 0.761 0.757 0.764

of the precision and recall rate) is used to quantify classifi-

cation performance. We use a random forest regressor [2]

with a maximum tree depth of 10, as our base model for all

experiments.

4.2. Evaluating Local Color Features

In this experiment we examine the effects of increasing

the spatial extent of color descriptors to detect hand regions.

We extend the spatial extent of the color feature by vector-

izing a m × m pixel patch of color values to encode lo-

cal color information. We performed experiments using the

RGB, HSV and LAB colorspaces but report only the LAB

results since it performed the best. Table 1 shows the F-

score across datasets for differing LAB features by patch

sizes. Our results show that when color is the only feature

type, modeling only a single pixel [8] does not always yield

the best performance. Three out of the five datasets yielded

the best results with a 9× 9 image patch. On average, using

a small patch can increase performance over a single pixel

classifier by 5%. This result also confirms our intuition that

observing the local context (e.g., pixels surrounded by more

skin-like pixels) should help to disambiguate hand regions.

4.3. Feature Performance over Modality

In this experiment we analyze the discriminative power

of each feature modality using a forward feature selection

evaluation criteria. In order to determine the features that

have the greatest influence on our classification problem,

we begin with an empty set of features and repeatedly add a

new feature mode, such that it maximizes the performance

on the training data using cross-validation.

Based on previous work we expect that color will play

an influential role in detecting skin regions but we are also

interested in how texture, gradient features and superpixel

statistics can contribute to performance. Figure 4 shows the

evolution of the F-measure on two test sets, by incremen-

tally adding a new feature mode. We can see that initially

color features (i.e. LAB, RGB, SP, HSV) are the most dis-

criminative features, with the exception of the Gabor filter

bank. The low-level Gabor filter bank is selected as the third

most discriminative feature.

We see that high-order gradient features such as HOG

and BRIEF are added after color features and enable an

increase in overall performance latter in the pipeline. We

learn here that while high-order texture features alone may

Figure 4. Performance of feature selection by feature mode.

not be very discriminative, they can improve performance

when combined with the appropriate low-level features. We

also observed a small initial dip in performance (Kitchen

dataset) as more color features were added into the feature

pool. The increase in the dimensionality of the color fea-

tures initially causes over-fitting but the effect is counter-

balanced (a mechanism of the RF learning algorithm) as

more texture features are added to the pool. While we ob-

served empirically that using multiple color spaces was use-

ful for filtering out artificially colored objects like cardinal

signs and red package markings, we also must be cautious

of over-fitting when using many color-based features.

4.4. Feature Performance using Sparse Features

Using the same feature selection process, we now eval-

uate each feature element (dimension) independently. This

experiment gives us more insight into the interplay between

individual feature elements. For efficiency reasons, we sam-

ple 100 random features at every iteration to generate a pool

of candidate features for evaluation. Each regressor uses

10-fold cross validation over the training data, where each

fold consists of a subset of at least one million data points

from different image frames. The folds were generated over

temporal windows of the training video to encourage more

independence between folds.

Figure 5 shows the results of feature selection by se-

lecting a single element from the pool of all 498 local ap-

pearance feature dimensions. In the top graph, we observe

that performance plateaus after 20 to 30 feature elements.

This suggests that only a few sparse features are needed to

achieve near-optimal performance.

The bottom graph visualizes the number of dimensions

used from each feature modality. Dark red denotes the high-

est count of features (20 features) and blue denotes a small

count of features. The first four dimensions selected are

color features, first from the LAB and then HSV. The Gabor

filter response is the fifth dimension to be included. Notice

that the number of LAB and HSV features continue to in-

crease after other texture and gradient features are added.

This indicates that local color information is discriminative

when used together with texture and gradient features.
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Figure 5. Performance of feature selection by adding single feature element per step (top) and distribution of used features over modes

(bottom).

Other higher order gradient features are added between

the 16th and 32nd iterations of the feature selection process.

It is interesting that the elements of the BRIEF descriptor

are infrequently utilized (mostly blue). This may be a re-

flection of its redundancy with the ORB descriptor. When

the dimensionality of the feature is extended to 100, we ob-

serve that SIFT feature and HSV features are aggressively

selected because they help to disambiguate the more dif-

ficult cases. This result reconfirms our previous result that

higher-order gradient features are more discriminative when

coupled with color features. When the application calls for

only a small number of features, a sparse combination of

HSV, LAB, Gabor and perhaps SIFT features would yield

the best performance.

4.5. Number of Global Appearance Models

The appearance of the hands changes dramatically de-

pending on the illumination of the scene, as can be seen

in Figure 3. To address this dynamic nature of hand ap-

pearance, we have proposed a mixture model approach that

adaptively selects the nearest set of detectors that were

trained in a similar environment. In this experiment, we an-

alyze the effect of the number of pre-trained detectors on the

performance of the hand detector. The F-measure generated

by different numbers of global appearance models is shown

in Figure 6. We observe a big jump in performance after

about 10 models and performance approximately plateaus

thereafter. On our datasets, we observe that at least 10 dif-

ferent detectors (trained in different scenarios) are need to

cover the variance in the appearance of the hands. It is also

interesting to note that the performance is relatively stable

for a wide range of k. Although we expect that the opti-

mal number of scene clusters k will vary depending on the

statistics of the dataset, we have gained an important insight

that it is better to have multiple models of skin conditioned

on the imaging conditions to achieve more robust perfor-

mance.

4.6. Baseline Comparisons

We give the results of comparative analysis against sev-

eral baseline approach in Table 2. We compare against

four baseline approaches: (1) single-pixel color approach

inspired by [8], (2) video stabilization approach inspired

by [7] based on background modeling using affine align-

ment of image frames, (3) foreground modeling using fea-

ture trajectory-based projection of Sheikh et al. [22] and (4)

hybrid approach [6] of Fathi et al. which uses a combination

of video stabilization, gPb [14], super-pixel segmentation

and graph cuts to extract hands.

The single-pixel color classifier is a random regressor

trained only on single-pixel LAB color values. The back-

ground modeling approach uses a sequence of 15 frames

and aligns them using an affine transformation. After align-

ment, pixels with high variance are considered to be fore-

ground hand regions. The motion-based foreground model-

ing of Sheikh et al. [22] using the KLT tracker [26, 13] in

place of the particle video tracker [21]. We found that [22]

is greatly dependent on the accuracy of the feature track-

ing. Although the performance was significantly degraded

Figure 6. Performance for different number of scene categories.
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by this change we include the performance as reference.

The results of the hybrid approach [6] were computed us-

ing the hand masks available on the project website for the

GTEA dataset.

Table 2 shows the results of our comparative experiment.

We observed that the single pixel classifier works quite well

compared to the other baselines. The video stabilization ap-

proach for background modeling is sensitive to ego-motion

and therefore performs better on the GTEA dataset and

worse on the EDSH dataset, which contains significant ego-

motion. When we use our approach using all features, we

see that our approach over-fits to the training data. When

we use the results of feature selection and use only the top

50 features, we outperform all other baseline models. By

incorporating 100 scene illumination models we get an ad-

ditional increase in performance. We could not run this test

on the GTEA dataset since there were not enough labeled

images but we expect only modest gains since there is vir-

tually no change in illumination.

Our approach generates stable detection around hand re-

gions but also occasionally classifies small regions such

as red cups and wooden table-tops. We applied a post-

processing step, by keeping only the top three largest con-

nect components (and removing all small contours) and we

observed an additional increase in the F-measure (especially

the precision rate). This version of the experiment sug-

gests that running more sophisticated inference over the out-

put of our pixel-wise model may also improve overall per-

formance. On the most challenging EDSH2 dataset, our

approach (i.e. post-processing, sparse features and scene-

specific modeling) improves over a single color pixel ap-

proach score of 0.708 to 0.835, an 18% improvement. On

average, compared to a single color feature approach, our

our approach yields a 15% increase in performance over all

datasets.

5. Conclusion

We have presented a thorough analysis of local appear-

ance features for detecting hand regions. Our results have

shown that using a sparse set of features improves the ro-

bustness of our approach and we have also shown that

global appearance models can be used to adapt our detec-

tors to changes in illumination (a prevalent phenomenon

in wearable cameras). Our experiments have shown that

a sparse 50 dimensional combination of color, texture and

gradient histogram features can be used to accurately detect

hands over varying illumination and hand poses. We have

also shown that modeling scene-specific illumination mod-

els is necessary to deal with large changes in illumination.

On average we observed a 15% increase in performance by

applying our proposed approach on challenging indoor and

outdoor datasets.

Dealing with extreme conditions such as complete satu-

Baseline: Video stabilization

Proposed

Baseline: Feature trajectory projection [22] using KLT

Proposed

Baseline: Video stabilization+gPb+superpixel+graphcut [6]

Proposed

Figure 7. Qualitative comparison of hand region detection.

Figure 8. Failure cases caused by saturation, insufficient lighting

and high contrast shadows.

ration (i.e. parts of the scene and hands become pure white),

very dark scenes, and high contrast cast shadows, is very

challenging for local appearance based approaches (Figure

8). We believe these challenging situations can be address

by the combined use of local appearance, global shape pri-
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Table 2. Comparative Results. F1-score against baseline methods.

EDSH GTEA

2 kitchen coffee tea peanut

Single pixel color [8] 0.708 0.787 0.837 0.804 0.730

Video stabilization [7] 0.211 0.213 0.376 0.305 0.310

Trajectory projection [22] 0.202 0.217 0.275 0.239 0.255

Stabilization+gPb+superpixel+CRF [6] — —- 0.713 0.812 0.727

Ours (d=498, k=1) 0.706 0.707 0.728 0.815 0.738

Ours (d=50, k=1) 0.781 0.808 0.884 0.873 0.815

Ours (d=50, k=100) 0.826 0.810 — — —

Ours (post-process) 0.835 0.840 0.933 0.943 0.883

ors and more expressive global illumination models.

This work has shown that hand region pixels can be de-

tected with reasonable confidence for a wide range of il-

lumination changes and hand deformations. Based on the

findings of this work, we believe that our proposed pixel-

level detection approach can be used to enable a variety

of higher level tasks such hand tracking, gesture recogni-

tion, action recognition and manipulation analysis for first-

person vision.
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