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ABSTRACT

This paper introduces a new multi-lateral filter to fuse low-

resolution depth maps with high-resolution images. The goal

is to enhance the resolution of Time-of-Flight sensors and, at

the same time, reduce the noise level in depth measurements.

Our approach is based on the joint bilateral upsampling,

extended by a new factor that considers the low reliability

of depth measurements along the low-resolution depth map

edges. Our experimental results show better performances

than alternative depth enhancing data fusion techniques.

Index Terms— Machine vision, active vision, multisen-

sor systems, image resolution, nonlinear filters.

1. INTRODUCTION

Time-of-Flight (ToF) sensors are a novel technology based on

the ToF principle. A modulated near-infrared light is emitted

by the sensor and simultaneously detected and demodulated

by the entire sensor. The phase shift difference between the

emitted and the received modulated light allows the sensor to

compute the distance to the target. Moreover, ToF sensors

avoid common artifacts in stereo vision setups such as occlu-

sions or shadows [1]. Nevertheless, ToF sensors still present

two main disadvantages: First, the resolution of their depth

maps is far lower than the resolution of depth maps acquired

with stereo techniques. Second, the depth measurements are

strongly affected by noise.

Some attempts have been made to overcome these draw-

backs by fusing ToF data with high-resolution 2D data. The

application of Markov Random Fields (MRFs) to the prob-

lem of generating high-resolution depth maps from a low-

resolution depth map and a high-resolution image was first

presented by Diebel et al. [2], and extended by Gloud et

al. [3]. Both methods are not suitable for real-time applica-

tions due to the computational requirements needed to solve

the problem using MRF. In contrast, the problem of generat-

ing high-resolution depth maps may be tackled in real time

using the bilateral filter [4]. Indeed, Kopf et al. [5] pro-

posed a modified bilateral filter, called Joint Bilateral Up-

sampling (JBU), to upsample the low resolution depth maps

by considering a high resolution guidance image taken from

the same scene. Crabb et al. [6] implemented this alterna-

tive sensor fusion strategy in a real-time method for fore-

ground/background segmentation of a colour video sequence.

Yang et al. [7] presented another method that uses an iterative

refinement module with bilateral filtering of the cost volume.

The referenced works share the same assumption when

considering the information coming from the guidance im-

age. They assume that depth discontinuities in a scene co-

occur with colour or brightness changes within the associated

high-resolution image, which is typically the case but not al-

ways justified. As a result, two main artifacts will appear on

the fused data. The first one is texture copying. The textures

from the guidance image are considered as edges that must

be preserved according to the bilateral filter principle and,

hence, they appear in the depth-enhanced map. The second

artifact is edge blurring. It occurs when real depth discon-

tinuities are not visible in the guidance image, that is, when

targets at different depths share similar colours. To deal with

these challenges, Chan et al. [8] proposed an adaptive multi-

lateral upsampling filter (NAFDU) which is an extension of

the JBU filter. It behaves in a different way depending on the

pre-filtered data. However, in spite of the NAFDU promising

results, two parameters remain to be tuned manually. Herein,

we develop and analyse a novel extension of the JBU filter

that addresses the two challenges commonly encountered in

ToF depth acquisitions. Our contribution relies on a new fac-

tor that favours depth discontinuities over those in the guid-

ance image. Thus, our multi-lateral filter is able to prevent

texture copying and reduce edge blurring.

2. BILATERAL FILTER

The basis of our approach is the bilateral filter, whose output

at each pixel is a weighted average of its neighbours; smooth-

ing the image while preserving edges [9].

It analyses both the spatial domain S and the range domain

R of an image. We denote by I(x) and I(y) the range image

values at pixel positions x and y, respectively. The filtered

image J at x is:

J(x) =

∑
y∈N(x) fS(x,y)· fR(I(x), I(y))· I(y)∑

y∈N(x) fS(x,y)· fR(I(x), I(y))
(1)



where N(x) is the neighbourhood of x. fS and fR are the

spatial and range filter kernels, respectively. In [5], Kopf et al.

suggested the JBU technique or cross/joint bilateral filtering

that computes the range function based on another image D.

The resulting filtered image JD is defined at the position x as:

JD(x) =

∑
y∈N(x) fS(x,y)· fR(D(x), D(y))· I(y)
∑

y∈N(x) fS(x,y)· fR(D(x), D(y))
(2)

The JBU filter enforces the texture of the final image JD to

be similar to the texture of D. A possible application of the

JBU technique is depth map enhancement by smoothing the

low-resolution depth map while considering the edge infor-

mation from a high resolution 2D image. The output is an

enhanced depth map with much less discontinuities in their

edges and a significantly reduced noise level. However, these

enhanced depth maps present texture and blurring artifacts, as

confirmed by our experiments (Fig. 2(d)). We therefore pro-

pose in the next section an extension of the JBU filter that

strongly reduces such undesired behaviour.

3. PWAS: PIXEL WEIGHTED AVERAGE STRATEGY

FOR DEPTH SENSOR DATA UPSAMPLING

The starting point of our method is, as in [8], the JBU fil-

ter [5]. We propose a new strategy for fusing low-resolution

depth maps with high-resolution images in order to tackle the

common artifacts encountered in data fusion. Our strategy is

based on an additional factor to the kernels in (2), henceforth

referred to as credibility map (CM ).

A requirement for any low-level data fusion is that the filter

input data must be perfectly aligned. In our case, we deal with

the data matching through a mapping procedure that maps the

data related to each sensor to a common reference frame 1.

Fig. 1 presents an overview of the framework of our method.

The first step consists in mapping the low-resolution depth

maps I ′, the high-resolution images D′ and the image gra-

dient of I ′ into a common reference frame where the entire

data is pixel aligned, I ′ 7→ I , D′ 7→ D and |∇I ′| 7→ C.

The low resolution of ToF sensors implies that one depth map

pixel can represent several centimetres in the scene. As the

depth measurement is inaccurate on edge pixels, the mapping

procedure expands these pixels to stripes along edges where

the depth measurement is inaccurate. Our concept is to define

a credibility map that assigns to these pixels a lower weight

in the filter kernel. Given the strength of the depth edge in

terms of the absolute gradient of the low-resolution depth map

|∇I ′|, the application of the mapping procedure yields the up-

sampled depth edge strength C. The credibility map is then

defined as a Gaussian kernel Gσc
with variance σ2

c , such that

CM (x) = Gσc
(C(x)). Similarly, we use Gaussian kernels

for fS and fR with variances σ2
s and σ2

r , respectively.

1Work to be extensively reported in a different paper.

Fig. 1. Framework of our multi-lateral filter. The low-

resolution depth map and the high-resolution image are

mapped to a unified reference frame where the mapped im-

ages are pixel aligned. Both together with the already gener-

ated and mapped credibility map serve as the inputs for our

multi-lateral filter.

By using our Pixel Weighted Average Strategy for depth

sensor data fusion (PWAS), (2) takes the following form:

JC(x)=

∑

y∈N(x)

Gσs
(‖x−y‖)Gσr

(|D(x)−D(y)|)CM (y)I(y)

∑

y∈N(x)

Gσs
(‖x−y‖)Gσr

(|D(x)−D(y)|)CM (y)

(3)

The standard deviations of the Gaussian kernels are related

to the application and to the input raw data. The σs should

be chosen greater than the upsampling rate used during the

mapping procedure. The σr operates on the high-resolution

guidance image D′, being related to the edge amplitude, i.e.,

the mean of the gradient along the edge. The σc behaves as

the σr, operating on the low-resolution depth map I ′.

Note that the higher the credibility value, the greater the

reliability over the depth measurement. A credibility value

close to zero indicates that the corresponding range value is

not reliable and thus not taken into account in the filter. As a

result, the range value of the pixels in the image region with



low credibility are instead replaced by an average over the

neighbouring pixels. Thereby the weight is determined by the

guidance image D′, such that the depth edge will be sharp-

ened by stretching the depth measurements until the guided

position. Edge blurring only occurs in the case where a true

depth discontinuity is not visible in the guidance image D′,

Fig. 2(a). Nevertheless, this drawback is restricted to the cred-

ibility map boundaries, performing better than previous sen-

sor fusion approaches, Fig. 2(d).

4. EXPERIMENTAL SETUP AND RESULTS

The experimental setup used for raw data acquisition is a ToF-

based pair-sensor system2 (shown at the bottom of Fig. 1) that

integrates a 3D MLI Sensor
TM

from IEE S.A. 3 and a Flea R©2

video camera from Point Grey
TM 4. Both sensors are cou-

pled for narrow baseline stereo vision. Also, they are frame-

synchronised. Whereas the Flea R©2 video camera provides

(648×488) pixels, the 3D MLI Sensor
TM

provides a lower res-

olution of (56×61) pixels.

(a) High-resolution

guidance image

(red=non-visible depth

discontinuities)

(b) Low-resolution

depth map (red=zooming

area in (d),(e))

(c) Credibility map

(d) JBU enhanced depth

map (zoomed)

(e) PWAS enhanced depth

map (zoomed)

Fig. 2. Visual comparison between our approach and JBU.

(a), (b), (c) are the inputs for our approach while (e) is the

depth-enhanced map. Note in (e) that we reduce texture copy-

ing and edge blurring artifacts (d).

Our approach reduces common output artifacts left by

other fusion-based upsampling methods, Fig. 2. The cred-

ibility map utterly defines the depth map pixels with low

reliability in their range values, Fig. 2(c) and Fig. 3(c). Thus,

such pixels are not taken into account by the multi-lateral

filter. As can be observed from Fig. 3(d), our filter presents

2We refer to such a ToF-based pair-sensor system to any multi-modal

system that integrates a ToF camera and a 2-D camera.
3IEE S.A., 3D MLI Sensor

TM
, http://www.iee.lu

4Point Grey
TM

, Flea R©2, http://www.ptgrey.com/products/flea2/

a good performance width well defined edges, adjusted to

the guidance image. In addition, when there is no contrast

between foreground and background in the guidance image

(depicted in red in Fig. 2(a)), the filter restricts the edges

within the credibility map boundaries, Fig. 2(e).

As shown in Fig. 3, our method successfully increases

the low-resolution depth maps, (56×61) pixels (Fig. 3(b))

to the (648×488) pixels of the guidance image resolution

(Fig. 3(a)). Besides this considerable upsampling, the geo-

metric detail provided by the guidance image is also preserved

in the output depth maps.

(a) Mapped

high-resolution

video frame,

(648×488)px

(b) Mapped

low-resolution

depth map

(c) Credibility map (d) PWAS

enhanced depth

map,

(648×488)px

(e) Low-resolution

depth map

(f) PWAS enhanced

depth map

(g) Textured enhanced

depth map

Fig. 3. (a), (b), and (c) are the PWAS inputs whose result is

shown in (d). Depth maps can be represented as a 3D geom-

etry (e) and (f), that can also be textured by simply assigning

the intensity value located in the same indices, as shown in

(g).

We use the Venus scene provided by the Middlebury

stereo dataset 5, Fig. 4(a) to compare our multi-lateral fil-

ter with alternative fusion-based upsampling methods. The

Middlebury datasets provide intensity images together with

its ground truth depth maps. We downsampled with a factor

rate of 2, 4, and 8 the provided ground truth to be used as

the low-resolution depth map input. The intensity images

are directly used as high-resolution guidance images. Af-

ter filtering, the root-mean-squared error (RMSE) between

the processed depth maps and the provided ground truths is

computed and presented in Table 1.

Table 1 shows that under global error measure our method

performs better than the alternative selected fusion-based

methods and more so when increasing the resolution of depth

maps. Note that NAFDU only starts outperforming JBU at

a high downsampling rate of 8, while our filter performs

better in all cases. In addition, texture copying and edge

5Middlebury Stereo Dataset, http://vision.middlebury.edu/stereo/data



blurring (green and red arrows, respectively, in Fig. 4(c)) are

significantly reduced, as depicted in Fig. 4(d).

(a) Input intensity image (b) Input low-resolution depth map (4x

downsampled ground truth depth)

(c) JBU 4x enhanced depth map (d) PWAS 4x enhanced depth

Fig. 4. Although JBU and our method increase the low-

resolution depth map to the input guidance image, in contrast

to our result, the JBU performance exhibits slight texture copy

and edge blurring in the areas marked with green and red ar-

rows, respectively.

Table 1. RMSE quantitative comparison on depth-enhanced

maps against MRF, NAFDU and JBU methods using the

Venus scene from the Middlebury dataset. Note that values

marked with ’*’ have been reproduced from [8].

Downsampled Raw* MRF* NAFDU* JBU PWAS

2x 2 2.1 1.73 1.29 1.16

4x 2.97 2.28 2.18 2.10 1.61

8x 4.86 3.13 2.95 3.38 2.82

5. CONCLUSION

In this paper we have presented a new multi-lateral filter tech-

nique to fuse low-resolution depth maps with high-resolution

colour images. We have extended the joint bilateral technique

with an additional factor, the credibility map. As a result,

we generated high resolution depth maps with more accurate

depth measurements where the depth discontinuities are well

defined and adjusted to the guidance image. Our experiments

showed that our technique prevents texture copying and re-

duces edge blurring in the final depth-enhanced maps. More-

over, the results of an experimental comparison with the re-

cent fusion-based approaches clearly denoted a better perfor-

mance for our method.
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