
Pixel Queue Algorithm for Geodesic
Distance Transforms

Leena Ikonen

Lappeenranta University of Technology,
Department of Information Technology,

PO Box 20, 53851 Lappeenranta, Finland
leena.ikonen@lut.fi

Abstract. Geodesic distance transforms are usually computed with se-
quential mask operations, which may have to be iterated several times
to get a globally optimal distance map. This article presents an efficient
propagation algorithm based on a best-first pixel queue for computing
the Distance Transform on Curved Space (DTOCS), applicable also for
other geodesic distance transforms. It eliminates repetitions of local dis-
tance calculations, and performs in near-linear time.

1 Introduction

Distance transformations were among the first operations developed for digital
images. Sequential local transformation algorithms for binary images were pre-
sented already in the 1960s [8], and similar chamfering techniques have been
used successfully in 2D, 3D and even higher dimensions, see e.g. [2], [3], [1].
By modifying the definitions local distances, the chamfering can be applied to
gray-level distance transforms as well. The Distance Transform on Curved Space
(DTOCS) and its locally Euclidean modification Weighted DTOCS (WDTOCS),
which compute distances to nearest feature along a surface represented as a gray-
level height map, have been implented as mask operations [12].

Instead of propagating local distances in a predefined scanning order, the dis-
tance transformation can begin from the set of feature pixels, and propagate to
points further away in the calculation area. A recursive propagation algorithm
was presented in [7], where the distance value propagates from the previously
processed neighbor. If the new value is accepted into the distance map, i.e. it
is smaller than the previous distance value of the same pixel, the procedure is
repeated recursively for each neighbor. The efficiency of the recursive propa-
gation is highly dependent on the order in which the neighbors are processed.
An unwise or unlucky choice of propagation order causes numerous repetitions
of distance calculations, as shorter paths are found later on in the transforma-
tion. The ordered propagation algorithm, also presented in [7], eliminates some
of the repetitions. First the boundary of the feature set, and then neighbors
of already processed pixels, are placed in a queue, from which they are then
taken to be processed in order. Similar pixel queue algorithms are also presented
in [9] and [14].

E. Andres et al. (Eds.): DGCI 2005, LNCS 3429, pp. 228–239, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Pixel Queue Algorithm for Geodesic Distance Transforms 229

The recursive and ordered propagation, and pixel queue algorithms, can be
seen as applications of graph search, where each pixel represents a vertex, and
edges exist between neighbor pixels. Local distances can be defined as weights
of connecting edges. The recursive propagation proceeds as a depth-first-search,
and first-in-first-out pixel queue algorithms are applications of breadth-first-
search. This article presents a best-first-search algorithm for computing gray-
level distance transforms based on a priority queue, which is implemented effi-
ciently as a minimum heap. A distance transform algorithm utilizing the priority
queue idea was presented in [13]. Bucket sorting is used to find the pixel with
the smallest current distance. The algorithm is applicable only for integer dis-
tances, as a separate storing bucket is needed for each distance value. Our heap
based priority queue works for any distance values, including the real valued
modifications of the DTOCS. Experiments demonstrate that convergence of the
sequential transformation as well as the ordered propagation algorithm is highly
dependent on the image size and complexity, whereas the near-linear pixel queue
algorithm slows down only slightly with increasing surface variance.

2 Distance Transforms

The Distance Transform on Curved Space (DTOCS) calculates distances along
a gray-level surface, when gray-levels are understood as height values. Local
distances are defined using gray-level differences. The basic DTOCS simply adds
the gray-level difference to the chessboard distance in the horizontal plane, i.e.
the distance between neighbor pixels is:

d(pi, pi−1) = |G(pi) − G(pi−1)| + 1 (1)

where G(p)denotes the gray-value of pixel p, and and pi are subsequentpixels
on a path. The locally Euclidean Weighted DTOCS (WDTOCS) is calculated
from the height difference and the horizontal distance using Pythagoras:

d(pi, pi−1) =
{√|G(pi) − G(pi−1)|2 + 1 , pi−1 ∈ N4(pi)√|G(pi) − G(pi−1)|2 + 2 , pi−1 ∈ N8(pi) \ N4(pi)

(2)

The diagonal neighbors of pixel p are denoted by N8(p) \ N4(p), where N8(p)
consists of all pixel neighbors in a square grid, and N4(p) of square neighbors.
More accurate global distances can be achieved by introducing weights, which
are proven to be optimal for binary distance transforms, to local distances in the
horizontal plane. The Optimal DTOCS is defined in [6] as

d(pi, pi−1) =

⎧⎨
⎩

√
|G(pi) − G(pi−1)|2 + a2

opt , pi−1 ∈ N4(pi)√
|G(pi) − G(pi−1)|2 + b2

opt , pi−1 ∈ N8(pi) \ N4(pi)
(3)

where aopt = (
√

2
√

2 − 2 + 1)/2 ≈ 0.95509 and bopt =
√

2 + (
√

2
√

2 − 2 −
1)/2 ≈ 1.36930 as derived in [2] by minimizing the maximum difference from the
Euclidean distance that can occur between points on the binary image plane.

pi−1

230 L. Ikonen

3 Pixel Queue Transformation Algorithm

Pixel queue algorithms are simple to implement for binary distance transforms.
With equal step lengths the distances propagate smoothly from the feature set
outwards, and the distance corresponds to the number of steps. As step lengths
vary in the DTOCS transformations, several short steps along a smooth area
of the image can create a shorter path than just one or a few steps along an
area with high variance. Distances can not propagate as pixel fronts moving
outwards from the feature set, or a path with a few long steps might be found
instead of a shorter path consisting of many short steps. Both recursive and
ordered propagation algorithms can compute the correct global distances also in
the DTOCS setting, if neighbors of updated pixels are processed whether or not
they have been processed before. However, this is very inefficient, as numerous
repetitions of local distance calculations are needed. The new efficient pixel
queue algorithm utilizes a priority queue implemented as a minimum heap:

1. Define binary image F(x) = 0 for each pixel x in feature set, and F(x) =
max for each x in calculation area.

2. Put feature pixels (or boundary) to priority queue Q.
3. While Q not empty

p = dequeue(Q), Fq(p) was the smallest distance in Q.
If Fq(p) > F(p) (obsolete value), continue from step 3.
F(p) becomes F∗(p) (value is final).
For neighbors x of p with F(x) > F∗(p)

Compute local distance d(p, x) from original image G
If F∗(p) + d(p, x) < F(x)

Set F(x) = F(p) + d(p, x)
enqueue(x)

end if
end for

end while

The initialization of the queue can be implemented in two different ways
without affecting the result. Only feature boundary pixels need to be enqueued
in the initial step, but enqueueing all feature pixels yields the same result. Pro-
cessing non-boundary feature pixels does not cause any changes in the distance
image, and hence no further enqueueings of neighbor pixels. The application de-
termines which approach is more efficient, e.g., if distances from the background
into a small object are calculated, the external boundary of the object should
be used rather than enqueueing the whole background.

The best-first approach eliminates repetition of local distance calculations.
Using the priority queue ensures that the propagation always proceeds from a
point, which already has its final distance value. As local distances, which by
definition are non-negative, are added to distance values taken from the queue,
the currently smallest distance can never decrease further. So once a pixel is
dequeued, it will not be enqueued again. However, as step lengths vary, a distance
value that has propagated from a point with a final optimal value, may still be

Pixel Queue Algorithm for Geodesic Distance Transforms 231

replaced with a smaller one. Small local distances can create new shorter paths.
This will cause the same pixel to be enqueued repeatedly, first with a larger
distance value and then with smaller ones, before the first instance has been
dequeued. Once the final distance value is dequeued, other instances of the pixel
in the queue become obsolete, and could be removed. However, it is easier to just
discard them when they are dequeued in the normal priority queue order. Not
processing neighbors x of point p, which already have a distance value smaller
or equal to F(p), eliminates a significant amount of local distance calculations,
including the reverse directions of previously calculated distances, i.e., if d(pi, pj)
is calculated during the transformation, d(pj , pi) will never be needed.

The local distances are treated similarly as in the pixel queue transforma-
tion in [9]. The current pixel is considered the source point, and new distance
values are assigned to all neighbors, for which the path via the source point is
the shortest found so far. The recursive and ordered propagation algorithms in
[7] as well as the sequential transforms view the current point as the destina-
tion with each neighbor as a possible source. Local distances from all neighbors
within mask must be calculated to obtain one new distance value. The “greedy”
approach of calculating distances forward from a source point was tested also
for the sequential algorithm, but the effect on convergence was insignificant.

4 Complexity Analysis

The forward and reverse pass of a sequential local transformation can be done in
linear time, as there is a constant number of operations per pixel. The problem
with the complexity analysis is that the number of passes needed varies a lot
depending on the size and the complexity of the image surface. Smooth and
simple images can usually be transformed in just a few iterations, but it is
possible to construct example images, which require one iteration for each pixel
on the path with the most pixels. Typical values for test images in our previous
works have been about 10-15 two-pass-iterations, which for an image of size
128×128 is in the ballpark of log n = 14, which would make the whole algorithm
about O(n log n). However, with larger images and more complex surfaces, the
number of iterations needed increases. The Experiments section will present
512 × 512 example images converging in about 70 iterations, which is clearly
more than log n = 18.

The priority queue transformation propagates local distances from each pixel
only when it is dequeued with its final distance value. This means that each
local distance in the image is computed only once, or some not at all, if neigh-
bor pixels can be discarded due to already smaller distance values. Sequential
algorithms recalculate each local distance at each iteration, which can be very
costly, especially in transformations requiring heavier floating point calculations,
like the WDTOCS. Updating the priority queue adds a factor to the computation
time, as each enqueueing and dequeueing takes O(log nq) time, where nq is the
number of pixels in the queue. The value nq varies through the transformation
representing the boundary of the area, where distances are already calculated.

232 L. Ikonen

An upper limit on the complexity can be estimated using the fact that at
each step after dequeueing one pixel, at most 7 pixels can be enqueued. The
path through the current point must come from somewhere, so at least one
neighbor must already have its final value. At each step one pixel value becomes
final, so the number of efficient steps is n − nf , where nf is the number of
feature pixels. Even with the extra enqueueings, and dequeueings of obsolete
pixels, the number of steps is in O(n), which makes the complexity of the whole
algorithm O(n log nq), or worst case complexity O(n log n). The theoretically
maximal queue length, about 6n, is a gross overestimate, as distances propagate
locally as pixel fronts, which means that in practise only about half the neighbors
of a pixel are enqueued with new distance values. Also after the n − nf efficient
steps leaving one final distance value, the queue should be empty, and certainly
not at its maximum length. Experimental results will provide a more realistic
estimate on the number of queue operations and the average length of the queue.

5 Experiments

The priority queue algorithm was tested on gray-level images with varying sur-
face complexity to compare with the sequential local transformation, and also
with the ordered propagation algorithm implemented with a first-in-first-out
pixel queue, like in [9]. The distance images were compared to make sure they
were identical - and at first they were not. The sequential implementation cal-
culated distances only at points, where the whole mask fit on the image, so
errors appeared in areas, where the shortest path from the feature passed via
edge pixels. Instead of modifying the mask at the edges, the border effects were
corrected by adding an extra row or column to each edge before the mask trans-
formation, copying the edge values to the corresponding extra row or column.
With this correction the distance images were identical for the DTOCS, and
within calculation accuracy tolerance for the WDTOCS. The pixel queue algo-
rithms propagate distances to existing neighbors, so distances near edges are
calculated correctly without tricks.

The performance of the algorithms was compared using the images seen in
Fig. 1. The Mercury height map, Fig. 1 a), and the Lena image, Fig. 1 b),
represent highly varying surfaces. The Lena image is obviously not an actual
height map, but is used similarly in these tests. The Ball image, Fig. 1 c), is
constructed as a digitization of the sphere function, i.e. the highest gray-value in
the center corresponds to the radius of the sphere. The fourth test image, Flat,
consists of a constant gray-value representing the smoothest surface possible.
Testpoint grids were created (see example on the Ball image, Fig. 1 c), and
distances from one testpoint to everywhere else in the image were calculated. The
grids contained 244 points, and averages calculated from these 244 independent
runs are visualized in figures 2 - 6. The sequential algorithm was faster only for
the integer DTOCS on the Flat images. The larger and more complex the surfaces
were, the more clearly the pixel queue algorithm outperformed the sequential
transformation, and also the ordered propagation. The ordered propagation was

Pixel Queue Algorithm for Geodesic Distance Transforms 233

(a) Mercury (b) Lena (c) Ball

Fig. 1. Test images used. An example of a test point grid is shown on the Ball image

PQ Seq OP PQ Seq OP PQ Seq OP PQ Seq OP
0

0.5

1

1.5

2

 0.04 0.05 0.06 0.08
 0.07 0.08 0.09 0.10

 0.03

 0.14

 0.32 0.52

 0.09

 0.61

 1.38 1.86

 0.03
 0.10

 0.71
 0.89

 0.05
 0.16

 1.25
 1.50

se
co

nd
s

Flat 256 x 256 Ball 256 x 256 Lena 256 x 256 Merc 256 x 256

PQ Seq OP PQ Seq OP PQ Seq OP PQ Seq OP
0

5

10

15

20

 0.18 0.19 0.26 0.30
 0.29 0.31 0.40 0.43

 0.10

 0.98

 3.46
 3.94

 0.36

 4.23

13.49
14.49

 0.12
 0.74

 5.38

 8.96

 0.22
 1.10

 9.21

15.37

se
co

nd
s

Flat 512 x 512 Ball 512 x 512 Lena 512 x 512 Merc 512 x 512

[p]

Fig. 2. Average run times of DTOCS (black bar) and WDTOCS (white bar) using
Priority Queue, Sequential and Ordered Propagation algorithms

slightly faster than the sequential algorithm in most cases, as despite numerous
repeated pixel enqueuings, processing all pixels several times in the sequential
transformations is more costly. For very smooth surfaces where distances proceed
evenly as pixel fronts, the ordered propagation is faster than the priority queue,
as first-in-first-out queue operations take constant time.

The run times (Fig. 2), and the number of local distance calculations (Fig. 3)
are proportional to the number of iterations in the sequential algorithms, and
the number of iterations needed grows with the size and the complexity of the
image (Fig. 4). The pixel queue transformation eliminates a lot of computation
by calculating only those local distances, which are needed. If each local dis-
tance was calculated exactly once, the 256 ∗ 256 images would require 260610

234 L. Ikonen

PrQ Seq OP PrQ Seq OP PrQ Seq OP PrQ Seq OP
0

5

10

15

20

25

 0.19 0.20 0.23 0.26
 0.26 0.26 0.26 0.26

 1.05

 5.97

 12.7

 19.3

 1.05

 7.17

 15.6

 20.7

 0.19 0.74

 4.94
 6.24

 0.26 0.82

 5.61
 6.81

m
ill

io
n

lo
c.

 d
is

t.
ca

lc
ul

at
io

ns

Flat 256 x 256 Ball 256 x 256 Lena 256 x 256 Merc 256 x 256

PrQ Seq OP PrQ Seq OP PrQ Seq OP PrQ Seq OP
0

50

100

150

200

 0.78 0.81 0.96 1.02
 1.04 1.03 1.04 1.04

 4.20

42.17

133.1
150.2

 4.20

49.96

150.6
160.4

 0.78 5.27

36.77

62.34

 1.04 5.59

41.18

69.00

m
ill

io
n

lo
c.

 d
is

t.
ca

lc
ul

at
io

ns

Flat 512 x 512 Ball 512 x 512 Lena 512 x 512 Merc 512 x 512

[p]

Fig. 3. Average number of local distance calculations needed in DTOCS (black bar)
and WDTOCS (white bar) using Priority Queue, Sequential and Ordered Propagation
algorithms

PrQ Seq PrQ Seq PrQ Seq PrQ Seq
0

10

20

30

40

 3.46 3.86 4.63 5.32 1.53 1.70 2.03 2.21

 2.00

11.34

24.08

36.72

 2.00

13.62

29.66

39.35

ite
ra

tio
ns

Flat 256 x 256 Ball 256 x 256 Lena 256 x 256 Merc 256 x 256

PrQ Seq PrQ Seq PrQ Seq PrQ Seq
0

20

40

60

80

 3.54 3.90 4.81 5.39
 1.60 1.76 2.13 2.27

 2.00

20.07

63.32
71.50

 2.00

23.77

71.69
76.34

ite
ra

tio
ns

Flat 512 x 512 Ball 512 x 512 Lena 512 x 512 Merc 512 x 512

Fig. 4. Average number of iterations needed in sequential DTOCS (black bar) and
WDTOCS (white bar). The number of iterations indicated for the pixel queue algorithm
is a comparison number calculated from the run times

local distances, and the 512∗512 images 1045506 (rows∗ (columns−1) horizon-
tal, columns ∗ (rows − 1) vertical, and 2 ∗ (rows − 1) ∗ (columns − 1) diagonal
distances). Each iteration of the sequential transformation calculates each of

Pixel Queue Algorithm for Geodesic Distance Transforms 235

these local distances twice, once in both directions. Some local distance cal-
culations could have been eliminated from the first iteration by scanning the
image to the feature pixel without calculating distances, saving about half an
iteration.

The only source for repetition in the priority pixel queue algorithm is the
calculation accuracy of floating point distance transforms. A distance value may
be considered new, and consequently the pixel enqueued, even if it is smaller
than the previous value only because of computation accuracy. Despite adding
a threshold to the comparisons (the new value must be 0.001 smaller to be ac-
cepted as new), a few pixels ended up being enqueued repeatedly in the complex
surfaces, e.g., the number of enqueueings minus the number of obsolete pixels
found from the queue was at most 262190 for the 512 ∗ 512 Mercury surface of
262144 pixels. In the WDTOCS transformations of the smooth images, and of
course in all the DTOCS transformations, the number of enqueueings minus the
number of obsolete pixels equals the number of pixels.

The running times of C-implementations of the algorithms on a Linux com-
puter with an AMD Athlon 1.678 GHz processor indicate that particularly for
the floating point WDTOCS distances the pixel queue algorithm is superior-
ior. The speed of the priority queue operations, enqueue and dequeue, is not
affected by the choice of floating point versus integer distances, so the rela-
tive cost of repeating the local distance calculations in numerous iterations is
higher when using floating point values. In addition, the WDTOCS typically
requires a few more iterations, causing even more repetitions. For example for
the Mercury height map of size 512 ∗ 512 the speedup of the pixel queue trans-
form compared to the sequential transform is 3.94/0.30 ≈ 13 for the integer
DTOCS and 14.49/0.43 ≈ 34 for the floating point WDTOCS. The Optimal
DTOCS was not tested here, as one integer and one floating point distance
transform were enough to demonstrate the efficiency of the pixel queue algo-
rithm. The advantage would be even more clear in the case of the Optimal
DTOCS, which requires an additional multiplication operation to calculate each
local distance.

The number of iterations marked for the pixel queue algorithm in Fig. 4
is calculated as the number of sequential iterations that could have been per-
formed in the time consumed by the pixel queue algorithm. As the running time
for one iteration should be constant for a certain image size and local distance
definition, the comparison number can be used to estimate how much the per-
formance of the pixel queue algorithm depends on the complexity of the image
surface. The value ranged in the DTOCS tests of 512 ∗ 512 images from 3.54
(Flat image) to 5.39 (complex Mercury surface), while the number of iterations
of the sequential DTOCS ranged from 2 to 71.50. This means that the running
time of the pixel queue algorithm is much better predictable. One larger image,
the Mercury 768 ∗ 768 surface, was tested to provide experimental basis to the
claim of near-linear complexity. The average runtimes were 0.66 and 1.01 sec-
onds for the priority queue DTOCS and WDTOCS, and 9.52 and 41.72 seconds
for the sequential DTOCS and WDTOCS. Compared to the 256 ∗ 256 images,

236 L. Ikonen

the corresponding 512 ∗ 512 images took about 4 times longer to transform with
the priority pixel queue algorithm, and the fact that the 768 ∗ 768 Mercury im-
age took about 9 times longer than the 256 ∗ 256 image suggests a continuing
linear trend.

Flat Ball Lena Merc
0

0.02

0.04

0.06

0.08

0.1

0.12
Priority pixel queue, 256x256 images

m
ill

io
n

pi
xe

ls

Flat Ball Lena Merc
0

0.5

1

1.5

2

2.5

3
Ordered propagation, 256x256 images

m
ill

io
n

pi
xe

ls

Flat Ball Lena Merc
0

0.1

0.2

0.3

0.4

0.5
Priority pixel queue, 512x512 images

m
ill

io
n

pi
xe

ls

Flat Ball Lena Merc
0

5

10

15

20

25

30
Ordered propagation, 512x512 images

m
ill

io
n

pi
xe

ls

Fig. 5. Number of pixel enqueuings in DTOCS (black bar) and WDTOCS (white bar)
for the priority queue (left) and the ordered propagation (right). The horizontal line
on each bar indicates the number of pixels in the image, so the section of the bar above
the line shows how many pixels get enqueued repeatedly. Notice the different scales

More statistics on the pixel queue transformation are shown in Fig. 5 and
Fig. 6. The number of enqueued pixels, i.e. the number of enqueue and dequeue
operations, is somewhat larger than the number of pixels. The more complex
the surface, the more pixels get enqueued repeatedly when new shorter paths
are found. The number of pixel enqueuings in the ordered propagation algorithm
is in a larger magnitude, and also grows very rapidly with the size and complex-
ity of the image (see Fig. 5). The average and maximum queue lengths (Fig. 6)
are calculated from the average and maximum queue lengths recorded at each
run. The largest average and the largest maximum queue length for each test
image is indicated as lines on top of the bars. The average queue lengths for the
768 ∗ 768 Mercury surface not included in the graphs were 5295 for the DTOCS
and 6073 for the WDTOCS, and the longest queue encountered contained 14069
pixels � n = 768 ∗ 768 = 589824. In general, the queue lengths seem to grow

Pixel Queue Algorithm for Geodesic Distance Transforms 237

AvgQ MaxQ AvgQ MaxQ AvgQ MaxQ AvgQ MaxQ
0

1000

2000

3000

4000

Flat 256 x 256 Ball 256 x 256 Lena 256 x 256 Merc 256 x 256

pi
xe

ls

AvgQ MaxQ AvgQ MaxQ AvgQ MaxQ AvgQ MaxQ
0

2000

4000

6000

8000

10000
Flat 512 x 512 Ball 512 x 512 Lena 512 x 512 Merc 512 x 512

pi
xe

ls

Fig. 6. Average and maximum queue lengths in DTOCS (black bar) and WDTOCS
(white bar). The horizontal lines above the bars indicate the maximum values, i.e. the
largest average queue length and largest maximum queue length

sublinearly with the size of the image. As queue lengths are in a clearly smaller
magnitude than the number of pixels, the algorithm is in practise linear.

6 Discussion

The DTOCS algorithms have been presented as geodesic distance transforms
without proper explanation on how and why they may be called geodesic. The
DTOCS distances resemble geographical geodesic distances. Discrete paths fol-
low the gray-level surface like the shortest path between two cities follow the
surface of the geoid. In image analysis the term geodesic distance refers to a
situation where paths linking image pixels are constrained to remain within a
subset of the image plane [11]. In the DTOCS setting paths can cross any areas
of the image, but path lengths can become huge. The DTOCS can be used in
the same manner as constrained distance transforms, marking constraint pix-
els with values differing so much from the rest of the image plane that the
shortest paths will never cross those pixels. In such a situation the distances
propagate similarly as in a geodesic, i.e. constrained, distance transform. The
pixel queue algorithm could be used to calculate both types of transforms, as
well as gray-level distance transforms calculating minimal cost paths, e.g. the
geodesic time transform with distances defined as the sum of gray-values along
the path [10].

The presented pixel queue algorithm was demonstrated to be efficient, out-
performing the sequential algorithm in almost all test cases. The running times

238 L. Ikonen

do grow a bit with increased surface complexity, but not nearly is much as the
running times of the sequential transformation. The complexity of the algorithm
is O(n log nq), but as nq � n it performs in near-linear time. The number of
local distance calculations is minimized, i.e. each local distance in the image is
computed at most once, which is a clear benefit compared to the iterated sequen-
tial transforms, particuarly if the local distances require heavier floating point
computations.

Previous DTOCS experiments have been made on quite small images. The
experiments here demonstrate the expected effect of increasing the image size,
i.e. the number of iterations needed for convergence becomes quite unpredictable.
The sequential transformation may still be useful, but in applications with high
resolution images, the pixel queue algorithm is more efficient. Another benefit
of the pixel queue approach is that distances are calculated exactly where they
are needed. If, for example, an image of an object on a background is trans-
formed, the sequential transformation calculates unnecessary distances on the
background. The pixel queue algorithm naturally proceeds from the border into
the object. Also, as distance values are known to be final once they are dequeued,
a real time application could utilize some values before the whole transforma-
tion is done. If the feature set is disconnected, the distance values propagated
from each feature will be mixed in the priority queue, but distance values near
each feature will be calculated early in the transformation. When the propa-
gating fronts meet, the transformation is final. This idea could be utilized for
developing a tesselation method.

Another approach, which ensures that obtained distance values are immedi-
ately final is presented in [4]. The parallel implementation is based on the fact
that in binary distance transforms each pixel with distance value N must have a
neigbor with distance value N −a or N −b, where a and b are the local distances
to square and diagonal neighbors. Pixels with a 0-valued neighbor are updated
first, and then pixels with a neighbor of each possible successively increasing dis-
tance value. Thus, the distance values propagate similarly as in the pixel queue
transformation presented here.

Pixel queue algorithms can be implemented also in higher dimensions. For
binary voxel images in 3D, as well as for binary images in 2D, where distances
propagate as smooth fronts, ordered propagation with a first-in-first-out queue
would probably work as well or even better than the priority queue approach.
However, if the voxels have values other than 0 and 1, and path lengths are
defined using voxel values on the path resulting in varying local distances, the
priority queue algorithm could be useful. Larger neighborhoods, for example 5∗5
in 2D or 5 ∗ 5 ∗ 5 in 3D, could be introduced to the pixel queue algorithm, but
in the DTOCS setting larger neighborhoods need to be used with care, as they
can result in illegal paths across very narrow obstacles.

The pixel queue algorithm could easily be modified to record the path of the
shortest distance, by storing the direction from which the path propagated to
each pixel. However, only the first found path would be recorded even though
there are usually several equally short paths. The Route DTOCS algorithm for

Pixel Queue Algorithm for Geodesic Distance Transforms 239

finding the route between two points [6] or point sets [5] requires two distance
maps, one for each end-point set. The route consists of points on any optimal
path, and a distinct path can be extracted using backtracking. In shortest route
applications large complex images with long paths are typical, so the priority
pixel queue algorithm improves the method significantly.

References

1. G. Borgefors. Distance Transformations in Arbitrary Dimensions. Computer Vi-
sion, Graphics, and Image Processing, 27:321–345, 1984.

2. G. Borgefors. Distance Transformations in Digital Images. Computer Vision,
Graphics, and Image Processing, 34:344–371, 1986.

3. G. Borgefors. On digital distance transforms in three dimensions. Computer Vision
and Image Understanding, 64(3):368–376, 1996.

4. G. Borgefors, T. Hartmann, and S. L. Tamimoto. Parallell distance transforms
on pyramid machines: theory and implementation. Signal Processing, 21(1):61–86,
1990.

5. L. Ikonen and P. Toivanen. Shortest routes between sets on gray-level surfaces.
In Patter recognition and Image Analysis (PRIA), pages 244–247, St. Petersburg,
Russia, October 2004.

6. L. Ikonen and P. Toivanen. Shortest routes on varying height surfaces using gray-
level distance transforms. Image and Vision Computing, 23(2):133–141, February
2005.

7. J. Piper and E. Granum. Computing Distance Transformations in Convex and
Non-convex Domains. Pattern Recognition, 20(6):599–615, 1987.

8. A. Rosenfeld and J. L. Pfaltz. Sequential Operations in Digital Picture Processing.
Journal of the Association for Computing Machinery, 13(4):471–494, October 1966.

9. J. Silvela and J. Portillo. Breadth-first search and its application to image process-
ing problems. IEEE Transactions on Image Processing, 10(8):1194–1199, 2001.

10. P. Soille. Generalized geodesy via geodesic time. Pattern Recognition Letters,
15(12):1235–1240, 1994.

11. P. Soille. Morphological Image Processing: Principles and Applications. Springer-
Verlag, 2 edition, 2003 and 2004.

12. P. Toivanen. New geodesic distance transforms for gray-scale images. Pattern
Recognition Letters, 17:437–450, 1996.

13. Ben J. H. Verwer, Piet W Verbeek, and Simon T. Dekker. An efficient uniform
cost algorithm applied to distance transforms. IEEE Trans. on Pattern Analysis
and Machine Intelligence, 11(4):425–429, April 1989.

14. L. Vincent. New trends in morphological algorithms. In Proc. SPIE/SPSE, volume
1451, pages 158–170, 1991.

	Introduction
	Distance Transforms
	Pixel Queue Transformation Algorithm
	Complexity Analysis
	Experiments
	Discussion

