
z Computer Graphlca, 26,2, JtJly 1992

PixelFlow: High-Speed Rendering Using Image Composition

Steven Molnar, John Eyles, John Poulton

Department of Computer Science

University of North Carolina

Chapel Hill, NC 27599-3175

ABSTRACT

We describe PixelFlow, an architecture for high-speed image

generation that overcomes the transformation- and frame-buffer–

access bottlenecks of conventional hardware rendering architec-

tures. PixelFlow uses the technique of image composition: it

distributes the rendering task over an array of identical renderers,

each of which computes a fill-screen image of a fraction of the

primitives. A high-performance image-composition network

composites these images in real time to produce an image of the

entire scene.

Image-composition architectures offer performance that scales

linearly with the number of renderers; there is no fundamental

limit to the maximum performance achievable using this

approach. A single PixelFlow renderer rasterizes up to 1.4 million

triangles per second, and an n-renderer system can rasterize at up

to n times this basic rate.

PixelFlow performs antialiasing by supersampling. It supports

defemed shading with separate hardware shaders that operate on

composite images containing intermediate pixel data. PixelFlow

shaders compute complex shading algorithms and procedural and

image-based textures in real-time. The shading rate is

independent of scene complexity. A Pixel Flow system can be

coupled to a parallel supercomputer to serve as an immediate-

mode graphics server, or it can maintain a display list for retained-

mode rendering.

The PixelFlow design has been simulated extensively at high

level. Custom chip design is underway. We anticipate a working

system by late 1993.

CR Categories and Subject Descriptors: C. 1.2 [Processor

Architectures]: Multiprocessors; C.5.4 [Computer System

Implementation]: VLSI Systems; 1.3.1 [Computer Graphics]:

Hardware Architecture; 1.3,3 [Computer Graphics]: Picture/Image

Generation; 1.3.7 [Computer Graphics]: Three-Dimensional

Graphics and Realism.

Additional Keywords and Phrases: antialiasing, compositing,

deferred shading, rendering, scalable.

1 INTRODUCTION

Graphics applications such as flight and vehicle simulation,

computer-aided design, scientific visualization, and virtual reality

demand high-quality rendering, high polygon rates, and high

fi-ame rates. Existing commercial systems render at peak rates up

to 2 million polygons per second (e.g., Silicon Graphics’

SkyWriter and Hewlett-Packard’s VRX). If antialiasing or real-

istic shading or texturing is required, however, their performance

falls by an order of magnitude.

To support demanding applications, future graphics systems must

generate high-resolution images of datasets containing hundreds

of thousands or millions of primitives, with realistic rendering

techniques such as Phong shading, antialiasing, and texturing, at

high frame rates (230 Hz) and with low latency,

Attempts to achieve high performance levels encounter two

bottlenecks: inadequate floating-point performance for geometry

processing and insufficient memory bandwidth to the frame buffer

[FOLE90]. For example, to render a scene with 100,000 polygons

updated at 30 Hz, geometry processing requires approximately

350 million floating-point operations per second, and rastenzation

requires approximately 750 million integer operations and 450

1 Parallel solutions are mandatory.million frame-buffer accesses.

Most current high-performance architectures use object-

parallelism for geometry processing; they distribute primitives

over a parallel array of floating-point processors, which perform

transformation, clipping, and perspective division [ELLS90;

MART90; SG190].

Tbe same systems use pixel-parallelism for rastenzation; frame-

buffer memory is divided into several interleaved partitions, each

with its own rasterization processor. [AKEL88; APGA88;

POTM89], This multiplies the effective frame-buffer bandwidth

by the number of partitions, but does not reduce the number of

primitives each processor must handle, since most primitives

contribute to most partitions [FUCH79]. Because of this

limitation, and the bandwidth limitations of commercial VRAMS,

this approach does not scale much beyond today’s rates of a few

million polygons per second.

Permission to copy wilhout fee all or part of this material is granted 1Assumes 50-pixel Gouraud-shaded connected triangles; 3/4 of

provided that the copies are not madeor distributed for direct pixels initially visible; includes screen clear for 1280x 1024
commercialadvantage,the ACM copyright notice and the title of the display.
publication and its date appear. and notice is given,that copying is by

permission of the Association for Computing Machinery. To copy

otherwise, or to republish, requires a fee and/or specific permission.

01992 ACM-O-89791 -479- l/92/(U17/023 1 WI.50 231

SIGGRAPH ’92 Chicaao, Julv 26-31, 1992

G G G G

R

❑❙ ‘–biil
\

,

m
\7

md!!/’L

(a) Screen SuMivialon

ii

G

R

8

G

R

ii

G

R

(b) Image Compoaitlon

Figure 1: Rasterization methods that combine both pixel-and object-parallel rasterization (G = geometty processor,
R = rasterizer, and C = pixel compositor).

To achieve higher rendering performance, object-parallelism must

be applied throughout the rendering process—in rasterization, as

well as in geometry processing. There appear to be two ways to

achieve this: screen subdivision and image composition. The

two schemes are shown conceptually in Figure 1.

In the screen-subdivision approach (introduced in [FUCH77] and

[PARK80]), the screen is divided into disjoint regions of

contiguous pixels, and a rasterization processor is provided for

each region (Figure 1a). The processors simultaneously rasterize

primitives that fall into different screen regions. These sub-

images are concatenated to form a full-screen image. Several

systems of this type have been described [GARD81; GHAR88]

and one built [FUCH89].

This approach is a natural advance from a simple rendering

system in which a single geometry processor feeds a single raster-

izer. Its main additional requirement is a global routing network

to transfer primitives from geometry processors to the appropriate

rasterizer. Since the mapping of primitives to rasterizers varies

with the viewing transformation, every primitive in the database

must be transferred over the network every frame. The network

bandwidth is therefore high, and increases linearly with the

rendering rate, so the approach does not scale indefinitely.

A second limitation, also due to the global routing network, is the

software complexity required to sort primitives by screen region

and to route them to rasterizers at the appropriate time. Finally,

the architecture is subject to load imbalances when primitives

clump into a few screen regions. System performance can

decrease significantly in this case.

In the image-composition approach, rasterization processors are

associated with a portion of the primitives, rather than with a

portion of the screen (Figure 1b). Each rastenzer computes a tidl-

screen image of its portion of the primitives, and these images are

composite, based on visibility, to forma final image.

In an image-composition architecture, geometry processors and

rasterizers can be paired into self-contained units, so the global

routing network for primitives disappears. Instead, an image-

composition network is required to composite output pixels from

the rasterizers to form the final image. This network can be

arranged as a binary tree or a pipeline; in either case, all traftlc is

local. with fixed bandwidth determined bv frame rate and screen

size.’ This gives the architecture its prope~ of linear scalability.2

The remainder of this paper explores the opportunities and limita-

tions of the image-composition approach. Section 2 discusses

image-composition architectures in general. Section 3 introduces

PixelFlow, an image-composition architecture that achieves

linearly scalable rendering performance and supports highquality

rendering. Sections 4 and 5 describe its major hardware and soft-

ware components. Section 6 discusses performance issues and

presents simulated performance results.

2 IMAGE COMPOSITION ARCHITECTURES

Image composition has been used in various forms for many

years, particularly in the video industry (e.g., video overlays and

chroma-key) and the computer graphics community (e.g., for off-

line compositing of rendered images).

2A third method, closely related to image composition, is to pro-

vide separate rendering pipelines for multiple image fi-arrses. This

technique, used in SGI’S SkyWriter, multiplies a system’s render-

ing rate and fmme rate by the number of rendering pipelines, but

does not improve its latency over that of a single pipeline.

232

Computer Graphics, 26, 2, July 1992

Several graphics architectures based on image composition have

been proposed. Processor-per-primitive graphics systems are a

simple type of image-composition architecture. [BUNK89] de-

scribes one such system, General Electric’s 1967 NASA 11flight

simulator, In the NASA II system, polygons (faces) in the

database were assigned to individual processors (face cards).

Each face card rendered an image of its respective face, and the

results were composite using a static priority scheme.

Later researchers proposed using z-values to determine the image

priority at individual pixels [DEME80; FUSS82], [WEIN81] pro-

posed an antialiasing scheme for a processor-per-primitive system.

[DEER88] and [SCHN88] proposed deferred shading as a way to

support high-quality shading in a processor-per-primitive system.

[ELL19 I] describes a processor-per-primitive system specialized

for CSG rendering. which was built at Duke University and UNC.

A few image-composition architectures with multi-primitive

renderers have been proposed: [SHAW88] described a simplified

version of Duff’s compositing algorithm [DUFF85] cast in VLSI

to create a multi-renderer system that performs antialiasing.

[MOLN88] proposed a simple z-buffer image-composition

scheme to achieve linearly scalable rendering performance; this

idea was expanded into a dissertation on image-composition

architectures [MOLN9 Ib], which also describes an early version

of the Pixel Flow architecture.

2.1 Advantages and Disadvantages

Image-composition offers two potential advantages over other

architectural approaches: linear scalability and a simple program-

ming model. An arbitrary number of renderers can be added to

the system. since the image-composition network has only local

traffic with fixed bandwidth determined by screen size and frame

rate, Also. since renderers compute their sub-images indepen-

dently, they can operate with little synchronization. This makes

the parallel nature of the system largely transparent to the

programmer.

Image-composition architectures have several disadvantages,

however. First, the image-composition network must support very

high bandwidth communication between renderers. Even though

the bandwidth is fixed, the network must transfer every pixel

during every frame, and each pixel must include visibility

information and color (and possibly even more data, if deferred

shading is used), Second, pixels must be reduced to a common

format for compositing, so the visibility algorithm is more

restrictive than in some other approaches, Finally, up to a frame

of pixel storage is required per renderer, if an entire frame is

buffered before being composite; fortunately, this storage

requirement can be reduced, as we will see in Section 3.

2.2 Antialiasing

Aliasing artifacts, once ubiquitous in interactive systems, are

tolerated less and less each year. Future real-time systems must

provide ways to reduce or eliminate these astifacts. There appear

to be two ways to combat aliasing in image-composition systems:

supersampling, and A-buffer algorithms [MOLN91 b]. In the

supersampling approach, the image is generated and composite

multiple times, once for each sample in a filter kernel. The

compositors perform a simple : comparison for each subpixel;

then subpixels are blended together after composition to form a

final image. In the A-buffer approach, each pixel is represented

by a variable-length packet describing all surfaces potentially

visible at the pixel, Compositors merge packets together based on

visibility and coverage information. The output of the network

describes all of the surfaces contributing to each pixel, and this

information is used to compute the pixel’s final color.

In comparing the two approaches, the critical factors are image

quality, image-composition bandwidth, and hardware complexity,

Supersampling produces good results, provided that sufficient

samples are taken per pixel. Unfortunately, the number of

samples directly affects the bandwidth required of the image-

composition network; however, we have produced reasonable-

quality images with as few as 5 samples per pixel by choosing

sample locations and weights carefully [MOLN9 Ia],

Only the simplest A-buffer methods are feasible in current real-

time systems. These methods generally sample color and z values

at pixel centers only, while calculating pixel coverage at higher

resolution. This can lead to artifacts. To avoid these artifacts,

additional information must be added to the surface descriptors;

the result is that the two approaches require comparable

bandwidth. In terms of hardware complexity, A-buffer renderers

and compositors are fairly complex, while the z-depth compositors

for supersampling are very simple. The A-buffer approach

supports true transparency, however, which is problematic in the

supersampling approach.

2.3 Deferred Shading

Image-composition architectures can take special advantage of

deferred shading, a general method for reducing the calculations

required for complex shading models by factoring them out of the

rssterization step [DEER88; ELLS91]. Many shading calculations

depend only on geometric and intrinsic attributes, such as surface-

normal vectors and surface color. If these attributes are calculated

and stored during rasterization, shading can be deferred until the

entire scene has been rasterized, and applied only to the surfaces

that are visible.

To defer shading in an image-composition system, rasterizers

compute generic pixel attributes and composite these, rather than

pixel colors. A separate hardware unit performs shading a~er

pixels have been composite. In this manner, shading is

performed just once per pixel, no matter how many surfaces

contribute to it and how many rasterizers are in the system.

Deferred shading does increase image-composition bandwidth,

however, since the number of bits per pixel is generally higher.

Deferred shading also separates performance concerns between

the rendering and shading portions of the machine. Renderers can

be built to rasterize as fast as possible, and the number of

renderers can be chosen to achieve a given polygon rate. Shading

performance is independent of the rastenzing performance of the

system, but most be high enough to support the desired shading

model.

3 PIXELFLOW ARCHITECTURAL OVERVIEW

PixelFlow is an experimental graphics system designed to

demonstrate the advantages of image-composition architectures

and to provide a research platform for real-time 3D graphics

algorithms and applications. In this section we describe its major

architectural features and the rationale under which they were

chosen. Section 4 provides details of system components.

233

SIGGRAPH ’92 Chicaqo, JUIY26-31, 1992

Supersampling antialiasing. PixelFlow uses the supersampling

approach because it is general, the compositor hardware is simple,

and therefore fast, and it can be tuned to trade speed for image

quality. This leads to renderers based on z-buffer raaterizem and a

z-based image-composition network. Unfortunately, this requires

screen-door or multi-pass algorithms to support transparency.

Plpelined image-composition network. Generating Gouraud-

shaded, supersampled, high-resolution images at 30 Hz frame

rates requires composition-network bandwidth of at least

1280x 1024 pixels ● 5 samples/pixel ● 48 bits/sample ● 30

flames/second = 9.4 Gbita/second. Deferred shading algorithms

require 2 to 3 times this amount,

Packaging considerations favor a pipeline image-composition

network. The image-composition network can be distributed

across the system by including a compositor on each board and

daisy-chaining connections between boards.

Logic-enhanced memory rasterizer. The renderer should a

single-board design, must provide a way to scan out pixels at the

bandwidth required, and should implement the compositor

function at relatively low cost in board area, power, and dollars.

These considerations mainly affect the design of the rasterizer.

The logic-enhanced memory approach used in Pixel-Planes 5

allows a powerfid rssterizer and high-bandwidth compositor to be

built in a single, compact package. In PixelFlow, we use a similar

logic-enhanced memory approach. A rasterizer built with new

PixelFlow enhanced-memory chips (EMCS) can render in excess

of one million triangles per second and provide image-

composition bandwidth exceeding 30 Gbitsfsecond using 64

custom memory chips and one custom controller on about 50

square inches of board area.’

Region-based rendering scheme. The compactness of this

approach is obtained at the cost of introducing screen subdivision

at the level of the individual renderers. As in Pixel-Planes 5, each

rastcrizer contains only 128x128 pixel processors, and must

generate a full-screen image in multiple steps. The advantage is

that an entire screen’s worth of pixel memory is not required.

Unfortunately, this implementation incurs the load-balancing

problems of screen subdivision, but these difficulties are greatly

reduced by providing several region’s worth of buffering within

tie PixelFlow EMCS.

The required image-composition bandwidth is achieved in two

ways. First, the network operates bit-serially, but in parallel on

256 pixels, each with its own single-wire channel. Bit-serial z-

comparison simplifies the compositors and thereby allows them to

operate at high speed. Second, the network consists entirely of

point-to-point communication between identical custom chips on

neighboring boards, so low voltage swings and source termination

can be used to save power and provide the necessary speed (132

MHz) [KNIG88].

Separate shaders for deferred shading. Deferred shading

algorithms, such as Phong shading and procedural and image-

based textures, are implemented on separate hardware shaders

that reside just ahead of the flame buffer. Regions of pixels,

containing attributes such as intrinsic color, surface normals, and

texture coordinates are rasterized on the renderers, compositcd on

the image-composition network, and loaded into the shaders.

Shaders operate on entire regions in parallel, to convert raw pixel

attributes into final RGB values, blend multiple samples together

for rmtialiasing, and forward final color values to the frame buffer.

Regions are assigned to shaders in round-robin fashion. The

number of shaders required depends on the shading algorithm

only, not on the number of primitives, since deferred shading is

employed.

The SIMD rasterizer used in the renderer is an ideal processor for

deferred shading, since shading calculations can be performed for

all pixels simultaneously. Therefore, the shaders can simply be

designated renderers, with a slight enhancement of the compositor

hardware on the EMC to allow bidirectional data transfers

between the image-composition network and EMC memory.

Shaders can be augmented with additional hardware to allow them

to compute image-based textures in addition to procedural

textures.

4 PIXELFLOW HARDWARE

A PixelFlow system is composed of one or more card cages, each

containing up to 20 circuit boards. The backplane contains wiring

for the image-composition network and clock and power

distribution. The system is modular and can be configured with

any number of card cages. Each board has a high-speed link

connecting it to a host computer. Figure 2 shows a block diagram

of a PixelFlow system.

Fast serial Immediate-mode

‘inkr ‘“IPJishadmc~p”terI

\

,,,,,,r,feo

.omma*ds

.A .

r I

..... ...-------
pixel values

~~ ‘Boaro , ●

‘ins;’~kw(256 wires @ 132 MHz

Figure 2: Block diagram of a PixelFlow system.

Renderers operate by sequentially processing 128x128-pixel

regions of the screen. They scan out the region’s rasterized pixels

over the image-composition network in synchrony with the other

renderers. Shaders load pixels from the image-composition

network, perform texturing and shading, blend subpixel samples,

and forward pixel values to the tie buffer,

The system is designed to be used in one of two basic modes

1)

2)

Immediate Mode. PixelFlow is hosted by a parallel

computer, with each link connected to a separate compute

node in the host. The host (e.g., an Intel Touchstone) runs

an application and generates immediate-mode primitives,

which are transmitted to renderers over the links.

Retained Mode. PixelFlow is hosted by a workstation; the

high-speed links are bussed together and connected to the

host via a single interface. The host distributes a display

234

Computer Graphics, 26,2, July 1992

Vldao

Renderln
JComma s

,

Renderer Board

(a)

Shsdlng
Commanda

Shader Board
4

.

1
.. ...~.

~128x128-Pixei I g~

‘ ~ SiMD Array ~ -
1?❑ (64 EMC’S) ❑ .1

(b)

===?+

.

(c)

Figure 3: Block diagrams of (a) renderer, (b) shader, and (c) frame-buffer boards.

list over the renderers and loads a shading model into the

shaders. On each frame, the host broadcasts editing

commands and viewing parameters to the renderers, each

of which then computes an image of its fraction of the

dataset.

Each of the primary board types (renderers, shaders, and frame

buffers) includes a core consisting of a geometry processor mid a

rasterizer built from the new EMC chips. These core elements

have different fiction on the three board types, and shaders and

tlame buffers contain additional components (Figure 3).

4.1 Image-Composition Network

The image-composition network is a wide (256-bit), high-speed

(132 MHz) speciai-purpose communication network for rapidly

moving pixei data between boards. It is distributed across the

EMCS on each board, with each EMC implementing a 4-bit-wide

slice (4 input pins and 4 output pins). Compositors on the EMCS

synchronously transmit data unidirectionally to the compositors

on the downstream board.

Compositor modes. The basic unit of operation is the transfer of

one 128x 128-pixel region of pixel data; the amount of data trans-

ferred per pixel is preset according to the specific algorithm. The

compositors operate in one of four modes, as shown in Figure 4.

4.2 Renderer

The renderer block diagram is shown in Figure 3a. Its major

components are:

Geometry processor. The geometry processor is a fast floating-

point processor that retains a portion of a distributed dispiay list

(retained mode) or receives a fraction of the primitives from the

host on each frame (immediate mode). it transforms its portion of

the primitives into screen coordinates, sorts them by screen

region, and passes them to the rssterizer. It contains 8 MBytes of

VRAM memory, serving both as main memory and as a iarge

FIFO queue for buffering commands to the rasterizer. A DMA

engine controls the flow of commands from the VRAMS’ serial

port to the rasterizer, maintaining separate queues of commands

for rasterization and for transfers over the image-composition

network.

Rssterizer. The rasterizer is a 128x128 SIMD processor array

implemented with 64 PixeiFlow EMCS driven by instructions and

data broadcast from an Image Generation Controller (IGC) ASIC.

The PixelFlow EMC (Figure 5) is similar to our previous designs

[EYLE88; POUL85]. A linear expression evaluator computes

values of the bilinear expression ,4x+@-t-C at every pixel

processor in parailel (XY is the pixel processor’s screen iocation

and A, B, and C are user-specified). Each pixel has a small local

ALU that performs arithmetic and logicai operations on locai

memory and on the iocai value of the bilinear expression.

Operation of the pixel processors is SIMD (singie-instruction-

multiple-data), and all processors operate on data items at the

same address. Each pixel processor includes an enable register

which qualifies writes to memory, so that a subset of the

processors can be disabled for certain operations (e.g. painting a

scan-converted polygon).

235

SIGGRAPH ’92 Chicago, July 26-31, 1992

Unload localpixels

downstream,

Load upstream pixels into

memory; forward downstream.

Forward upstream
pixelsdownstream.

Figure 4: Compositor operating modes.

Several features distinguish the PixelFlow EMC

previous designs:

from our

.

.

●

✎

✎

Higher clock s~eed. The new EMC, fabricated on a 0.8Lr

CMOS process: operates at 66 MHz for image-generation

operations; its image-composition port transmits data at

132 MHz.

8-bit processors. The pixel processors, linear expression

evaluator, and memory bus for each pixel are eight bits

wide, rather than bit-serial. This increases the

performance for many operations by nearly a factor of

eight.

Fast multiply hardware. Pixel processors include

hardware support for multiplies, allowing 16-bit multiplies

to be performed in less than a microsecond—a total of 19

billion multiplies per second for a 128x128-pixel array.

This feature accelerates multiply-intensive shading

calculations.

2048+ bits per pixel. The memory design uses a I-

transistor dynamic memory cell [SPEC91], rather than the

6-transistor static memory cell used previously. Memory

per pixel can be increased to 2048 bits, plus two 256-bit

communication buffers.

Compositor and local-access ports. The PixelFlow

EMC- contains two communication ports, one for the

image-composition network, and one for communicating

with texture memory or a frame buffer. Each port

contains a 256-bit buffer of pixel memory that can be read

or written by the pixel ALU or decoupled from it during

port operation. The local-port connects to external texture

memory (on a shader board) or a VRAM fi-ame store (on a

frame-buffer board) through a custom datapath ASIC.

The IGC is a single custom ASIC which controls the rasterizer

array. It converts floating-point A, B, and C coefficients into byte-

serial, fixed-point form; it sequences EMC operations by

broadcasting data, control, and address information to the EMC

array; and it controls the compositor ports on the EMCS.

ALU Pixel

A,13,C Mlcro- Memory
Dakinput instruction Address

t

I EEIGZsli.

I c1
Pixel /

PixelFlow EMC Compositor i
. .

4-M slice of Image
ComDosifionNetwork

Figure 5: Block diagram of PixelFlow Enhanced

Memory Chip.

Dafs

The lGC contains a subpixel offset register that allows the

multiple samples of the supersampling filter kernel to be

computed from the same set of rasterization commands, by

repeatedly reading these commands from VRAM memory. This

improves system performance when supersampling, since

additional samples are rasterized without increasing the load on

the geometry processor. As a result, a single i860XP geometry

processor can keep up with the rasterizer when supersampling

with 6 or more samples per pixel,

4.3 Shader

The shader (Figure 3b), like the renderer, contains a geometry

processor, rasterizer, and compositor. The shader’s geometry

processor is merely a control processor which passes shading

commands to the rastenzer. The rasterizer is used as a SIMD

shading processor, computing lighting and shading models for all

pixels in a region in parallel. The compositors are used to load

composite regions and unload fully-shaded pixels.

The local communication port of the EMCS is connected to

external memory that contains image-based textures (such as Mip-

maps). Multiple banks of texture memory, each holding an

identical copy of the texture data, are required to match the

performance of the shader to that of the image-composition

network. The shader supports general table-lookup operations, so

it can perform related functions such as bump mapping,

environment mapping, and image warping. The shader can be

loaded with an image, from which it computes a Mip-map that can

then be loaded into texture memory. These algorithms will be

described in a titure publication.

4,4 Frame Buffer

The frame buffer (Figure 3c) closely resembles the shader, but in

place of texture storage, it contains a separate double-buffered

VRAM frame buffer, The ffame buffer board is itself a complete,

fairly powerful, self-contained graphics system, since it also

contains the core elements (geometry processor and rastenzer).

236

Computer Graphics, 26,2, July 1992

composnormodes

unkicmpcmpcmp Id~
L_lu L-lu*

connectionpanem——–— —— —

utlklcmpC@ cmp (WI Id
uuu~

..— e

un~ c~,pcnJpcy,p y

—

wld cmpcmfrcmp W (d
uuu~

—.

w
4

vnkttc~,pcqp c~lp jl unld Id

Wrlddllp ~p Cyp W Id

Function on Image
Compoaltlon Network

SampleOofregm OIScomposdadand

loadedIntoshaderO

——

SampleOofregion1IScompos[tedand
loadedIntoshader1

Sample1ofregionOIScomposltedand
loaded,ntoshaderO

Sample1ofreg!on1IScompesdedand
loadedmloshader1

F[nalpixelvaluesforregionOareloaded
mfoFrameBuffer(remamderofImage
compcmtlonnetworkISIdle)

Samp~eOofragon2 IScomposlfedand
loadedIntoshaderO,wh[fefinalpixelvalues
forreg[on1areloadedmtoFrameMfer

SampleOofregion3 IScomposdedand
dumped!ntoshader1

Figure 6: Composition network operations for a 4-

renderer, 2-shader system computing an image with 2-

sample-per-pixel antialiasing.

5 SOFTWARE

PixelFlow software consists of two parts: rendering software.

which transforms primitives and produces rasterizationlshading

commands for the rasterizer. and control software, which

sequences region-by-region operations. Both sets of software run

on the geometry processor of each system board.

Geometric transformations are performed using standard

algorithms. and rasterization and shading are performed using the

algorithms developed for Pixel-Planes 4 and 5 [FUCH85;

FUCH89],

The basic control algorithm to compute an image contains four

steps:

1)

2)

3)

4)

The geometry processor on each renderer transforms its

portion of the primitives and sorts them by 128x128-pixel

regions on the screen.

The rastcrizer computes pixel values for all primitives in a

region and for one sample of the antialiasing kernel.

When all renderers have finished step (2), the region is

composite over the image-composition network and

deposited into one of the shaders.

Steps (2) and (3) are repeated for each sample and for each

rcg~on on the screen. These steps can be pipelined (i.e.

one rcgionlsample is rasterized while the previous one is

composite).

Transfers over the image-composition network are the only

operations that require tight synchronization between boards. A

hardware token chain determines when all of the boards are ready
to begin efich transfer. Figure 6 shows the sequence of

composition network operations in a 4-renderer, 2-shader system
, ,amplc-pcr.pixelantialiasing.computing an image with .-s

Tbe large amount of pixel memory on the EMCS allows several

regions of pixels to be buffered before they are composite. This

is important for load balancing, since different numbers of

primitives may fall into a given region on different renderers (see

Section 6). To take full advantage of this buffering, regions are

processed in a scattered pattern, since neighboring regions tend to

have similar over- or underloads; successive samples of a given

region are never handled sequentially.

6 PERFORMANCE

The performance of a Pixel Flow system is governed by four basic

parameters:

.

●

✎

✎

Image-Composition Network bandwidtb. Gross

bandwidth = 256 bits ● 132 MHz = 33.8 GBits/sec. Net

bandwidth (assuming 10°0 synchronization ovdrhead) = 30

GBits/see,

Geometry processor performance. A single i860XP

microprocessor can process approximately I 50,000

triangles per second, independent of the number of

samples per pixel.

Rasterizer performance. A 64-EMC rasterizer can

process approximately 1.4 million Gouraud-shaded

triangles per second and 0.8 million Phong-shaded,

textured triangles per second, but this rate must be divided

by the number of samples per pixel.

Shader Performance. A single shader can Phong-shade

and compute procedural textur~s for approximately-l 0,000

128x 128-pixel regions per second. It can compute Mip-

map textures for approximately 3,700 regions per second.

The following expression can be used to estimate system

performance given the performance above:

‘v ~,,g,,,,,,

T.
[

= ~ t?lax ‘rOld ,’ ‘cmnP ‘ ‘shade 1 ‘V,Yha&r.y
~rame /)

;=I

where

T/.e,ldi =

TCOrrTl) =

Tvhu(je =

max(TgC>~,nli.Tra,Yri)(the rendering time for

R(giotll)

compositing time for a region (1282 pixels ● bits

per pixel 30 GBitslsec)

time to shade a region (approx. 270 ysec for

Phong shading and texturing)

If antialiasing is done, the summation is over all regions and over

all antialiasing samples.

This equation says that the frame time is given by the sum of the

times required to compute each region. and that each region time

is given by the maximum of the geometry proeessin~rasterization

time, image composition time, and shading time for the region.

Both Tc.c)n!pand ~$hadc, are constants, for a given rendering algo-

rithm. Tre17~ivaries depending on the number of renderers, the

number of prlmltlvcs. and their distribution over the renderers and

over the screen.

137

SIGGRAPH ’92 Chicago, July 26-31, 1992

Tcomp provides an UPPer bound on frame rate> as shown in Fi~re
7 for several rendering algorithms and system configurations.

Bits per pixel Samples Screen Frame/see

64 (Gouraud) 16 1280x I024 22

96 (Phong) 1 1280x 1024 >100

96 (Phong) 5 1280x I024 48

192 (Phong, textured) 5 128OX1O24 24

192 (Phong, textured) 16 640X5 12 29

Figure 7: Peak performance dictated by composition-

network bandwidth under varying conditions.

Actual system performance can be lower than predicted by this

equation because of several factors: First, primitives may cross

region boundaries and require processing in multiple regions.

This increases the rasterization load by approximately 20’%. for

100-pixel polygons. Second, primitives may clump in different

screen regions on different renderers. This increases the

rasterization time on certain renderers relative to others. The extra

buffering on the EMCS reduces this effect, but does not eliminate

it entirely. For severely clumped images, system performance can

be reduced from 20-60%. Finally, rasterization and compositing

are pipelined, so that one region is rasterized while the previous

one is composite. This requires a few idle region times at the

start and end of a frame (app~oximately 5– 10% o~erhead).

L

Polio (7s)

pities (1s

Poho (P$).-

~
/.. -

.#-
Spa_c@(69)_,; 9/------- ------

... . -
/ /-

*,: .0

12 4 8 16 32 64 128

Number of Renderera

Figure 8: Simulated performance for various system

configurations.

Because these factors are scene dependent, they cannot be

modelled analytically. We have written a timing simulator for

PixelFlow that models these effects and have used it to compute

performance for a variety of images and rendering algorithms.

Figure 8 shows simulated performance for the four sample

databases shown in Figure 9. Simulations were run with 1 to 128

renderers and 4 shaders. Two curves are shown for each dataset:

one for a supersampled image with 6 samples per pixel (6s), and

one for a “fully-aliases” image with one sample per pixel (1s).

For the 6s case, we assumed the geometry processor is a 66-MHz

i860XP; for the is case, we assumed that a sufficiently powerful

geometry processor is availabie so that renderer performance is

rasterizer-iimited.

These simuiated results show the behavior predicted by the

equation above. System performance scales linearly with the

number of renderers until a knee is reached, where compositing

time dominates rasterization time (shading time is not a limiting

factor for any of these datasets). The space station dataset, in

particular, is very smali (3,784 primitives), so this knee is reached

at only 4 renderers. Only the polio dataset is large enough to

show iinear scalability to 128 renderers.

7 CONCLUSIONS

We have introduced PixelFlow, a new architecture for high-speed

image generation, and one of the first to use reai-time image

composition with multi-primitive renderers. Its combination of

million-triangle-per-second renderers and high-performance

compositing network give it linearly scalable performance to tens

of millions of polygons per second— far above the performance

of current systems.

All of the components of PixelFlow are programmable: its

geometry processors are conventional microprocessors; its

rasterizers are programmable SIMD processors; its image-

composition network is a general pixel datapath. In addition to

standard rendering algorithms, such as Gouraud- and Phong-

shading of polygonal primitives, PixeiFlow can render primitives

such as spheres, quadrics, and voiume data with high-quality

shading methods, such as local light sources, procedural and

image-based texturing, and environment mapping.

A PixelFiow system can be configured in a variety of ways.

Hosted by a single workstation, it can render PHIGS-type

retained-mode datasets. Coupled to a parallel supercomputer, it

can serve as a visualization subsystem for immediate-mode

rendering. Using PixeiFlow silicon, a million-triangie-per-second

rasterizer could be built on a small circuit board.

At the time this paper was written, logic design for the custom

chips was nearly complete. We anticipate completing circuit

design for the system by mid-1993 and competing a prototype

system by late 1993.

ACKNOWLEDGEMENTS

We acknowledge the following peopie for their suggestions and

contributions to this work: Henry Fuchs, Turner Whitted,

Anselmo Lastra, Jon Leech, Brice Tebbs, Trey Greer, Lee

Westover, and the entire Pixel-Planes team.

This research is supported in part by the Defense Advanced

Research Projects Agency, DARPA ISTO Order No, 7510, and

the National Science Foundation, Grant No. MIP-9000894.

238

Computer Graphics, 26, 2, July 1992

(a) Space station and space shuttle, Phong- (b) Radiosity-shaded room interior with
shaded, 6,549 triangles (Don Eyles, Charles procedural textures, 53,514 triangles (F.P.
Stark Draper Labs). Brooks, A. Varshney, UNC).

(c) Procedurally generated pipes model,
Phong-shaded, 137,747 triangles (Lee
Westover, Sun Microsystems).

(d) Poliovirus molecule, Phong-shaded,
389,819 triangles (J. Hogle, M. Chow, D.
Filman, Scripps Institute).zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 9: Four sample datasets used for timing simulation.

REFERENCES

AKEL88 Akeley, K. and T. Jermoluk, “High-Performance

Polygon Rendering,” SIGGRAPH ‘88, Vol. 22, No. 4,

pp. 239-246.

APGA88 Apgar, B.. B. Bersack, and A. Mammen, “A Display
System for the Stellar Graphics Supercomputer

Model GS 1000.” SIGGRAPH ‘88, Vol. 22, No. 4, pp.
255-262.

BUNK89 Bunker, M. and R. Economy, “Evolution of GE GIG
Systems,” SCSD Document, General Electric

Company, Daytona Beach, FL 32015, 1989.

DEER88 Deering, M., S. Winner, B. Schediwy, C. Duffy, and
N. Hunt, “The Triangle Processor and Normal Vector

Shader: A VLSI System for High Performance
Graphics,” SIGGRAPH ‘88, Vol. 22, No. 4, pp. 21-
30.

DEME80 Demetrescu, S., A VLSI-Based Real-Time Hidden-
Surface Elimination Display &stern, Master’s Thesis,

Dept. of Computer Science, California Institute of

Technology, 1980.

DUFF85 Duff, T., “Compositing 3D Rendered Images,”
SIGGRAPH ‘85. Vol. 19. No. 3, July 1985, pp. 414.

ELL19 I Ellis, J., G. Kedem, T. Lyerly, D. Thielman, R.
Marisa, J. Menon, H. Voelcker, “The Raycasting
Engine and Ray Representation: A Technical
Summary,” Proc. qfthe Intl. Jornal ofComputational

Geometry and Applications, 199 I.

ELLS90 Ellsworth, D.E., H. Good, and B. Tebbs, “Distributing

Display Lists on a Multicomputer,” Computer
Graphics (Proceedings of the 1990 Symposium on
Interactive 3D Graphics), Vol. 24, No. 2, March

1990. p.1477154.

239

SIGGRAPH ’92 Chicago, July 26-31, 1992

ELLS91

EYLE88

FOLE90

FUCH77

FUCH79

FUCH85

FUCH89

FUSS82

GARD81

GHAR88

KNIG88

MART90

MOLN88

Ellsworth, D.E. “Parallel Architectures and

Algorithms for Real-Time Synthesis of High-Quality

images Using Deferred Shading,” Workshop on

Algorithms and Parallel VLSI Architectures, Pont-a-

Mousson, France, June 12, 1990.

Eyles, J., J. Austin, H. Fuchs, T. Greer, and J.

Poulton, “Pixel-Planes 4: A Summary,” Adv. in

Compu;er Graphics Hardware II (1987 Eurographics

Workshop on Graphics Hardware), Eurographics

Seminars, 1988, pp. 183-208.

Foley, J. D., A. van Dam, S.K. Feiner, and J.F.

Hughes, Computer Graphics: Principles and

Practice, Addison-Wesley, Reading, MA, 1990.

(especially Chapter 18, “Advanced Raster Graphics

Architecture”)

Fuchs, H., “Distributing a Visible Surface Algorithm

over Multiple Processors,” Proceedings of the ACM

Annual Conference, pp. 449451.

Fuchs, H. and B. Johnson, prepublication draft of “An

Expandable Multiprocessor Architecture for Video

Graphics,” Proceedings of the 6th ACM-IEEE

Symposium on Computer Architecture, April, 1979,

pp. 58&67.

Fuchs, H., J. Goldfeather, J. Hultquist, S. Spach, J.

Austin, F. Brooks, J. Eyles, and J. Poulton, “Fast

Spheres, Shadows, Textures, Transparencies, and

Image Enhancements in Pixel-planes,” SIGGRAPH

’85, vol. 19, No. 3, pp. 1] 1-120.

Fuchs, H., J. Poulton, J. Eyles, T. Greer, J.

Goldfeather, D. Ellsworth, S. Molnar, G. Turk, B.

Tebbs, and L, Israel, “Pixel-Planes 5: A

Heterogeneous Multiprocessor Graphics System

Using Processor-Enhanced Memories,” SIGGRAPH

’89, vol. 23, No. 3, pp. 79–88.

Fussel, D. and B. D. Rathi, “A VLS1-Oriented

Architecture for Real-Time Raster Display of Shaded

Polygons.” Graphics Interface ’82, 1982, pp. 373-

380.

Gardner, G. Y., E,P, Berlin, Jr., and B.M. Gelman, “A

Real-Time Computer Image Generation System using

Textured Curved Surfaces,” Proceedings of IMAGE

II, 1981, pp. 59–76.

Gharachorloo, N., S. Gupta, E. Hokenek, P.

Balasubramanian, B. Bogholtz, C. Mathieu, and C.

Zoulas. “Subnanosecond Pixel Rendering with

Million Transistor Chips,” S/GGRAPH 88, Vol. 22,

No. 4, pp. 4149.

Knight, T. and A. Krimm, “A Self-Terminating Low-

Voltage Swing CMOS Output Driver,” IEEE Journal

of Solid-State Circuits, Vol. 23, No. 2, April 1988, pp.

457464.

Martin, P., and H. Baeverstad, “TurboVRX: A High-

Performance Graphics Workstation Architecture,”

Proc. of AUSGR4PH 9(?, September 1990, pp. 107-

117.

Molnar, SE., “Combining Z-buffer Engines for

Higher-Speed Rendering,” Advances in Computer

Graphics Hardware 111, Eurographics Seminars,

1988, pp. 171–182.

MOLN91 a

MOLN91b

PARK80

POTM89

POUL85

SG190

SHAW88

SPEC9 I

SCHN88

WEIN81

Moinar, S.E., “Efficient Supersampling Antialiasing

for High-Performance Architectures,” Technical

Report TR-91 -023, Dept. of Computer Science,

UNC-Chapel Hill, 1991.

Molnar, S. E., “Image Composition Architectures for

Real-Time Image Generation,” Ph.D. dissertation,

also available as UNC-Computer Science Technical

Report TR91-046, 1991.

Park, F., “Simulation and Expected Performance

Analysis of Multiple Processor Z-Buffer Systems,”

SIGGRAPH ’80, Vol. 14, No. 3, pp. 48-56,

Potmesil, M., and E. Hoffert, “The Pixel Machine: A

Parallel Image Computer,” S2GGRAPH ’89, Vol. 23,

No. 3, pp. 69-78.

Poulton, J,, H. Fuchs, and A. Paeth, “Pixel-planes

graphic engine,” Section 9.5 in Principles of CMOS

VLSI Design: A System Perspective, by Neil Weste

and Kamran Eshrahian, Addison-Wesley, New York,

1985, pp. 448-480.

Silicon Graphics Computer Systems, Vision Graphics

System Architecture, Mountain View, CA 94039-

7311, February 1990.

Shaw, C. D., M. Green, and J. Schaeffer, “A VLSI

Architecture for Image Composition,” Advances in

Computer Graphics Hardware III,, Eurographics

Seminars, 1988, pp. 183-199.

Speck, D., “The Mosaic Fast 5 12K Scalable CMOS

DRAM,” Proceedings of the 1991 University of

California at Santa Cruz Conference on Advanced
Research in VLSI, 1991, pp. 229-244.

Schneider, B.O. and U. Claussen, “PROOF: An

Architecture for Rendering in Object-Space,”

Advances in Computer Graphics Hardware III,

Eurographics Seminars, 1988, pp. 121-140.

Weinberg, R., “Parallel Processing Image Synthesis

and Anti-Aliasing,” SIGGRAPH ’81, Vol. 15, No. 3,

pp. 55–61

240

