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Figure 1: NeRF from one or few images. We present pixelNeRF, a learning framework that predicts a Neural Radiance Field (NeRF)

representation from a single (top) or few posed images (bottom). PixelNeRF can be trained on a set of multi-view images, allowing it to

generate plausible novel view synthesis from very few input images without test-time optimization (bottom left). In contrast, NeRF has no

generalization capabilities and performs poorly when only three input views are available (bottom right).

Abstract

We propose pixelNeRF, a learning framework that pre-

dicts a continuous neural scene representation conditioned

on one or few input images. The existing approach for

constructing neural radiance fields [27] involves optimiz-

ing the representation to every scene independently, requir-

ing many calibrated views and significant compute time.

We take a step towards resolving these shortcomings by in-

troducing an architecture that conditions a NeRF on im-

age inputs in a fully convolutional manner. This allows

the network to be trained across multiple scenes to learn

a scene prior, enabling it to perform novel view synthesis in

a feed-forward manner from a sparse set of views (as few as

one). Leveraging the volume rendering approach of NeRF,

our model can be trained directly from images with no ex-

plicit 3D supervision. We conduct extensive experiments

on ShapeNet benchmarks for single image novel view syn-

thesis tasks with held-out objects as well as entire unseen

categories. We further demonstrate the flexibility of pixel-

NeRF by demonstrating it on multi-object ShapeNet scenes

and real scenes from the DTU dataset. In all cases, pix-

elNeRF outperforms current state-of-the-art baselines for

novel view synthesis and single image 3D reconstruction.

For the video and code, please visit the project website:

https://alexyu.net/pixelnerf.

1. Introduction

We study the problem of synthesizing novel views of a

scene from a sparse set of input views. This long-standing

problem has recently seen progress due to advances in dif-

ferentiable neural rendering [27, 20, 24, 39]. Across these

approaches, a 3D scene is represented with a neural net-

work, which can then be rendered into 2D views. Notably,

the recent method neural radiance fields (NeRF) [27] has

shown impressive performance on novel view synthesis of

a specific scene by implicitly encoding volumetric density

and color through a neural network. While NeRF can ren-

der photorealistic novel views, it is often impractical as it

requires a large number of posed images and a lengthy per-

scene optimization.

In this paper, we address these shortcomings by propos-

ing pixelNeRF, a learning framework that enables predict-

ing NeRFs from one or several images in a feed-forward

manner. Unlike the original NeRF network, which does not

make use of any image features, pixelNeRF takes spatial

image features aligned to each pixel as an input. This im-

age conditioning allows the framework to be trained on a

set of multi-view images, where it can learn scene priors

to perform view synthesis from one or few input views. In

contrast, NeRF is unable to generalize and performs poorly

when few input images are available, as shown in Fig. 1.
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Specifically, we condition NeRF on input images by first

computing a fully convolutional image feature grid from the

input image. Then for each query spatial point x and view-

ing direction d of interest in the view coordinate frame, we

sample the corresponding image feature via projection and

bilinear interpolation. The query specification is sent along

with the image features to the NeRF network that outputs

density and color, where the spatial image features are fed

to each layer as a residual. When more than one image is

available, the inputs are first encoded into a latent represen-

tation in each camera’s coordinate frame, which are then

pooled in an intermediate layer prior to predicting the color

and density. The model is supervised with a reconstruction

loss between a ground truth image and a view rendered us-

ing conventional volume rendering techniques. This frame-

work is illustrated in Fig. 2.

PixelNeRF has many desirable properties for few-view

novel-view synthesis. First, pixelNeRF can be trained on a

dataset of multi-view images without additional supervision

such as ground truth 3D shape or object masks. Second,

pixelNeRF predicts a NeRF representation in the camera

coordinate system of the input image instead of a canoni-

cal coordinate frame. This is not only integral for general-

ization to unseen scenes and object categories [41, 37], but

also for flexibility, since no clear canonical coordinate sys-

tem exists on scenes with multiple objects or real scenes.

Third, it is fully convolutional, allowing it to preserve the

spatial alignment between the image and the output 3D rep-

resentation. Lastly, pixelNeRF can incorporate a variable

number of posed input views at test time without requiring

any test-time optimization.

We conduct an extensive series of experiments on syn-

thetic and real image datasets to evaluate the efficacy of our

framework, going beyond the usual set of ShapeNet experi-

ments to demonstrate its flexibility. Our experiments show

that pixelNeRF can generate novel views from a single im-

age input for both category-specific and category-agnostic

settings, even in the case of unseen object categories. Fur-

ther, we test the flexibility of our framework, both with a

new multi-object benchmark for ShapeNet, where pixel-

NeRF outperforms prior approaches, and with simulation-

to-real transfer demonstration on real car images. Lastly,

we test capabilities of pixelNeRF on real images using the

DTU dataset [14], where despite being trained on under 100

scenes, it can generate plausible novel views of a real scene

from three posed input views.

2. Related Work

Novel View Synthesis. The long-standing problem of novel

view synthesis entails constructing new views of a scene

from a set of input views. Early work achieved photore-

alistic results but required densely captured views of the

scene [19, 11]. Recent work has made rapid progress to-

NeRF DISN ONet DVR SRN Ours

Learns scene prior? ✗ ✓ ✓ ✓ ✓ ✓

Supervision 2D 3D 3D 2D 2D 2D

Image features ✗ Local Global Global ✗ Local

Allows multi-view? ✓ ✓ ✗ ✗ ✓ ✓

View space? - ✗ ✗ ✗ ✗ ✓

Table 1: A comparison with prior works reconstructing neu-

ral scene representations. The proposed approach learns a scene

prior for one or few-view reconstruction using only multi-view 2D

image supervision. Unlike previous methods in this regime, we

do not require a consistent canonical space across the training cor-

pus. Moreover, we incorporate local image features to preserve

local information which is in contrast to methods that compress

the structure and appearance into a single latent vector such as Oc-

cupancy Networks (ONet) [25] and DVR [28].

ward photorealism for both wider ranges of novel views

and sparser sets of input views, by using 3D representations

based on neural networks [27, 23, 26, 38, 42, 7]. However,

because these approaches fit a single model to each scene,

they require many input views and substantial optimization

time per scene.

There are methods that can predict novel view from few

input views or even single images by learning shared priors

across scenes. Methods in the tradition of [35, 3] use depth-

guided image interpolation [54, 10, 32]. More recently, the

problem of predicting novel views from a single image has

been explored [44, 47, 36, 5]. However, these methods em-

ploy 2.5D representations, and are therefore limited in the

range of camera motions they can synthesize. In this work

we infer a 3D volumetric NeRF representation, which al-

lows novel view synthesis from larger baselines.

Sitzmann et al. [39] introduces a representation based on

a continuous 3D feature space to learn a prior across scene

instances. However, using the learned prior at test time

requires further optimization with known absolute camera

poses. In contrast, our approach is completely feed-forward

and only requires relative camera poses. We offer exten-

sive comparisons with this approach to demonstrate the ad-

vantages our design affords. Lastly, note that concurrent

work [43] adds image features to NeRF. A key difference is

that we operate in view rather than canonical space, which

makes our approach applicable in more general settings.

Moreover, we extensively demonstrate our method’s perfor-

mance in few-shot view synthesis, while GRF shows very

limited quantitative results for this task.

Learning-based 3D reconstruction. Advances in deep

learning have led to rapid progress in single-view or multi-

view 3D reconstruction. Many approaches [15, 12, 46, 53,

38, 33, 49, 25, 31] propose learning frameworks with vari-

ous 3D representations that require ground-truth 3D models

for supervision. Multi-view supervision [50, 45, 21, 22, 39,
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28, 8, 2] is less restrictive and more ecologically plausible.

However, many of these methods [50, 45, 21, 22, 28] re-

quire object masks; in contrast, pixelNeRF can be trained

from images alone, allowing it to be applied to scenes of

two objects without modification.

Most single-view 3D reconstruction methods condition

neural 3D representations on input images. The majority

employs global image features [29, 6, 28, 25, 8], which,

while memory efficient, cannot preserve details that are

present in the image and often lead to retrieval-like results.

Spatially-aligned local image features have been shown to

achieve detailed reconstructions from a single view [49, 33].

However, both of these methods require 3D supervision.

Our method is inspired by these approaches, but only re-

quires multi-view supervision.

Within existing methods, the types of scenes that can

be reconstructed are limited, particularly so for object-

centric approaches (e.g. [46, 21, 12, 45, 38, 53, 25, 49, 28]).

CoReNet [31] reconstructs scenes with multiple objects via

a voxel grid with offsets, but it requires 3D supervision in-

cluding the identity and placement of objects. In compari-

son, we formulate a scene-level learning framework that can

in principle be trained to scenes of arbitrary structure.

Viewer-centric 3D reconstruction For the 3D learning

task, prediction can be done either in a viewer-centered co-

ordinate system, i.e. view space, or in an object-centered co-

ordinate system, i.e. canonical space. Most existing meth-

ods [49, 25, 28, 39] predict in canonical space, where all ob-

jects of a semantic category are aligned to a consistent ori-

entation. While this makes learning spatial regularities eas-

ier, using a canonical space inhibits prediction performance

on unseen object categories and scenes with more than one

object, where there is no pre-defined or well-defined canon-

ical pose. PixelNeRF operates in view-space, which has

been shown to allow better reconstruction of unseen object

categories in [37, 2], and discourages the memorization of

the training set [41]. We summarize key aspects of our ap-

proach relative to prior work in Table 1.

3. Background: NeRF

We first briefly review the NeRF representation [27]. A

NeRF encodes a scene as a continuous volumetric radiance

field f of color and density. Specifically, for a 3D point

x ∈ R
3 and viewing direction unit vector d ∈ R

3, f returns

a differential density σ and RGB color c: f(x,d) = (σ, c).
The volumetric radiance field can then be rendered into

a 2D image via

Ĉ(r) =

∫ tf

tn

T (t)σ(t)c(t)dt (1)

where T (t) = exp
(

−
∫ t

tn
σ(s) ds

)

handles occlusion. For

a target view with pose P, a camera ray can be parameter-

ized as r(t) = o + td, with the ray origin (camera center)

o ∈ R
3 and ray unit direction vector d ∈ R

3. The inte-

gral is computed along r between pre-defined depth bounds

[tn, tf ]. In practice, this integral is approximated with nu-

merical quadrature by sampling points along each pixel ray.

The rendered pixel value for camera ray r can then

be compared against the corresponding ground truth pixel

value, C(r), for all the camera rays of the target view with

pose P. The NeRF rendering loss is thus given by

L =
∑

r∈R(P)

∥

∥

∥
Ĉ(r)−C(r)

∥

∥

∥

2

2
(2)

where R(P) is the set of all camera rays of target pose P.

Limitations While NeRF achieves state of the art novel

view synthesis results, it is an optimization-based approach

using geometric consistency as the sole signal, similar to

classical multiview stereo methods [1, 34]. As such each

scene must be optimized individually, with no knowledge

shared between scenes. Not only is this time-consuming,

but in the limit of single or extremely sparse views, it is un-

able to make use of any prior knowledge of the world to

accelerate reconstruction or for shape completion.

4. Image-conditioned NeRF

To overcome the NeRF representation’s inability to share

knowledge between scenes, we propose an architecture to

condition a NeRF on spatial image features. Our model

is comprised of two components: a fully-convolutional im-

age encoder E, which encodes the input image into a pixel-

aligned feature grid, and a NeRF network f which outputs

color and density, given a spatial location and its corre-

sponding encoded feature. We choose to model the spa-

tial query in the input view’s camera space, rather than a

canonical space, for the reasons discussed in § 2. We vali-

date this design choice in our experiments on unseen object

categories (§ 5.2) and complex unseen scenes (§ 5.3). The

model is trained with the volume rendering method and loss

described in § 3.

In the following, we first present our model for the single

view case. We then show how this formulation can be easily

extended to incorporate multiple input images.

4.1. Single­Image pixelNeRF

We now describe our approach to render novel views

from one input image. We fix our coordinate system as

the view space of the input image and specify positions and

camera rays in this coordinate system.

Given a input image I of a scene, we first extract a feature

volume W = E(I). Then, for a point on a camera ray x,

we retrieve the corresponding image feature by projecting

x onto the image plane to the image coordinates π(x) using
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Figure 2: Proposed architecture in the single-view case. For a query point x along a target camera ray with view direction d, a

corresponding image feature is extracted from the feature volume W via projection and interpolation. This feature is then passed into the

NeRF network f along with the spatial coordinates. The output RGB and density value is volume-rendered and compared with the target

pixel value. The coordinates x and d are in the camera coordinate system of the input view.

known intrinsics, then bilinearly interpolating between the

pixelwise features to extract the feature vector W(π(x)).
The image features are then passed into the NeRF network,

along with the position and view direction (both in the input

view coordinate system), as

f(γ(x),d;W(π(x))) = (σ, c) (3)

where γ(·) is a positional encoding on x with 6 expo-

nentially increasing frequencies introduced in the original

NeRF [27]. The image feature is incorporated as a residual

at each layer; see § 5 for more information. We show our

pipeline schematically in Fig. 2.

In the few-shot view synthesis task, the query view direc-

tion is a useful signal for determining the importance of a

particular image feature in the NeRF network. If the query

view direction is similar to the input view orientation, the

model can rely more directly on the input; if it is dissimilar,

the model must leverage the learned prior. Moreover, in the

multi-view case, view directions could serve as a signal for

the relevance and positioning of different views. For this

reason, we input the view directions at the beginning of the

NeRF network.

4.2. Incorporating Multiple Views

Multiple views provide additional information about the

scene and resolve 3D geometric ambiguities inherent to the

single-view case. We extend our model to allow for an arbi-

trary number of views at test time, which distinguishes our

method from existing approaches that are designed to only

use single input view at test time. [8, 53] Moreover, our for-

mulation is independent of the choice of world space and

the order of input views.

In the case that we have multiple input views of the

scene, we assume only that the relative camera poses are

known. For purposes of explanation, an arbitrary world

coordinate system can be fixed for the scene. We de-

note the ith input image as I
(i) and its associated cam-

era transform from the world space to its view space as

P
(i) =

[

R
(i)

t
(i)
]

.

For a new target camera ray, we transform a query point

x, with view direction d, into the coordinate system of each

input view i with the world to camera transform as

x
(i) = P

(i)
x, d

(i) = R
(i)
d (4)

To obtain the output density and color, we process the coor-

dinates and corresponding features in each view coordinate

frame independently and aggregate across the views within

the NeRF network. For ease of explanation, we denote the

initial layers of the NeRF network as f1, which process in-

puts in each input view space separately, and the final layers

as f2, which process the aggregated views.

We encode each input image into feature volume

W
(i) = E(I(i)). For the view-space point x(i), we extract

the corresponding image feature from the feature volume

W
(i) at the projected image coordinate π(x(i)). We then

pass these inputs into f1 to obtain intermediate vectors:

V
(i) = f1

(

γ(x(i)),d(i); W(i)
(

π(x(i))
)

)

. (5)

The intermediate V
(i) are then aggregated with the aver-

age pooling operator ψ and passed into a the final layers,

denoted as f2, to obtain the predicted density and color:

(σ, c) = f2

(

ψ
(

V
(1), . . . ,V(n)

))

. (6)

In the single-view special case, this simplifies to Equation 3

with f = f2◦f1, by considering the view space as the world

space. An illustration is provided in the supplemental.

5. Experiments

We extensively demonstrate our approach in three exper-

imental categories: 1) existing ShapeNet [4] benchmarks

for category-specific and category-agnostic view synthesis,

2) ShapeNet scenes with unseen categories and multiple

objects, both of which require geometric priors instead of
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recognition, as well as domain transfer to real car photos

and 3) real scenes from the DTU MVS dataset [14].

Baselines For ShapeNet benchmarks, we compare quan-

titatively and qualitatively to SRN [39] and DVR [28],

the current state-of-the-art in few-shot novel-view synthe-

sis and 2D-supervised single-view reconstruction respec-

tively. We use the 2D multiview-supervised variant of DVR.

In the category-agnostic setting (§ 5.1.2), we also include

grayscale rendering of SoftRas [21] results. 1 In the exper-

iments with multiple ShapeNet objects, we compare with

SRN, which can also model entire scenes.

For the experiment on the DTU dataset, we compare to

NeRF [27] trained on sparse views. Because NeRF is a

test-time optimization method, we train a separate model

for each scene in the test set.

Metrics We report the standard image quality metrics

PSNR and SSIM [55] for all evaluations. We also in-

clude LPIPS [52], which more accurately reflects human

perception, in all evaluations except in the category-specific

setup (§ 5.1.1). In this setting, we exactly follow the pro-

tocol of SRN [39] to remain comparable to prior works

[40, 48, 9, 8, 43], for which source code is unavailable.

Implementation Details For the image encoder E, to cap-

ture both local and global information effectively, we ex-

tract a feature pyramid from the image. We use a ResNet34

backbone pretrained on ImageNet for our experiments. Fea-

tures are extracted prior to the first 4 pooling layers, upsam-

pled using bilinear interpolation, and concatenated to form

latent vectors of size 512 aligned to each pixel.

To incorporate a point’s corresponding image feature

into the NeRF network f , we choose a ResNet architec-

ture with a residual modulation rather than simply concate-

nating the feature vector with the point’s position and view

direction. Specifically, we feed the encoded position and

view direction through the network and add the image fea-

ture as a residual at the beginning of each ResNet block. We

train an independent linear layer for each block residual, in

a similar manner as AdaIn and SPADE [13, 30], a method

previously used with success in [25, 28]. Please refer to the

supplemental for additional details.

5.1. ShapeNet Benchmarks

We first evaluate our approach on category-specific and

category-agnostic view synthesis tasks on ShapeNet.

5.1.1 Category-specific View Synthesis Benchmark

We perform one-shot and two-shot view synthesis on the

“chair” and “car” classes of ShapeNet, using the protocol

and dataset introduced in [39]. The dataset contains 6591

1Color inference is not supported by the public SoftRas code.

Input SRN Ours GT Input SRN Ours GT

Figure 3: Category-specific single-view reconstruction bench-

mark. We train a separate model for cars and chairs and compare

to SRN. The corresponding numbers may be found in Table 2.

2 Input Views SRN Ours GT

Figure 4: Category-specific 2-view reconstruction benchmark.

We provide two views (left) to each model, and show two novel

view renderings in each case (right). Please also refer to Table 2.

1-view 2-view

PSNR SSIM PSNR SSIM

Chairs

GRF [43] 21.25 0.86 22.65 0.88

TCO [40] * 21.27 0.88 21.33 0.88

dGQN [9] 21.59 0.87 22.36 0.89

ENR [8] * 22.83 - - -

SRN [39] 22.89 0.89 24.48 0.92

Ours * 23.72 0.91 26.20 0.94

Cars

SRN [39] 22.25 0.89 24.84 0.92

ENR [8] * 22.26 - - -

Ours * 23.17 0.90 25.66 0.94

Table 2: Category-specific 1- and 2-view reconstruction. Meth-

ods marked * do not require canonical poses at test time. In all

cases, a single model is trained for each category and used for

both 1- and 2-view evaluation. Note ENR is a 1-view only model.

1-view 2-view

↑ PSNR ↑ SSIM ↓ LPIPS ↑ PSNR ↑ SSIM ↓ LPIPS

− Local 20.39 0.848 0.196 21.17 0.865 0.175

− Dirs 21.93 0.885 0.139 23.50 0.909 0.121

Full 23.43 0.911 0.104 25.95 0.939 0.071

Table 3: Ablation studies for ShapeNet chair reconstruction.

We show the benefit of using local features over a global code to

condition the NeRF network (−Local vs Full), and of providing

view directions to the network (−Dirs vs Full).
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Input SoftRas DVR SRN Ours GT Input SoftRas DVR SRN Ours GT Input SoftRas DVR SRN Ours GT

Figure 5: Category-agnostic single-view reconstruction. Going beyond the SRN benchmark, we train a single model to the 13 largest

ShapeNet categories; we find that our approach produces superior visual results compared to a series of strong baselines. In particular,

the model recovers fine detail and thin structure more effectively, even for outlier shapes. Quite visibly, images on monitors and tabletop

textures are accurately reproduced; baselines representing the scene as a single latent vector cannot preserve such details of the input image.

SRN’s test-time latent inversion becomes less reliable as well in this setting. The corresponding quantitative evaluations are available in

Table 4. Due to space constraints, we show objects with interesting properties here. Please see the supplemental for sampled results.

plane bench cbnt. car chair disp. lamp spkr. rifle sofa table phone boat mean

↑ PSNR

DVR 25.29 22.64 24.47 23.95 19.91 20.86 23.27 20.78 23.44 23.35 21.53 24.18 25.09 22.70

SRN 26.62 22.20 23.42 24.40 21.85 19.07 22.17 21.04 24.95 23.65 22.45 20.87 25.86 23.28

Ours 29.76 26.35 27.72 27.58 23.84 24.22 28.58 24.44 30.60 26.94 25.59 27.13 29.18 26.80

↑ SSIM

DVR 0.905 0.866 0.877 0.909 0.787 0.814 0.849 0.798 0.916 0.868 0.840 0.892 0.902 0.860

SRN 0.901 0.837 0.831 0.897 0.814 0.744 0.801 0.779 0.913 0.851 0.828 0.811 0.898 0.849

Ours 0.947 0.911 0.910 0.942 0.858 0.867 0.913 0.855 0.968 0.908 0.898 0.922 0.939 0.910

↓ LPIPS

DVR 0.095 0.129 0.125 0.098 0.173 0.150 0.172 0.170 0.094 0.119 0.139 0.110 0.116 0.130

SRN 0.111 0.150 0.147 0.115 0.152 0.197 0.210 0.178 0.111 0.129 0.135 0.165 0.134 0.139

Ours 0.084 0.116 0.105 0.095 0.146 0.129 0.114 0.141 0.066 0.116 0.098 0.097 0.111 0.108

Table 4: Category-agnostic single-view reconstruction. Quantitative results for category-agnostic view-synthesis are presented, with a

detailed breakdown by category. Our method outperforms the state-of-the-art by significant margins in all categories.

chairs and 3514 cars with a predefined split across object

instances. All images have resolution 128× 128.

A single model is trained for each object class with 50

random views per object instance, randomly sampling ei-

ther one or two of the training views to encode. For testing,

We use 251 novel views on an Archimedean spiral for each

object in the test set of object instances, fixing 1-2 infor-

mative views as input. We report our performance in com-

parison with state-of-the-art baselines in Table 2, and show

selected qualitative results in Fig. 4. We also include the

quantitative results of baselines TCO [40] and dGQN [9]

reported in [39] where applicable, and the values available

in the recent works ENR [8] and GRF [43] in this setting.

PixelNeRF achieves noticeably superior results despite

solving a problem significantly harder than SRN because

we: 1) use feed-forward prediction, without test-time opti-

mization, 2) do not use ground-truth absolute camera poses

at test-time, 3) use view instead of canonical space.

Ablations. In Table 3, we show the benefit of using local

features and view directions in our model for this category-

specific setting. Conditioning the NeRF network on pixel-

aligned local features instead of a global code (−Local vs

Full) improves performance significantly, for both single

and two-view settings. Providing view directions (−Dirs vs

Full) also provides a significant boost. For these ablations,

we follow an abbreviated evaluation protocol on ShapeNet

chairs, using 25 novel views on the Archimedean spiral.

5.1.2 Category-agnostic Object Prior

While we found appreciable improvements over baselines

in the simplest category-specific benchmark, our method is

by no means constrained to it. We show in Table 4 and

Fig. 5 that our approach offers a much greater advantage in

the category-agnostic setting of [21, 28], where we train

a single model to the 13 largest categories of ShapeNet.

Please see the supplemental for randomly sampled results.

We follow community standards for 2D-supervised

methods on multiple ShapeNet categories [28, 16, 21] and

use the renderings and splits from Kato et al. [16], which

provide 24 fixed elevation views of 64 × 64 resolution for

each object instance. During both training and evaluation,

a random view is selected as the input view for each object

and shared across all baselines. The remaining 23 views are

used as target views for computing metrics (see § 5).

5.2. Pushing the Boundaries of ShapeNet

Taking a step towards reconstruction in less controlled

capture scenarios, we perform experiments on ShapeNet

data in three more challenging setups: 1) unseen object cat-

egories, 2) multiple-object scenes, and 3) simulation-to-real
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Input DVR SRN Ours GT Input DVR SRN Ours GT

Figure 6: Generalization to unseen categories. We evaluate a

model trained on planes, cars, and chairs on 10 unseen ShapeNet

categories. We find that the model is able to synthesize reasonable

views even in this difficult case.

Inputs SRN Ours GT

Figure 7: 360◦view prediction with multiple objects. We show

qualitative results of our method compared with SRN on scenes

composed of multiple ShapeNet chairs. We are easily able to

handle this setting, because our prediction is done in view space;

in contrast, SRN predicts in canonical space, and struggles with

scenes that cannot be aligned in such a way.

Unseen category Multiple chairs

↑ PSNR ↑ SSIM ↓ LPIPS ↑ PSNR ↑ SSIM ↓ LPIPS

DVR 17.72 0.716 0.240 - - -

SRN 18.71 0.684 0.280 14.67 0.664 0.431

Ours 22.71 0.825 0.182 23.40 0.832 0.207

Table 5: Image quality metrics for challenging ShapeNet tasks.

(Left) Average metrics on 10 unseen categories for models trained

on only planes, cars, and chairs. See the supplemental for a break-

down by category. (Right) Average metrics for two-view recon-

struction for scenes with multiple ShapeNet chairs.

Input Novel views

Figure 8: Results on real car photos. We apply the car model

from § 5.1.1 directly to images from the Stanford cars dataset [18].

The background has been masked out using PointRend [17]. The

views are rotations about the view-space vertical axis.

transfer on car images. In these settings, successful recon-

struction requires geometric priors; recognition or retrieval

alone is not sufficient.

Generalization to novel categories. We first aim to recon-

struct ShapeNet categories which were not seen in training.

Unlike the more standard category-agnostic task described

in the previous section, such generalization is impossible

with semantic information alone. The results in Table 5 and

Fig. 6 suggest our method learns intrinsic geometric and

appearance priors which are fairly effective even for objects

quite distinct from those seen during training.

We loosely follow the protocol used for zero-shot cross-

category reconstruction from [53, ?]. Note that our base-

lines [39, 28] do not evaluate in this setting, and we adapt

them for the sake of comparison. We train on the airplane,

car, and chair categories and test on 10 categories unseen

during training, continuing to use the Kato et al. renderings

described in § 5.1.2.

Multiple-object scenes. We further perform few-shot 360◦

reconstruction for scenes with multiple randomly placed

and oriented ShapeNet chairs. In this setting, the network

cannot rely solely on semantic cues for correct object place-

ment and completion. The priors learned by the network

must be applicable in an arbitrary coordinate system. We

show in Fig. 7 and Table 5 that our formulation allows us

to perform well on these simple scenes without additional

design modifications. In contrast, SRN models scenes in a

canonical space and struggles on held-out scenes.

We generate training images composed with 20 views

randomly sampled on the hemisphere and render test im-

ages composed of a held out test set of chair instances, with

50 views sampled on an Archimedean spiral. During train-

ing, we randomly encode two input views; at test-time, we

fix two informative views across the compared methods.

In the supplemental, we provide example images from our

dataset as well as additional quantitative results and quali-

tative comparisons with varying numbers of input views.

Sim2Real on Cars. We also explore the performance

of pixelNeRF on real images from the Stanford cars

dataset [18]. We directly apply car model from § 5.1.1 with-

out any fine-tuning. As seen in Fig. 8, the network trained

on synthetic data effectively infers shape and texture of the

real cars, suggesting our model can transfer beyond the syn-

thetic domain.

Synthesizing the 360◦ background from a single view

is nontrivial and out of the scope for this work. For this

demonstration, the off-the-shelf PointRend [17] segmenta-

tion model is used to remove the background.

5.3. Scene Prior on Real Images

Finally, we demonstrate that our method is applicable for

few-shot wide baseline novel-view synthesis on real scenes

in the DTU MVS dataset [14]. Learning a prior for view

synthesis on this dataset poses significant challenges: not

only does it consist of more complex scenes, without clear

semantic similarities across scenes, it also contains incon-

sistent backgrounds and lighting between scenes. More-
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Input: 3 views of held-out scene Novel views NeRF

Figure 9: Wide baseline novel-view synthesis on a real image dataset. We train our model to distinct scenes in the DTU MVS

dataset [14]. Perhaps surprisingly, even in this case, our model is able to infer novel views with reasonable quality for held-out scenes

without further test-time optimization, all from only three views. Note the train/test sets share no overlapping scenes.

Figure 10: PSNR of few-shot feed-forward DTU reconstruc-

tion. We show the quantiles of PSNR on DTU for our method and

NeRF, given 1, 3, 6, or 9 input views. Separate NeRFs are trained

per scene and number of input views, while our method requires

only a single model trained with 3 encoded views.

over, under 100 scenes are available for training. We found

that the standard data split introduced in MVSNet [51] con-

tains overlap between scenes of the training and test sets.

Therefore, for our purposes, we use a different split of 88

training scenes and 15 test scenes, in which there are no

shared or highly similar scenes between the two sets. Im-

ages are down-sampled to a resolution of 400× 300.

We train one model across all training scenes by en-

coding 3 random views of a scene. During test time, we

choose a set of fixed informative input views shared across

all instances. We show in Fig. 9 that our method can per-

form view synthesis on the held-out test scenes. We further

quantitatively compare the performance of our feed-forward

model with NeRF optimized to the same set of input views

in Fig. 10. Note that training each of 60 NeRFs took 14

hours; in contrast, pixelNeRF is applied to new scenes im-

mediately without any test-time optimization.

6. Discussion

We have presented pixelNeRF, a framework to learn a

scene prior for reconstructing NeRFs from one or a few im-

ages. Through extensive experiments, we have established

that our approach can be successfully applied in a variety

of settings. We addressed some shortcomings of NeRF, but

there are challenges yet to be explored: 1) Like NeRF, our

rendering time is slow, and in fact, our runtime increases lin-

early when given more input views. Further, some methods

(e.g. [28, 21]) can recover a mesh from the image enabling

fast rendering and manipulation afterwards, while NeRF-

based representations cannot be converted to meshes very

reliably. Improving NeRF’s efficiency is an important re-

search question that can enable real-time applications. 2) As

in the vanilla NeRF, we manually tune ray sampling bounds

tn, tf and a scale for the positional encoding. Making

NeRF-related methods scale-invariant is a crucial challenge.

3) While we have demonstrated our method on real data

from the DTU dataset, we acknowledge that this dataset was

captured under controlled settings and has matching camera

poses across all scenes with limited viewpoints. Ultimately,

our approach is bottlenecked by the availability of large-

scale wide baseline multi-view datasets, limiting the appli-

cability to datasets such as ShapeNet and DTU. Learning

a general prior for 360◦ scenes in-the-wild is an exciting

direction for future work.
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