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Abstract

Modeling the distribution of natural images is

a landmark problem in unsupervised learning.

This task requires an image model that is at

once expressive, tractable and scalable. We

present a deep neural network that sequentially

predicts the pixels in an image along the two

spatial dimensions. Our method models the dis-

crete probability of the raw pixel values and en-

codes the complete set of dependencies in the

image. Architectural novelties include fast two-

dimensional recurrent layers and an effective use

of residual connections in deep recurrent net-

works. We achieve log-likelihood scores on nat-

ural images that are considerably better than the

previous state of the art. Our main results also

provide benchmarks on the diverse ImageNet

dataset. Samples generated from the model ap-

pear crisp, varied and globally coherent.

1. Introduction

Generative image modeling is a central problem in unsu-

pervised learning. Probabilistic density models can be used

for a wide variety of tasks that range from image compres-

sion and forms of reconstruction such as image inpainting

(e.g., see Figure 1) and deblurring, to generation of new

images. When the model is conditioned on external infor-

mation, possible applications also include creating images

based on text descriptions or simulating future frames in a

planning task. One of the great advantages in generative

modeling is that there are practically endless amounts of

image data available to learn from. However, because im-

ages are high dimensional and highly structured, estimating

the distribution of natural images is extremely challenging.

One of the most important obstacles in generative mod-

eling is building complex and expressive models that are
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Figure 1. Image completions sampled from a PixelRNN.

also tractable and scalable. This trade-off has resulted in

a large variety of generative models, each having their ad-

vantages. Most work focuses on stochastic latent variable

models such as VAE’s (Rezende et al., 2014; Kingma &

Welling, 2013) that aim to extract meaningful representa-

tions, but often come with an intractable inference step that

can hinder their performance.

One effective approach to tractably model a joint distribu-

tion of the pixels in the image is to cast it as a product of

conditional distributions; this approach has been adopted in

autoregressive models such as NADE (Larochelle & Mur-

ray, 2011) and fully visible sigmoid belief networks (Neal,

1992). The factorization turns the joint modeling problem

into a sequence problem, where one learns to predict the

next pixel given all the previously generated pixels. But to

model the highly nonlinear and long-range correlations be-

tween pixels and the complex conditional distributions that

result, a highly expressive sequence model is necessary.

Recurrent Neural Networks (RNN) are powerful models

that offer a compact, shared parametrization of a series of

conditional distributions. RNNs have been shown to excel

at hard sequence problems ranging from handwriting gen-

eration (Graves, 2013), to character prediction (Sutskever

et al., 2011) and to machine translation (Kalchbrenner &

Blunsom, 2013). A two-dimensional RNN has produced

very promising results in modeling grayscale images and

textures (Theis & Bethge, 2015).

In this paper we advance two-dimensional RNNs and ap-

ply them to large-scale modeling of natural images. The

resulting PixelRNNs are composed of up to twelve, fast

two-dimensional Long Short-Term Memory (LSTM) lay-
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Figure 2. Left: To generate pixel xi one conditions on all the pre-

viously generated pixels left and above of xi. Center: To gen-

erate a pixel in the multi-scale case we can also condition on the

subsampled image pixels (in light blue). Right: Diagram of the

connectivity inside a masked convolution. In the first layer, each

of the RGB channels is connected to previous channels and to the

context, but is not connected to itself. In subsequent layers, the

channels are also connected to themselves.

ers. These layers use LSTM units in their state (Hochreiter

& Schmidhuber, 1997; Graves & Schmidhuber, 2009) and

adopt a convolution to compute at once all the states along

one of the spatial dimensions of the data. We design two

types of these layers. The first type is the Row LSTM layer

where the convolution is applied along each row; a similar

technique is described in (Stollenga et al., 2015). The sec-

ond type is the Diagonal BiLSTM layer where the convolu-

tion is applied in a novel fashion along the diagonals of the

image. The networks also incorporate residual connections

(He et al., 2015) around LSTM layers; we observe that this

helps with training of the PixelRNN for up to twelve layers

of depth.

We also consider a second, simplified architecture which

shares the same core components as the PixelRNN. We ob-

serve that Convolutional Neural Networks (CNN) can also

be used as sequence model with a fixed dependency range,

by using Masked convolutions. The PixelCNN architec-

ture is a fully convolutional network of fifteen layers that

preserves the spatial resolution of its input throughout the

layers and outputs a conditional distribution at each loca-

tion.

Both PixelRNN and PixelCNN capture the full generality

of pixel inter-dependencies without introducing indepen-

dence assumptions as in e.g., latent variable models. The

dependencies are also maintained between the RGB color

values within each individual pixel. Furthermore, in con-

trast to previous approaches that model the pixels as con-

tinuous values (e.g., Theis & Bethge (2015); Gregor et al.

(2014)), we model the pixels as discrete values using a

multinomial distribution implemented with a simple soft-

max layer. We observe that this approach gives both repre-

sentational and training advantages for our models.

The contributions of the paper are as follows. In Section

3 we design two types of PixelRNNs corresponding to the

two types of LSTM layers; we describe the purely convo-

lutional PixelCNN that is our fastest architecture; and we

design a Multi-Scale version of the PixelRNN. In Section 5

we show the relative benefits of using the discrete softmax

distribution in our models and of adopting residual connec-

tions for the LSTM layers. Next we test the models on

MNIST and on CIFAR-10 and show that they obtain log-

likelihood scores that are considerably better than previous

results. We also provide results for the large-scale Ima-

geNet dataset resized to both 32 × 32 and 64 × 64 pixels;

to our knowledge likelihood values from generative models

have not previously been reported on this dataset. Finally,

we give a qualitative evaluation of the samples generated

from the PixelRNNs.

2. Model

Our aim is to estimate a distribution over natural images

that can be used to tractably compute the likelihood of im-

ages and to generate new ones. The network scans the im-

age one row at a time and one pixel at a time within each

row. For each pixel it predicts the conditional distribution

over the possible pixel values given the scanned context.

Figure 2 illustrates this process. The joint distribution over

the image pixels is factorized into a product of conditional

distributions. The parameters used in the predictions are

shared across all pixel positions in the image.

To capture the generation process, Theis & Bethge (2015)

propose to use a two-dimensional LSTM network (Graves

& Schmidhuber, 2009) that starts at the top left pixel and

proceeds towards the bottom right pixel. The advantage of

the LSTM network is that it effectively handles long-range

dependencies that are central to object and scene under-

standing. The two-dimensional structure ensures that the

signals are well propagated both in the left-to-right and top-

to-bottom directions.

In this section we first focus on the form of the distribution,

whereas the next section will be devoted to describing the

architectural innovations inside PixelRNN.

2.1. Generating an Image Pixel by Pixel

The goal is to assign a probability p(x) to each image x

formed of n×n pixels. We can write the image x as a one-

dimensional sequence x1, ..., xn2 where pixels are taken

from the image row by row. To estimate the joint distri-

bution p(x) we write it as the product of the conditional

distributions over the pixels:

p(x) =

n2∏

i=1

p(xi|x1, ..., xi−1) (1)

The value p(xi|x1, ..., xi−1) is the probability of the i-th

pixel xi given all the previous pixels x1, ..., xi−1. The gen-

eration proceeds row by row and pixel by pixel. Figure 2

(Left) illustrates the conditioning scheme.

Each pixel xi is in turn jointly determined by three values,
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Figure 3. In the Diagonal BiLSTM, to allow for parallelization

along the diagonals, the input map is skewed by offseting each

row by one position with respect to the previous row. When the

spatial layer is computed left to right and column by column, the

output map is shifted back into the original size. The convolution

uses a kernel of size 2× 1.

one for each of the color channels Red, Green and Blue

(RGB). We rewrite the distribution p(xi|x<i) as the fol-

lowing product:

p(xi,R|x<i)p(xi,G|x<i, xi,R)p(xi,B |x<i, xi,R, xi,G) (2)

Each of the colors is thus conditioned on the other channels

as well as on all the previously generated pixels.

Note that during training and evaluation the distributions

over the pixel values are computed in parallel, while the

generation of an image is sequential.

2.2. Pixels as Discrete Variables

Previous approaches use a continuous distribution for the

values of the pixels in the image (e.g. Theis & Bethge

(2015); Uria et al. (2014)). By contrast we model p(x) as

a discrete distribution, with every conditional distribution

in Equation 2 being a multinomial that is modeled with a

softmax layer. Each channel variable xi,∗ simply takes one

of 256 distinct values. The discrete distribution is represen-

tationally simple and has the advantage of being arbitrarily

multimodal without prior on the shape (see Fig. 6). Exper-

imentally we also find the discrete distribution to be easy

to learn and to produce better performance compared to a

continuous distribution (Section 5).

3. Pixel Recurrent Neural Networks

In this section we describe the architectural components

that compose the PixelRNN. In Sections 3.1 and 3.2, we

describe the two types of LSTM layers that use convolu-

tions to compute at once the states along one of the spatial

dimensions. In Section 3.3 we describe how to incorporate

residual connections to improve the training of a PixelRNN

with many LSTM layers. In Section 3.4 we describe the

softmax layer that computes the discrete joint distribution

of the colors and the masking technique that ensures the

proper conditioning scheme. In Section 3.5 we describe the

PixelCNN architecture. Finally in Section 3.6 we describe

the multi-scale architecture.

3.1. Row LSTM

The Row LSTM is a unidirectional layer that processes

the image row by row from top to bottom computing fea-

tures for a whole row at once; the computation is per-

formed with a one-dimensional convolution. For a pixel

xi the layer captures a roughly triangular context above the

pixel as shown in Figure 4 (center). The kernel of the one-

dimensional convolution has size k × 1 where k ≥ 3; the

larger the value of k the broader the context that is captured.

The weight sharing in the convolution ensures translation

invariance of the computed features along each row.

The computation proceeds as follows. An LSTM layer has

an input-to-state component and a recurrent state-to-state

component that together determine the four gates inside the

LSTM core. To enhance parallelization in the Row LSTM

the input-to-state component is first computed for the entire

two-dimensional input map; for this a k × 1 convolution is

used to follow the row-wise orientation of the LSTM itself.

The convolution is masked to include only the valid context

(see Section 3.4) and produces a tensor of size 4h× n× n,

representing the four gate vectors for each position in the

input map, where h is the number of output feature maps.

To compute one step of the state-to-state component of

the LSTM layer, one is given the previous hidden and cell

states hi−1 and ci−1, each of size h × n × 1. The new

hidden and cell states hi, ci are obtained as follows:

[oi, fi, ii,gi] = σ(Kss
⊛ hi−1 +Kis

⊛ xi)

ci = fi ⊙ ci−1 + ii ⊙ gi

hi = oi ⊙ tanh(ci)

(3)

where xi of size h × n × 1 is row i of the input map, and

⊛ represents the convolution operation and ⊙ the element-

wise multiplication. The weights Kss and Kis are the

kernel weights for the state-to-state and the input-to-state

components, where the latter is precomputed as described

above. In the case of the output, forget and input gates oi,

fi and ii, the activation σ is the logistic sigmoid function,

whereas for the content gate gi, σ is the tanh function.

Each step computes at once the new state for an entire row

of the input map. Because the Row LSTM has a triangular

receptive field (Figure 4), it is unable to capture the entire

available context.

3.2. Diagonal BiLSTM

The Diagonal BiLSTM is designed to both parallelize the

computation and to capture the entire available context for

any image size. Each of the two directions of the layer

scans the image in a diagonal fashion starting from a cor-

ner at the top and reaching the opposite corner at the bot-

tom. Each step in the computation computes at once the

LSTM state along a diagonal in the image. Figure 4 (right)
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Figure 4. Visualization of the input-to-state and state-to-state

mappings for the three proposed architectures.

illustrates the computation and the resulting receptive field.

The diagonal computation proceeds as follows. We first

skew the input map into a space that makes it easy to ap-

ply convolutions along diagonals. The skewing operation

offsets each row of the input map by one position with re-

spect to the previous row, as illustrated in Figure 3; this

results in a map of size n× (2n− 1). At this point we can

compute the input-to-state and state-to-state components of

the Diagonal BiLSTM. For each of the two directions, the

input-to-state component is simply a 1×1 convolution Kis

that contributes to the four gates in the LSTM core; the op-

eration generates a 4h × n × n tensor. The state-to-state

recurrent component is then computed with a column-wise

convolution Kss that has a kernel of size 2 × 1. The step

takes the previous hidden and cell states, combines the con-

tribution of the input-to-state component and produces the

next hidden and cell states, as defined in Equation 3. The

output feature map is then skewed back into an n× n map

by removing the offset positions. This computation is re-

peated for each of the two directions. Given the two out-

put maps, to prevent the layer from seeing future pixels,

the right output map is then shifted down by one row and

added to the left output map.

Besides reaching the full dependency field, the Diagonal

BiLSTM has the additional advantage that it uses a con-

volutional kernel of size 2 × 1 that processes a minimal

amount of information at each step yielding a highly non-

linear computation. Kernel sizes larger than 2 × 1 are not

particularly useful as they do not broaden the already global

receptive field of the Diagonal BiLSTM.

3.3. Residual Connections

We train PixelRNNs of up to twelve layers of depth. As

a means to both increase convergence speed and propagate

signals more directly through the network, we deploy resid-

ual connections (He et al., 2015) from one LSTM layer to

the next. Figure 5 shows a diagram of the residual blocks.

The input map to the PixelRNN LSTM layer has 2h fea-

tures. The input-to-state component reduces the number of

features by producing h features per gate. After applying

the recurrent layer, the output map is upsampled back to 2h
features per position via a 1 × 1 convolution and the input

map is added to the output map. This method is related to

previous approaches that use gating along the depth of the

recurrent network (Kalchbrenner et al., 2015; Zhang et al.,

2016), but has the advantage of not requiring additional

gates. Apart from residual connections, one can also use

learnable skip connections from each layer to the output.

In the experiments we evaluate the relative effectiveness of

residual and layer-to-output skip connections.

ReLU - 1x1 Conv

+

ReLU - 3x3 Conv

h
2h

ReLU - 1x1 Conv

h
2h

LSTM

+

2h

1x1 Conv

h

2h

Figure 5. Residual blocks for a PixelCNN (left) and PixelRNNs.

3.4. Masked Convolution

The h features for each input position at every layer in the

network are split into three parts, each corresponding to

one of the RGB channels. When predicting the R chan-

nel for the current pixel xi, only the generated pixels left

and above of xi can be used as context. When predicting

the G channel, the value of the R channel can also be used

as context in addition to the previously generated pixels.

Likewise, for the B channel, the values of both the R and

G channels can be used. To restrict connections in the net-

work to these dependencies, we apply a mask to the input-

to-state convolutions and to other purely convolutional lay-

ers in a PixelRNN.

We use two types of masks that we indicate with mask A

and mask B, as shown in Figure 2 (Right). Mask A is ap-

plied only to the first convolutional layer in a PixelRNN

and restricts the connections to those neighboring pixels

and to those colors in the current pixels that have already

been predicted. On the other hand, mask B is applied to

all the subsequent input-to-state convolutional transitions

and relaxes the restrictions of mask A by also allowing the

connection from a color to itself. The masks can be eas-

ily implemented by zeroing out the corresponding weights

in the input-to-state convolutions after each update. Simi-

lar masks have also been used in variational autoencoders

(Gregor et al., 2014; Germain et al., 2015).

3.5. PixelCNN

The Row and Diagonal LSTM layers have a potentially

unbounded dependency range within their receptive field.

This comes with a computational cost as each state needs

to be computed sequentially. One simple workaround is

to make the receptive field large, but not unbounded. We
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PixelCNN Row LSTM Diagonal BiLSTM

7× 7 conv mask A

Multiple residual blocks: (see fig 5)

Conv Row LSTM Diagonal BiLSTM
3× 3 mask B i-s: 3× 1 mask B i-s: 1× 1 mask B

s-s: 3× 1 no mask s-s: 1× 2 no mask

ReLU followed by 1× 1 conv, mask B (2 layers)

256-way Softmax for each RGB color (Natural images)
or Sigmoid (MNIST)

Table 1. Details of the architectures. In the LSTM architectures

i-s and s-s stand for input-state and state-state convolutions.

can use standard convolutional layers to capture a bounded

receptive field and compute features for all pixel positions

at once. The PixelCNN uses multiple convolutional lay-

ers that preserve the spatial resolution; pooling layers are

not used. Masks are adopted in the convolutions to avoid

seeing the future context; masks have previously also been

used in non-convolutional models such as MADE (Ger-

main et al., 2015). Note that the advantage of paralleliza-

tion of the PixelCNN over the PixelRNN is only available

during training or during evaluating of test images. The

image generation process is sequential for both kinds of

networks, as each sampled pixel needs to be given as input

back into the network.

3.6. Multi-Scale PixelRNN

The Multi-Scale PixelRNN is composed of an uncondi-

tional PixelRNN and one or more conditional PixelRNNs.

The unconditional network first generates in the standard

way a smaller s×s image that is subsampled from the orig-

inal image. The conditional network then takes the s × s

image as an additional input and generates a larger n × n

image, as shown in Figure 2 (Middle).

The conditional network is similar to a standard PixelRNN,

but each of its layers is biased with an upsampled version

of the small s× s image. The upsampling and biasing pro-

cesses are defined as follows. In the upsampling process,

one uses a convolutional network with deconvolutional lay-

ers to construct an enlarged feature map of size c× n× n,

where c is the number of features in the output map of the

upsampling network. Then, in the biasing process, for each

layer in the conditional PixelRNN, one simply maps the

c× n× n conditioning map into a 4h× n× n map that is

added to the input-to-state map of the corresponding layer;

this is performed using a 1× 1 unmasked convolution. The

larger n× n image is then generated as usual.

4. Specifications of Models

In this section we give the specifications of the PixelRNNs

used in the experiments. We have four types of networks:

the PixelRNN based on Row LSTM, the one based on Di-

agonal BiLSTM, the fully convolutional one and the Multi-

Scale one.

Table 1 specifies each layer in the single-scale networks.

The first layer is a 7 × 7 convolution that uses the mask of

type A. The two types of LSTM networks then use a vari-

able number of recurrent layers. The input-to-state con-

volution in this layer uses a mask of type B, whereas the

state-to-state convolution is not masked. The PixelCNN

uses convolutions of size 3 × 3 with a mask of type B.

The top feature map is then passed through a couple of

layers consisting of a Rectified Linear Unit (ReLU) and a

1×1 convolution. For the CIFAR-10 and ImageNet experi-

ments, these layers have 1024 feature maps; for the MNIST

experiment, the layers have 32 feature maps. Residual and

layer-to-output connections are used across the layers of all

three networks.

The networks used in the experiments have the following

hyperparameters. For MNIST we use a Diagonal BiLSTM

with 7 layers and a value of h = 16 (Section 3.3 and Figure

5 right). For CIFAR-10 the Row and Diagonal BiLSTMs

have 12 layers and a number of h = 128 units. The Pixel-

CNN has 15 layers and h = 128. For 32 × 32 ImageNet

we adopt a 12 layer Row LSTM with h = 384 units and

for 64 × 64 ImageNet we use a 4 layer Row LSTM with

h = 512 units; the latter model does not use residual con-

nections.

5. Experiments

In this section we describe our experiments and results. We

begin by describing the way we evaluate and compare our

results. In Section 5.2 we give details about the training.

Then we give results on the relative effectiveness of archi-

tectural components and our best results on the MNIST,

CIFAR-10 and ImageNet datasets.

5.1. Evaluation

All our models are trained and evaluated on the log-

likelihood loss function coming from a discrete distribu-

tion. Although natural image data is usually modeled with

continuous distributions using density functions, we can

compare our results with previous art in the following way.

In the literature it is currently best practice to add real-

valued noise to the pixel values to dequantize the data when

using density functions (Uria et al., 2013). When uniform

noise is added (with values in the interval [0, 1]), then the

log-likelihoods of continuous and discrete models are di-

rectly comparable (Theis et al., 2015). In our case, we can

use the values from the discrete distribution as a piecewise-

uniform continuous function that has a constant value for

every interval [i, i+ 1], i = 1, 2, . . . 256. This correspond-

ing distribution will have the same log-likelihood (on data
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with added noise) as the original discrete distribution (on

discrete data).

For MNIST we report the negative log-likelihood in nats

as it is common practice in literature. For CIFAR-10 and

ImageNet we report negative log-likelihoods in bits per di-

mension. The total discrete log-likelihood is normalized by

the dimensionality of the images (e.g., 32× 32× 3 = 3072
for CIFAR-10). These numbers are interpretable as the

number of bits that a compression scheme based on this

model would need to compress every RGB color value

(van den Oord & Schrauwen, 2014b; Theis et al., 2015);

in practice there is also a small overhead due to arithmetic

coding.

5.2. Training Details

Our models are trained on GPUs using the Torch toolbox.

From the different parameter update rules tried, RMSProp

gives best convergence performance and is used for all ex-

periments. The learning rate schedules were manually set

for every dataset to the highest values that allowed fast con-

vergence. The batch sizes also vary for different datasets.

For smaller datasets such as MNIST and CIFAR-10 we use

smaller batch sizes of 16 images as this seems to regularize

the models. For ImageNet we use as large a batch size as

allowed by the GPU memory; this corresponds to 64 im-

ages/batch for 32× 32 ImageNet, and 32 images/batch for

64 × 64 ImageNet. Apart from scaling and centering the

images at the input of the network, we don’t use any other

preprocessing or augmentation. For the multinomial loss

function we use the raw pixel color values as categories.

For all the PixelRNN models, we learn the initial recurrent

state of the network.

5.3. Discrete Softmax Distribution

Apart from being intuitive and easy to implement, we find

that using a softmax on discrete pixel values instead of a

mixture density approach on continuous pixel values gives

better results. For the Row LSTM model with a softmax

output distribution we obtain 3.06 bits/dim on the CIFAR-

10 validation set. For the same model with a Mixture of

Conditional Gaussian Scale Mixtures (MCGSM) (Theis &

Bethge, 2015) we obtain 3.22 bits/dim.

In Figure 6 we show a few softmax activations from the

model. Although we don’t embed prior information about

the meaning or relations of the 256 color categories, e.g.

that pixel values 51 and 52 are neighbors, the distributions

predicted by the model are meaningful and can be multi-

modal, skewed, peaked or long tailed. Also note that values

0 and 255 often get a much higher probability as they are

more frequent. Another advantage of the discrete distribu-

tion is that we do not worry about parts of the distribution

mass lying outside the interval [0, 255], which is something

that typically happens with continuous distributions.

 0  50  100  150  200  250  0  50  100  150  200  250  0  50  100  150  200  250  0  50  100  150  200  250

 0                                               255  0                                             255  0                                             255  0                                             255

Figure 6. Example softmax activations from the model. The left-

most shows the distribution of the first pixel red value (first value

to sample).

5.4. Residual Connections

Another core component of the networks is residual con-

nections. In Table 2 we show the results of having residual

connections, having standard skip connections or having

both, in the 12-layer CIFAR-10 Row LSTM model. We

see that using residual connections is as effective as using

skip connections; using both is also effective and preserves

the advantage.

No skip Skip

No residual: 3.22 3.09

Residual: 3.07 3.06

Table 2. Effect of residual and skip connections in the Row LSTM

network evaluated on the Cifar-10 validation set in bits/dim.

When using both the residual and skip connections, we see

in Table 3 that performance of the Row LSTM improves

with increased depth. This holds for up to the 12 LSTM

layers that we tried.

# layers: 1 2 3 6 9 12

NLL: 3.30 3.20 3.17 3.09 3.08 3.06

Table 3. Effect of the number of layers on the negative log likeli-

hood evaluated on the CIFAR-10 validation set (bits/dim).

5.5. MNIST

Although the goal of our work was to model natural images

on a large scale, we also tried our model on the binary ver-

sion (Salakhutdinov & Murray, 2008) of MNIST (LeCun

et al., 1998) as it is a good sanity check and there is a lot

of previous art on this dataset to compare with. In Table 4

we report the performance of the Diagonal BiLSTM model

and that of previous published results. To our knowledge

this is the best reported result on MNIST so far.

5.6. CIFAR-10

Next we test our models on the CIFAR-10 dataset

(Krizhevsky, 2009). Table 5 lists the results of our mod-

els and that of previously published approaches. For the

proposed networks, the Diagonal BiLSTM has the best

performance, followed by the Row LSTM and the Pixel-
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Figure 7. Samples from models trained on CIFAR-10 (left) and ImageNet 32x32 (right) images. In general we can see that the models

capture local spatial dependencies relatively well. The ImageNet model seems to be better at capturing more global structures than the

CIFAR-10 model. The ImageNet model was larger and trained on much more data, which explains the qualitative difference in samples.

Model NLL Test

DBM 2hl [1]: ≈ 84.62

DBN 2hl [2]: ≈ 84.55

NADE [3]: 88.33

EoNADE 2hl (128 orderings) [3]: 85.10

EoNADE-5 2hl (128 orderings) [4]: 84.68

DLGM [5]: ≈ 86.60

DLGM 8 leapfrog steps [6]: ≈ 85.51

DARN 1hl [7]: ≈ 84.13

MADE 2hl (32 masks) [8]: 86.64

DRAW [9]: ≤ 80.97

PixelCNN: 81.30

Row LSTM: 80.54

Diagonal BiLSTM (1 layer, h = 32): 80.75

Diagonal BiLSTM (7 layers, h = 16): 79.20

Table 4. Test set performance of different models on MNIST

in nats (negative log-likelihood). Prior results taken from [1]

(Salakhutdinov & Hinton, 2009), [2] (Murray & Salakhutdinov,

2009), [3] (Uria et al., 2014), [4] (Raiko et al., 2014), [5] (Rezende

et al., 2014), [6] (Salimans et al., 2015), [7] (Gregor et al., 2014),

[8] (Germain et al., 2015), [9] (Gregor et al., 2015).

CNN. This coincides with the size of the respective recep-

tive fields: the Diagonal BiLSTM has a global view, the

Row LSTM has a partially occluded view and the Pixel-

CNN sees the fewest pixels in the context. This suggests

that effectively capturing a large receptive field is impor-

tant. Figure 7 (left) shows CIFAR-10 samples generated

from the Diagonal BiLSTM.

Model NLL Test (Train)

Uniform Distribution: 8.00

Multivariate Gaussian: 4.70

NICE [1]: 4.48

Deep Diffusion [2]: 4.20

Deep GMMs [3]: 4.00

RIDE [4]: 3.47

PixelCNN: 3.14 (3.08)

Row LSTM: 3.07 (3.00)

Diagonal BiLSTM: 3.00 (2.93)

Table 5. Test set performance of different models on CIFAR-10 in

bits/dim. For our models we give training performance in brack-

ets. [1] (Dinh et al., 2014), [2] (Sohl-Dickstein et al., 2015), [3]

(van den Oord & Schrauwen, 2014a), [4] personal communication

(Theis & Bethge, 2015).

Image size NLL Validation (Train)

32x32: 3.86 (3.83)

64x64: 3.63 (3.57)

Table 6. Negative log-likelihood performance on 32×32 and 64×

64 ImageNet in bits/dim.

5.7. ImageNet

Although to our knowledge the are no published results on

the ILSVRC ImageNet dataset (Russakovsky et al., 2015)

that we can compare our models with, we give our Ima-

geNet log-likelihood performance in Table 6. On ImageNet

the current PixelRNNs do not appear to overfit, as we saw
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Figure 8. Samples from models trained on ImageNet 64x64 images. Left: normal model, right: multi-scale model. The single-scale

model trained on 64x64 images is less able to capture global structure than the 32x32 model. The multi-scale model seems to resolve

this problem. Although these models get similar performance in log-likelihood, the samples on the right do seem globally more coherent.

occluded completions original

Figure 9. Image completions sampled from a model that was

trained on 32x32 ImageNet images. Note that diversity of the

completions is high, which can be attributed to the log-likelihood

loss function used in this generative model, as it encourages mod-

els with high entropy. As these are sampled from the model, we

can easily generate millions of different completions. It is also

interesting to see that textures such as water, wood and shrubbery

are also inputed relative well (see Figure 1).

that their validation performance improved with size and

depth. The main constraint on model size are currently

computation time and GPU memory.

Note that the ImageNet models are in general less com-

pressible than the CIFAR-10 images. ImageNet has greater

variety of images, and the CIFAR-10 images were most

likely resized with a different algorithm than the one we

used for ImageNet images. The ImageNet images are less

blurry, which means neighboring pixels are less correlated

to each other and thus less predictable. Because the down-

sampling method can influence the compression perfor-

mance, we will release the used downsampled images.

Figure 7 (right) shows 32 × 32 samples drawn from our

model trained on ImageNet. Figure 8 shows 64 × 64 sam-

ples from the same model with and without multi-scale

conditioning. Finally, we also show image completions

sampled from the model in Figure 9.

6. Conclusion

In this paper we significantly improve and build upon deep

recurrent neural networks as generative models for natural

images. We have described novel two-dimensional LSTM

layers: the Row LSTM and the Diagonal BiLSTM, that

scale more easily to larger datasets. The models were

trained to model the raw RGB pixel values. We treated the

pixel values as discrete random variables by using a soft-

max layer in the conditional distributions. We employed

masked convolutions to allow PixelRNNs to model full de-

pendencies between the color channels. We proposed and

evaluated architectural improvements in these models re-

sulting in PixelRNNs with up to 12 LSTM layers.

We have shown that the PixelRNNs significantly improve

the state of the art on the MNIST and CIFAR-10 datasets.

We also provide new benchmarks for generative image

modeling on the ImageNet dataset. Based on the samples

and completions drawn from the models we can conclude

that the PixelRNNs are able to model both spatially local

and long-range correlations and are able to produce images

that are sharp and coherent. Given that these models im-

prove as we make them larger and that there is practically

unlimited data available to train on, more computation and

larger models are likely to further improve the results.
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