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Abstract 

Previous work has shown that the PKA-regulated phosphodiesterase PDE4D3 binds to 

A-kinase anchoring proteins. One such protein, AKAP9, localizes to the centrosome. 

Here, we investigate whether a PKA-PDE4D3-AKAP9 complex can generate spatial 

compartmentalization of cAMP signaling at the centrosome. Real-time imaging of FRET 

reporters shows that centrosomal PDE4D3 modulated a dynamic microdomain within 

which cAMP concentration selectively changed over the cell cycle. AKAP9-anchored, 

centrosomal PKA showed a reduced activation threshold as a consequence of 

increased auto-phosphorylation of its regulatory subunit at S114. Finally, disruption of 

the centrosomal cAMP microdomain by local displacement of PDE4D3 impaired cell 

cycle progression due to accumulation of cells in prophase. Our findings describe a 

novel mechanism of PKA activity regulation that relies on binding to AKAPs and 

consequent modulation of the enzyme activation threshold rather than on overall 

changes in cAMP levels. Further, we provide for the first time direct evidence that 

control of cell cycle progression relies on unique regulation of centrosomal cAMP/PKA 

signals.  

3 
 



Ms. No. 201201059    01/06/2012 
 

Introduction 

The second messenger cAMP mediates the intracellular response to multiple hormones 

and neurotransmitters and regulates a wide variety of cellular processes including gene 

expression, metabolism and cell growth and division (Stork and Schmitt, 2002). cAMP is 

generated from ATP by adenylyl cyclases (ACs) and phosphodiesterases (PDEs) 

provide the only means to degrade cAMP (Conti and Beavo, 2007). PDEs therefore play 

a key role in the control of cAMP resting levels as well as in determining the amplitude 

and duration of cAMP signals in response to extracellular stimuli (Houslay, 2010). The 

main effector of cAMP is protein kinase A (PKA), a tetrameric enzyme that in its inactive 

form consists of two catalytic subunits (C) and one regulatory subunit (R) dimer. Upon 

binding of cAMP to the R subunits the C subunits are released and phosphorylate 

downstream targets.  

 

A multitude of different stimuli can generate an increase in intracellular cAMP and active 

PKA C subunits can potentially phosphorylate a large variety of protein targets within 

the same cell. However, in order for the cell to execute the appropriate task in response 

to a specific stimulus, the correct subset of downstream targets must be 

phosphorylated. To achieve this, spatial confinement (compartmentalization) of the 

molecular components of the cAMP signaling pathway is critical (Zaccolo, 2009). PKA is 

tethered to subcellular loci via binding to A-kinase anchoring proteins (AKAPs). AKAPs 

anchor PKA in proximity to its targets via binding to the amino-terminal 

dimerization/docking (D/D) domains of PKA R subunits of an amphipatic helix within the 

AKAP sequence (Wong and Scott, 2004). The cAMP signal is also compartmentalized, 
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with different intracellular sub-compartments showing different concentrations of the 

second messenger (Zaccolo and Pozzan, 2002). Different subsets of anchored PKA are 

thus exposed to different levels of cAMP, resulting in selective activation and 

phosphorylation of the appropriate subset of targets (Di Benedetto et al., 2008). PDEs, 

a large super-family of enzymes comprised of 11 families (PDE1-11) and more than 30 

isozymes, can also be localized to specific subcellular compartments and, by locally 

degrading cAMP, play a key role in the spatial control of cAMP signals propagation 

(Mongillo et al., 2004). Long isoforms of the PDE4 family, including PDE4D3, can be 

phosphorylated and activated by PKA ( Sette and Conti, 1996; MacKenzie et al., 2002) 

and members of the PDE4D subfamily have been shown to interact with a number of 

AKAPs, including AKAP6 (Dodge et al., 2001), AKAP7 (Stefan et al., 2007) and AKAP9 

(Tasken et al., 2001). The presence of PKA and PDE4D3 within the same 

macromolecular complex may thus provide a negative feedback system where elevated 

cAMP concentrations trigger PKA to phosphorylate and activate PDE4, reducing local 

cAMP levels and resetting PKA activity selectively at that site (Dodge et al., 2001). 

 

AKAP9/450/350/CG-NAP (hereafter referred to as AKAP450) localizes at the 

centrosome (Schmidt et al., 1999; Takahashi et al., 1999; Witczak et al., 1999) through 

a conserved protein interaction module known as the pericentrin-AKAP350 centrosomal 

targeting (PACT) domain (Gillingham and Munro, 2000). Localization of AKAP450 at the 

centrosome has been shown to be required for centrosome integrity and centriole 

duplication (Keryer et al., 2003).  
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The centrosome plays a key role in cell cycle progression and acts as a scaffold for the 

accumulation and interaction of different cell cycle regulators (Cuschieri et al., 2007). 

PKA has been shown to be involved in many aspects of cell cycle regulation including 

centrosome duplication, S-phase, G2 arrest, mitotic spindle formation, exit from M-phase 

and cytokinesis (Matyakhina et al., 2002), however which, if any, of these functions is 

regulated by a PKA subset targeted at the centrosome remains to be established. In 

addition, it is not clear how cells achieve appropriate control of cell proliferation while 

continuously being exposed to hormonal fluctuations and, consequently, to changes in 

intracellular cAMP levels.  

 

In this study we use real time imaging and a combination of FRET-based reporters to 

explore the hypothesis that anchoring of PKA and PDE4D3 to AKAP450 provides a 

structural basis for selective regulation of cAMP signals at the centrosome. Our results 

show, for the first time, that the centrosome is a subcellular compartment undergoing a 

sophisticated and dynamic control of cAMP signals and PKA activation that relies on 

PKA anchoring to AKAP450 and on the presence of PDE4D3 and can be independent 

of overall changes of cAMP levels in the cytosol. In addition, we show that selective 

disruption of cAMP/PKA signaling at the centrosome has unique effects on cell cycle 

progression.  
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Results 

To study cAMP signals at the centrosome we generated a Chinese Hamster Ovary 

(CHO) cell clone that stably expresses a PKA-based FRET sensor, PKA-GFP (Vaasa et 

al., 2010). The sensor includes the regulatory type II (RII-CFP) and the catalytic (C-

YFP) subunits of PKA tagged, at their carboxyl-termini, with the cyan and the yellow 

variants of the green fluorescent protein, respectively (Fig. 1A) (Zaccolo et al., 2000). In 

the absence of cAMP the sensor subunits RII-CFP and C-YFP interact, allowing energy 

transfer (FRET) from the donor CFP to the acceptor YFP. In the presence of cAMP, the 

RII-CFP and C-YFP subunits dissociate and FRET is abolished (Fig. 1A). We have 

previously reported that PKA-GFP shows the same cAMP-dependence and the same 

sensitivity to cAMP and ability to phosphorylate substrate as wild-type PKA (Mongillo et 

al., 2004) and interacts with endogenous AKAPs via the D/D domain of its RII-CFP 

subunits (Zaccolo and Pozzan, 2002). Expression of PKA-GFP in CHO cells shows a 

clear localization of the sensor at the centrosome both in interphase cells and in mitotic 

cells (Fig. 1B) without affecting centrosome morphology (Suppl. Fig 1). Centrosomal 

localization of the sensor is confirmed by co-localization of RII-CFP with the 

centrosomal marker γ-tubulin (Fig, 1C, and Suppl. Fig 1). Immuno-staining with 

CTR453, a monoclonal antibody specific for AKAP450 (Keryer et al., 2003; Bailly et al., 

1989) shows co-localization of PKA-GFP and AKAP450 at the centrosome (Fig. 1C). To 

assess whether the centrosomal localization of the sensor is mediated by interaction 

with centrosomal AKAPs, a red fluorescent protein (RFP)-tagged RII subunit was co-

expressed with either GFP-tagged SuperAKAP-IS or GFP-tagged RIAD. The peptides 

RIAD (Carlson et al., 2006) and SuperAKAP-IS (Gold et al., 2006) compete selectively 
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with the binding of RI and RII to AKAPs, respectively. As shown in Fig. 1D, co-

expression of SuperAKAP-IS GFP, but not RIAD GFP, completely abolishes the 

centrosomal localization of RII-RFP.  

Basal cAMP levels are lower at the centrosome than in the bulk cytosol in 

interphase cells. CHO cells expressing the PKA-GFP sensor show a small but highly 

significant difference in the basal CFP/YFP emission intensity ratio (R) at the 

centrosome as compared to the bulk cytosol (Fig. 2A), indicating that in resting, non-

stimulated interphase cells the level of cAMP at the centrosome is lower than the 

average cAMP level in the cytosol. 

A similar difference between bulk cytosol and centrosome was detected by RII_epac 

(Suppl. Fig. 2A), a unimolecular FRET reporter for cAMP carrying at its amino-terminus 

the D/D domain from the RII subunit of PKA (Di Benedetto et al., 2008) and therefore, 

similarly to PKA-GFP, able to interact with endogenous centrosomal AKAPs (Fig. 2B). 

The RII_epac reporter detects a significant difference between cytosolic and 

centrosomal basal cAMP levels in a number of other cell types analyzed, including the 

macrophage cell line RAW264.7, the human neuroblastoma cell line SH-SY5Y(Biedler 

et al., 1978), primary human olfactory neurons (HON), primary rat cardiac fibroblasts 

(RCF) (Fig. 2C) and the non-transformed cell line RPE1 (Suppl. Fig 3A). 

PDE4D3 is responsible for the low basal cAMP level at the centrosome. In a variety 

of cell types, including CHO cells (Suppl. Fig. 4A) and RPE1 (Suppl. Fig. 3B) PDE4D3 

localizes to the centrosome and has been shown to bind to AKAP450 (McCahill et al., 

2005; Tasken et al., 2001). Anchoring of PDE4D3 at the centrosome may therefore 
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explain the observed low cAMP level at this site. In support of this hypothesis, selective 

inhibition of PDE4 enzymes with 10 µM rolipram completely abolished the difference in 

cAMP between the centrosome and the bulk cytosol as detected by both PKA-GFP and 

RII_epac (Fig. 3A-C). In contrast, selective inhibition of PDE2 with 10 µM EHNA (Fig. 

3D, E) or selective inhibition of PDE3 with 10 µM cilostamide (Fig. 3F) did not affect the 

gradient between centrosome and cytosol. In further support of a role of PDE4D3 in 

maintaining a low basal cAMP level at the centrosome, genetic knock down of PDE4D 

using a small RNA interference approach and resulting in an almost complete ablation 

of all PDE4D isozymes (Suppl. Fig. 4B) completely abolished the differences in cAMP 

levels between cytosol and centrosome (Fig. 3G-H) whereas the control oligonucleotide 

siGLO did not show any effect (Fig. 3I). Anchoring of active PDE4D3 at the centrosome 

appears to be necessary to maintain low the local cAMP concentration as shown by 

experiments where we used a catalytically-inactive mutant of PDE4D3 (dnPDE4D3) 

(McCahill et al., 2005). When over-expressed, dnPDE4D3 localizes at the centrosome 

(Suppl. Fig. 4C) and is expected to displace endogenous active PDE4D3 from its 

centrosomal anchor sites. Over-expression of dnPDE4D3 in CHO cells completely 

abolished the difference in cAMP concentration between the centrosome and the 

cytosol, as detected by the co-expressed PKA-GFP (Fig. 3J-K). In contrast, over-

expression of a catalytically-inactive mutant of a different PDE4 isozyme, (dnPDE4A4, 

Suppl. Fig. 4C) (McCahill et al., 2005) did not affect the cAMP gradient between cytosol 

and centrosome (Fig. 3L). Taken together the above data strongly indicate that 

PDE4D3 is responsible for maintaining a microdomain with low cAMP concentration at 

the centrosome. 
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PKA anchored to AKAP450 shows increased sensitivity to cAMP. We next 

assessed the cAMP response generated in the bulk cytosol and at the centrosome upon 

activation of ACs with forskolin, using either the RII_epac or the PKA-GFP reporter. 

Upon application of 25 µM forskolin we found that the RII_epac sensor reported an 

equal FRET change in the cytosol and at the centrosome (Fig. 4A) whereas, 

unexpectedly, the PKA-GFP reporter recorded a significantly higher signal at the 

centrosome than in the bulk cytosol (Fig. 4B). To explain this discrepancy, we 

hypothesized that the higher FRET change recorded at the centrosome by PKA-GFP 

may be the consequence of an increased sensitivity to cAMP of the centrosomal 

targeted PKA-based biosensor. To verify this hypothesis we expressed the PKA-GFP 

sensor in CHO cells in combination with a fragment of the centrosomal AKAP450 

encompassing amino acids 933-1804 (AKAP450-2) (Witczak et al., 1999) and including 

the amphipatic helix responsible for binding the RII subunits of PKA. AKAP450-2 lacks 

the PACT domain responsible for anchoring of AKAP450 to the centrosome (Gillingham 

and Munro, 2000) (Suppl. Fig. 2B). Thus, when expressed in cells, AKAP450-2 is a 

cytosolic polypeptide (Fig. 4C) that retains its ability to bind to PKA RII subunits (Fig. 

4D). The rationale for this experiment is that if anchoring of PKA to endogenous 

AKAP450 at the centrosome affects the kinase sensitivity to cAMP, the same effect 

should result from PKA binding to AKAP450-2 in the cytosol. Fig 4E shows that this is 

the case and, as reported in Fig. 4F, the dose-response curve where FRET change is 

plotted against increasing concentrations of forskolin shows a shift to the left for cells 

co-expressing the FRET sensor and AKAP450-2, confirming that a lower concentration 

of cAMP is sufficient to dissociate PKA-GFP when it is bound to AKAP450. The effect of 
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AKAP450-2 on the sensitivity of PKA-GFP to cAMP is completely abolished in the 

presence of SuperAKAP-IS (Fig. 4G), confirming that this effect depends on the 

interaction of PKA-GFP with AKAP450-2. AKAP450-2 has no effect on the FRET 

change detected by a variant of the PKA-GFP sensor (ΔPKA-GFP) in which the D/D 

domain of the RII subunit has been deleted (Zaccolo and Pozzan, 2002), thereby 

resulting in a sensor that cannot bind to AKAPs (Fig. 4H) or when a serine to proline 

substitution (S1451P) is introduced in AKAP450-2 (mutAKAP450-2) that disrupts the 

amphipatic helix and abolishes the ability of PKA-GFP to bind (Feliciello et al., 2001); 

(Alto et al., 2003) (Fig. 4I). As an additional control, we measured the FRET change 

reported by the sensor RII_epac when co-expressed with the AKAP450-2 fragment and 

we found no difference compared to the FRET change recorded in the presence of the 

sensor alone (Fig. 4J). The increased sensitivity to cAMP appears to be specific for 

PKA enzymes anchored to AKAP450 as co-expression of PKA-GFP with fragments 

from Rt31 (Klussmann et al., 2001), AKAP79 (Herberg et al., 2000) or AKAP149 

(Carlson et al., 2003), all including the RII-binding amphipatic helix, did not result in a 

significant difference in the FRET response compared to control cells expressing the 

sensor alone (Fig.4K-M). Overall, the above data show that anchoring of PKA to 

AKAP450 results in an increased sensitivity of the FRET signal to cAMP, which is 

indicative of a reduced activation threshold of PKA.  

Binding of PKA to AKAP450 results in increased phosphorylation activity. To 

establish whether anchoring of PKA to AKAP450 affects PKA-mediated phosphorylation 

we measured the activity of endogenous PKA using the cytosolic FRET based A-kinase 

activity reporter AKAR3 (Allen and Zhang, 2006). As summarized in Fig. 5A, upon 
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challenge with forskolin 25 µM, cells over-expressing AKAR3 in combination with 

AKAP450-2 show a significantly higher cytosolic PKA activity than control cells 

expressing AKAR3 alone. No difference in PKA activity was observed when AKAR3 

was co-expressed with the AKAP79 (Fig. 5B). To establish what is the functional 

outcome of having at the centrosome a microdomain with low cAMP concentration but a 

subset of PKA with higher sensitivity for cAMP, we used a variant of AKAR3 that 

includes the D/D domain at its amino terminus (RII_AKAR3) (Stangherlin et al., 2011) 

and therefore localizes at the centrosome (Fig. 5C). We found that RII_AKAR3 detects 

a higher PKA activity at the centrosome both in resting conditions (Fig. 5D) and in 

response to forskolin stimulation (Fig. 5E). The above results confirm that anchoring of 

PKA to AKAP450 lowers the activation threshold of PKA resulting in increased PKA 

activity at a given cAMP concentration and show that in interphase cells the low cAMP 

concentration at the centrosome is sufficient to maintain a higher basal phosphorylation 

activity of AKAP450-anchored PKA. 

Anchoring of PKA to AKAP450 enhances RII subunit auto-phosphorylation. It is 

well established that auto-phosphorylation of the RII subunit at Ser114 (Kim et al., 2006) 

results in a reduced activation threshold for PKA (Taylor et al., 1990; Taylor et al., 

2008). We therefore asked whether anchoring of PKA to AKAP450 may favor auto-

phosphorylation of RII at S114. As shown in Fig. 6A-B we found that phosphorylation at 

S114 of both endogenous RII subunits and over-expressed recombinant RII-CFP 

subunits was indeed significantly increased in CHO cells over-expressing AKAP450-2. 

To further assess whether auto-phosphorylation of RII is the mechanism responsible for 

the higher sensitivity to cAMP displayed by the PKA subset anchored to AKAP450, we 
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generated a mutant of the PKA-GFP sensor (mutPKA-GFP) in which the RII subunit 

contains a S114A substitution, resulting in ablation of RII auto-phosphorylation 

(Rodriguez-Vilarrupla et al., 2005; Taylor et al., 1990; Wehrens et al., 2006) (Fig. 6C). 

When mutPKA-GFP was over-expressed in combination with AKAP450-2 and FRET 

changes measured in the bulk cytosol, the FRET change in response to 25 µM forskolin 

was of the same amplitude as the change measured in cells expressing the mutant 

sensor alone (Fig. 6D) indicating that auto-phosphorylation at S114 is necessary for the 

ability of AKAP450-2 to affect the activation threshold of PKA. mutPKA-GFP maintains 

an intact D/D domain and can therefore anchor to the centrosome (Fig. 6E, insert). 

When CHO cells expressing mutPKA-GFP were challenged with 25 µM forskolin and 

the FRET change measured in the cytosol and at the centrosome in the same cell, we 

found no significant difference between the two compartments (Fig. 6E), confirming that 

the higher sensitivity to cAMP of the centrosome-anchored PKA requires auto-

phosphorylation of RII at S114. 

The centrosomal microdomain with low cAMP is abrogated in mitosis. To 

investigate the possible functional relevance of the centrosomal microdomain with low 

cAMP we sought to establish whether the difference between cytosolic and centrosomal 

cAMP levels changes in different stages of the cell cycle. As shown in Fig. 7A, mitotic 

cells expressing RII_Epac show a uniform cAMP level at the centrosome and in the bulk 

cytosol. The global cAMP concentration in mitotic cells does not appear to be 

significantly different from the global cAMP concentration in interphase cells (Fig. 7B), 

indicating that a selective increase in cAMP concentration occurs at the centrosome site 

in mitosis. Notably, in agreement with the local increase in cAMP concentration at the 
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centrosome in mitotic cells, PKA phosphorylation activity is further increased selectively 

at this site, as detected by the RII_AKAR3 reporter (compare Fig. 7C and Fig 5C-D, 

3.98%±0.57 and 6.69%±0.4 higher FRET signal in the centrosome compared to the 

cytosol in interphase and mitosis, respectively, p=0.0005). The above data indicate that 

the centrosomal cAMP microdomain is dynamic and is abrogated in mitotic cells.  

As the MAP kinase ERK has been shown to inhibit PDE4D3 via phosphorylation of its 

catalytic domain (Baillie et al., 2000) we asked whether mitogenic stimuli that activate 

the MAP kinase pathway could affect the centrosomal cAMP microdomain. As shown in 

Fig. 7D in CHO cells stably expressing RII_Epac and treated with 10 nM EGF the 

centrosomal microdomain with low cAMP was completely abrogated as a consequence 

of a selective increase of the FRET signal at this site.  

Local manipulation of cAMP signals at the centrosome distinctly affects the cell 

cycle. It has been previously reported that displacement of the endogenous 

centrosomal AKAP450 and the consequent delocalization of centrosomal PKA type II 

impairs cell cycle progression (Keryer et al., 2003), indicating that centrosomal PKA 

may play an important role in the control of cell division. The data presented above 

suggest that the unique handling of cAMP signals at the centrosome at different stages 

of the cell cycle may be important for the regulation of cell cycle progression. To test 

this hypothesis we used flow cytometric analysis to monitor the effects on the cell cycle 

of displacing endogenous PDE4D3 with dnPDE4D3, a maneuver that results in local 

increase of cAMP at the centrosome (Fig. 3J-K and Fig. 8E). We found that CHO cells 

stably expressing dnPDE4D3 show a significantly higher number of cells in G2/M and 

significantly lower number of cells in S phase, suggestive of a block of the cell cycle in 
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G2/M (Fig. 8A). Similar results were found in cells synchronized in S phase prior to 

analysis (Suppl. Fig. 5). In contrast, and as previously described (Gutzkow et al., 

2002), treatment of CHO cells with 25 µM forskolin, which ensues a global increase in 

cAMP levels (Fig. 8E), results in a block of the cell cycle in G1, with an increased 

proportion of cells with 2N DNA content, a significantly reduced number of cells in S 

phase but no change in G2/M (Fig. 8B). Over-expression of a catalytically inactive 

version of the control enzyme dnPDE4A4 did not show any effect on the cell cycle (Fig. 

8C). Inhibition of all PDE4 isoforms with 10μM rolipram, a treatment that results in 

increase of cAMP both at the centrosome and in the cytosol, albeit at a lower level than 

elicited by forskolin (Fig. 8E), did not result in a detectable effect on cell cycle 

progression (Fig. 8D). The above findings show that selective local manipulation of 

cAMP at the centrosome activates a downstream pathway with distinct effects on cell 

division.  

Ablation of the centrosomal microdomain with low cAMP results in accumulation 

of cells in prophase. In order to gain further insight into the mechanism responsible for 

accumulation of cells in G2/M when the centrosomal cAMP microdomain is perturbed, 

we generated a stable CHO cell clone expressing a RFP-tagged histone 2B (H2B-RFP) 

alone or in combination with a GFP-tagged dnPDE4D3 or dnPDE4A4. H2B-RFP labels 

the chromatin and allows for identification of different phases of the cell cycle. As 

illustrated in Fig. 9A, interphase cells show a homogeneous red fluorescence in the 

nucleus; cells in prophase can be clearly identified by the presence of condensed 

chromatin and an intact nuclear membrane; subsequent mitotic phases can be identified 

by the position of the chromosomes along the mitotic fuse. Using this approach we 
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assigned cells to one of the following categories: interphase, prophase, metaphase, 

anaphase/telophase. We found that CHO cells co-expressing H2B-RFP and dnPDE4D3 

have a significantly higher number of cells in prophase compared to CHO cells 

expressing H2B-RFP alone or H2B-RFP in combination with dnPDE4A4 (Fig. 9B).  
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Discussion 

The data reported here strongly support the novel proposal that: i) the centrosome in 

interphase is a subcellular compartment in which basal cAMP levels are lower than in 

the bulk cytosol as a consequence of centrosomal localization of PDE4D3; ii) anchoring 

of PKA to centrosomal AKAP450 lowers the activation threshold of PKA as a 

consequence of increased auto-phosphorylation of AKAP450-anchored RII subunits at 

S114; iii) the centrosomal cAMP microdomain is dynamic and is abrogated in mitosis, 

possibly via activation of the MAP kinase pathway; iv) manipulation of cAMP at the 

centrosome via displacement of PDE4D3 uniquely affects cell cycle progression 

resulting in a highly significant increase in the number of cells in G2/M phase with 

accumulation of cells selectively in prophase. These findings demonstrate that local 

regulation of cAMP signals at the centrosome is critical for control of cell division.  

In addition to a well established function as microtubule organizing centre, the 

centrosome has recently been shown to play a role in cell cycle control (Doxsey et al., 

2005). For example, active maturation promoting factor (MPF), the key initiator of 

mitosis, is found at the centrosome during prophase (Jackman et al., 2003) and studies 

in which the centrosome was removed by microsurgical dissection (Hinchcliffe et al., 

2001) or laser ablation (Khodjakov and Rieder, 2001) have provided direct evidence for 

a role of the centrosome in cell cycle progression. Of particular note, cell cycle arrest in 

G1 (Gillingham and Munro, 2000; Keryer et al., 2003), as well as a block of cytokinesis 

(Keryer et al., 2003), were observed when AKAP450 and PKA were selectively 

displaced from the centrosome, suggesting that a cAMP/PKA signaling module 

localized at this site may serve a critical role. cAMP/PKA signaling has been shown to 
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be involved in many aspects of cell cycle regulation, including centrosome duplication, 

S-phase, G2 arrest, mitotic spindle formation, exit from M-phase and cytokinesis 

(Matyakhina et al., 2002) and it is possible that different cAMP/PKA signaling modules 

may be responsible for the regulation of specific cell cycle-related events. In line with 

this view, our results show that whereas a global increase in cAMP levels, as generated 

by forskolin stimulation, results in an accumulation of cells in G1, the local increase of 

cAMP generated by displacing PDE4D3 from the centrosome has a completely different 

effect, resulting in accumulation of cells in G2/M. Further investigations will be necessary 

to identify the specific targets downstream of AKAP450-anchored PKA. However, in 

agreement with our findings, cAMP/PKA-dependent reduction of histone H3 

phosphorylation (Rodriguez-Collazo et al., 2008b), an event that results in disruption of 

G2 progression in adenocarcinoma cells, has been shown to require a concentration of 

cAMP that is significantly lower than the amount of cAMP necessary for PKA-mediated 

phosphorylation of CREB (Rodriguez-Collazo et al., 2008a), suggesting that the pool of 

PKA responsible for control of G2 progression is more sensitive to cAMP than the pool 

of PKA that regulates gene transcription.  

The data reported here clearly show that cAMP signals are uniquely processed at the 

centrosome where a high-sensitivity PKA subset is associated with a PKA-activatable 

and ERK-inhibitable PDE. Our findings are compatible with a model whereby the lower 

activation threshold of PKA tethered to AKAP450 allows for local activation of PKA at a 

concentration of cAMP that is insufficient to activate PKA subsets at other subcellular 

locations. Mitogenic stimuli selectively increase cAMP at the centrosome resulting in 

further activation of PKA at this site in the absence of global increase of cAMP levels. In 
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agreement with this model, over-expression of a catalytically inactive mutant of PDE4D3 

in COS1 cells was shown to result in its PKA-dependent hyper-phosphorylation 

selectively at the centrosome even at resting levels of cAMP (McCahill et al., 2005), 

suggesting that the centrosomal PDE4D3 modulates activation of the local pool of PKA 

at basal cAMP concentrations. The feed-back loop mechanism described here and 

involving a high-sensitivity subset of PKA coupled with a PKA-activatable and ERK-

inhibitable PDE at the centrosome, not only allows tight temporal control of centrosomal 

cAMP signals, but also provides a potential basis for autonomous regulation of 

centrosomal cAMP/PKA-dependent events, independently of global increase in cAMP 

and therefore of Gs protein-coupled receptors activation.  

The functional relevance of the centrosomal cAMP microdomain that we have identified 

is illustrated by the disruption of cell cycle progression in CHO cells in which cAMP 

levels are selectively elevated at the centrosome via over-expression of a catalytically 

inactive PDE4D3. We found that in these conditions cell cycle progression is disrupted 

and cells accumulate in prophase. Of note, we also found that over-expression of 

dnPDE4D3 is not tolerated in RPE1 cells (Suppl. Fig 3), indicating that the effect of 

manipulating the centrosomal cAMP microdomain may be incompatible with cell cycle 

progression in non-transformed cells. 

The data presented here show that during interphase, although the cAMP level at the 

centrosome is lower than in the bulk cytosol, it is sufficient to maintain a tonic activity of 

PKA at this site as a consequence of the reduced activation threshold of the local PKA 

subset. This finding is in agreement with the established notion that PKA activity is 

required to maintain cells in interphase (Bombik and Burger, 1973); (Lamb et al., 1991). 

19 
 



Ms. No. 201201059    01/06/2012 
 

20 
 

Our analysis shows that in mitosis there is a further increase in PKA activity at the 

centrosome, raising the question of how PKA activity is tuned temporally to allow 

progression from interphase to mitosis. Further studies with higher temporal resolution 

will be necessary to dissect cAMP signals and PKA activity at the centrosome within the 

same cell as it progresses from interphase and through mitosis in order to establish 

whether there is a short temporal window within which PKA activity is reduced to allow 

the interphase/mitosis transition. In this context, the activity of phosphatases may also 

be critical as it may counterbalance substrate phosphorylation by a tonically active 

centrosomal PKA subset.  

Our study uncovers a completely novel mechanism of PKA activity regulation. Such 

regulation relies on binding of PKA to AKAP450 and the consequent reduction of the 

kinase activation threshold rather than on changes in the level of cAMP and is therefore 

effective only at the sites where AKAP450 is localized. Non-centrosomal splice variants 

of AKAP450 localize at the sarcolemma of cardiac myocytes in a complex with the 

slowly activating potassium channels IKs (Walsh and Kass, 1988) and to NR1 subunits 

of glutamate receptors at post-synaptic sites in neurons (Lin et al., 1998) and it will be 

interesting to establish whether the regulation described here at the centrosome also 

operates at these other sites. The novel mechanism we describe defines a new function 

for AKAPs and introduces a further level of complexity to the already sophisticated 

regulation of cAMP/PKA signaling and may have implications that extend beyond the 

control of cell cycle progression. 
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Material and Methods 

Reagent 

Forskolin (cat. n°F6886), Rolipram (cat. n°R6526), Cilostamide (cat. n°C7971), EHNA 

(cat. n°E114), H-89 (cat. n°B1427), EGF (cat. n°E9644) were purchased from SIGMA.  

Generation of fluorescent chimeras 

The CFP tagged R subunit of PKA (Lissandron et al., 2005) was sub-cloned into 

pCDNA3.1/Zeo (+) as a NheI/XbaI fragment. For the generation of mutRII-CFP the 

S114A mutation was introduced using the QuickChange™ Site-directed Mutagenesis 

Kit (cat. n°200518, Stratagene). The AKAP450-2 fragment from amino acid 933 to 

amino acid 1804 encoded by the AKAP450 cDNA (DDBJ/EMBL/GenBank accession 

N°AJ131693) (Witczak et al., 1999) was amplified by PCR and sub-cloned as a 

NheI/BamHI fragment in pcDNA3.1/Hygro (+). For mutAKAP450-2 the S1451P mutation 

was introduced using the QuickChange™ Site-directed Mutagenesis kit. The Rt31 

fragment from amino acid 2 to amino acid 1678 (DDBJ/EMBL/GenBank accession 

N°AF387102) (Klussmann et al., 2001) was PCR amplified and sub-cloned as an 

EcoRI/XhoI insert into pIRES vector (cat. n°631605, Clontech). Generation of 

dnPDE4D3mRFP: the sequence encoding for dnPDE4D3 (McCahill et al., 2005) was 

amplified by PCR and sub-cloned into the BstXI site of the multiple cloning site of 

pcDNA3.1/Hygro (+). The monomeric red fluorescent protein was then inserted as 

XhoI/XbaI fragment in frame at the C-terminus of dnPDE4D3. A schematic of the 

sensors and AKAP fragments used in this study is shown in Suppl. Fig. 2. 

Cell culture and transfection 
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CHO-K1 cells from Hamster Chinese ovary (Puck et al., 1958) were grown in Ham’s F-

12 medium (cat. n°21765-029, Invitrogen) supplemented with 10% (v/v) FBS (cat. 

n°10270106, Invitrogen), 2 mM L-glutamine (cat. n°25030-024, Invitrogen), 100 U/ml 

penicillin and 100 μg/ml streptomycin (cat. n°P07081, SIGMA) at 37°C in a humidified 

atmosphere containing 5% CO2. SH-SY5Y cells from human neuroblastoma (Biedler et 

al., 1978) were grown in Ham’s F-12:EMEM (cat. n°42430-025, Invitrogen) (1:1) 

supplemented with 10% (v/v) FBS, 2 mM L-glutamine, 1% (v/v) non essential amino 

acids (cat. n°11140-035, Invitrogen), 100 U/ml penicillin and 100 μg/ml streptomycin at 

37°C in a humidified atmosphere containing 5% CO2. RAW 264.7 cells (Raschke et al., 

1978) were grown in Dulbecco’s Modified Eagle Medium (DMEM) (cat. n°41966, 

Invitrogen) supplemented with 10% (v/v) FBS (cat. n° F9665, SIGMA), 2 mM of L-

glutamine, 100 U/ml of penicillin and 100 μg/ml streptomycin at 37°C in a humidified 

atmosphere containing 5% CO2. Enriched primary cultured of neonatal ventricular heart 

fibroblasts (RCF) were obtained from 1- to 3-day old Sprague Dawley rats as described 

in (Mongillo et al., 2006) . Briefly rats were killed by cervical dislocation and ventricular 

tissue was enzymatically digested with a mixture of collagenase (Roche) and pancreatin 

(Sigma). The isolated cell suspension was pre- plated for 2 hours in DMEM high 

glucose (cat. n°42430025, Invitrogen) supplemented with 20% (v/v) M-199 (cat. 

n°31150022, Invitrogen), 5% (v/v) horse serum, 0.5% (v/v) new born calf serum, 2 mM 

of L-glutamine, 10 U/ml of penicillin and 10 μg/ml streptomycin at 37°C in a humidified 

atmosphere containing 5% CO2. The plastic-adherent non-myocyte cells obtained are 

fibroblasts. These were trypsinized and plated on coverslips for further analysis. Human 

Olfactory Neurons (HON) were grown in DMEM/F12 (cat. n°11330-032, Invitrogen) 
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supplemented with 10% (v/v) FBS, 100 U/ml penicillin and 100 μg/ml streptomycin at 

37°C in a humidified atmosphere containing 5% CO2. The retinal pigment epithelial 

RPE1 cells (Bodnar et al., 1998) were grown in DMEM:F-12 medium (cat. n° 11320-

074, Invitrogen) supplemented with 10% (v/v) FBS (cat. n°10270106, Invitrogen), 2 mM 

L-glutamine (cat. n°25030-024, Invitrogen), 100 U/ml penicillin and 100 μg/ml 

streptomycin (cat. n°P07081, SIGMA) at 37°C in a humidified atmosphere containing 

5% CO2. 

For transient expression, cells were seeded onto 24-mm glass coverslips in complete 

medium and grown for 24 hours as described in (Terrin et al., 2006). Transfections were 

performed at 50–70% of confluence. All cell types were transfected with TransIT®-LT1 

Reagent (cat. n°M2300, Mirus) following the supplier’s instructions and using 2-4 μg of 

DNA per coverslip. Experiments were performed 24-48 hours after transfection.  

Knock down of PDE4D was achieved by using a small interfering RNA oligonucleotide 

targeting the PDE4D gene (125nM final concentration) (sequence: 

GAACUUGCCUUGAUGUACA, Thermo scientific Dharmacon) as previously described 

(Lynch et al., 2005). Control experiments were carried out using siGLO® Red 

transfection indicator (125 nM) (cat. n°D-001630-02-20, Thermo scientific Dharmacon). 

 

Generation of stable clones  

Stable clones expressing the PKA-GFP sensor have been described before (Vaasa et 

al., 2010). Briefly a CHO clones stable expressing RII-CFP was selected with 300 μg/ml 

of Zeocine™ and successively used to select a stable clones expressing the C-YFP 
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subunit by using 800 μg/ml of Geneticin®; CHO clones stably expressing either 

RII_epac or RII_AKAR3 sensor (Di Benedetto et al., 2008) were obtained by selection 

with 800 μg/ml of Geneticin®; CHO and RPE1 clones stably expressing 

dnPDE4D3mRFP1 were selected using 700 μg/ml of Hygromycin B (Invitrogen); CHO 

stable clone expressing pcDNA3dnPDE4A4-GFP was selected using 800 μg/ml of 

Geneticin® (Promega). Stable clones expressing either the GFP- or the RFP- tagged 

histone H2B were obtain by selection with 5 μg/ml of Blasticidin S (Invitrogen). In all 

cases, after 12 days treatment with the antibiotic cells were seeded in a 96 plate at 0.8 

cells/well and single clones growing in individual wells selected for further expansion. 

RT-PCR 

Total mRNA was extracted with TRIzol® Reagent (cat. n°15596026, Invitrogen) from 

cells transfected with dnPDE4D3mRFP before or after selection with Geneticin. An 

aliquot of total mRNA was reversed transcribed with 1 μl SuperScript™ II RT 2000U/µl 

(cat. n 18064022, Invitrogen) to generate cDNA. Amplification of the coding regions of 

dnPDE4D3mRFP was performed by using specific primers annealing on the D484A 

mutation (McCahill et al., 2005). Primers used were as follows: 5’-

GGTAACCGGCCCTTGACTG-3’ and 5’-

GGTTCTTCAGAATATGGTGCACTGTGCAGAT-3’ for amplification of PDE4D3 wild 

type; 5’-GGTAACCGGCCCTTGACTG-3’ and 5’-GGTTCTTCAGAATATGGTGCACT 

GTGCAGCA-3’ for amplification of dnPDE4D3.  

 

FRET imaging 
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Cells stably or transiently expressing a FRET-based cAMP sensor were imaged 24 

hours after transfection as described in (Monterisi et al., 2012). Briefly, cells were 

imaged on an Olympus IX81 inverted microscope equipped with a PlanApoN 60X/1.42 

oil immersion objective, an ORCA AG CCD camera (Hamamatsu) and a custom made 

beam splitter including the specific set of emission filters for CFP and YFP acquisition 

(dichroic mirror 505DCLP, YFP emission 545 nm, CFP emission 480 nm, Chroma 

Technology). During FRET experiments cells were bathed with 37°C pre-warmed PBS. 

Images were acquired using CellR software (Olympus) and processed using ImageJ 

(National Institutes of Health, Bethesda). FRET changes were measured in different cell 

compartments by drawing a region of interest (ROI) around a specific compartment 

(centrosome or cytosol). FRET changes of all the cAMP sensors were measured as 

changes in the 480/545-nm fluorescence emission intensities after background 

subtraction on excitation at 430 nm. For AKAR3 and RII_AKAR3 sensors FRET 

changes were measured as changes in the ratio between 545/480-nm fluorescent 

emission intensities after background subtraction upon excitation at 430nm. For 

dynamic FRET changes: the kinetic of the 480/545-nm emission intensity ratio is plotted 

against time and the average FRET response is expressed as % ΔR/R0, where ΔR = R 

– R0, R0 is the ratio at time = 0 seconds (s) and R is the ratio at time = t seconds (s). For 

steady-state (or basal) FRET: 480/545-nm emission intensity values measured in the 

cytosol (Rcyt) and at the centrosome (Rcentr) are expressed as normalized values with 

respect to the basal FRET ratio value measured in the cytosol (Rcyt). Ratio-metric 

images are displayed in pseudo-color, according to a user-defined lookup table that 

assigns a different color to each ratio value, as indicated. 
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Western Blotting and immunoprecipitation 

Untransfected CHO cells or CHO cells stably expressing PKA-GFP were seeded on 10 

cm tissue culture dishes, treated as indicated and washed twice with ice cold D-PBS 

before cell lysis. Cell lysates were prepared in lysis buffer containing 25 mM Hepes, pH 

7.5, 2.5 mM EDTA, 50 mM NaCl, 30 mM sodium pyrophosphate, 10% (v/v) glycerol and 

1% (v/v) Triton X-100 (cat. n°106K0177, SIGMA) and Complete™ EDTA-free protease 

inhibitor cocktail tablets (cat. n°11836170001, Roche). AKAP450-GFP was isolated 

from cells lysates via immunoprecipitation with GFP-trap beads (cat. n°gta-100, 

Chromotec) following the manufacturer’s instructions. Protein concentration was 

determined using the Bradford Protein Assay (Biorad). Proteins were separated by 

gradient gel electrophoresis on NuPAGE Novex 4-12% Bis-Tris gels (Invitrogen) and 

transferred to Polyvinylidene fluoride (PVDF) membranes (Millipore). Membranes were 

then blocked either with Protein-Free T20 (TBS) Blocking Buffer (Thermo Scientific) or 

5% (w/v) skimmed milk in TBS-T for 1 hour at room temperature. The following 

antibodies were used to probe the membranes: Mouse Anti-PKARII (BD Transduction 

Laboratories™), Mouse Anti-PKARII (pS114) (BD Transduction Laboratories™), goat 

pan-PDE4D (kind gift from Prof Miles Houslay, University of Glasgow) and goat Anti γ-

tubulin (C-20) (Santa Cruz). Results, representing the mean of at least three 

independent experiments, were normalized to the amount of γ-tubulin. 

Cells synchronization 

G1/S synchrony was obtained by double block with thymidine (Sigma). Briefly cells were 

treated with 5 mM thymidine in FBS-free medium for 16 hours, released to cycle in 
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medium supplemented with FBS for 8 hours and blocked again for additional 16 hours. Cells 

were let to recover for 24 hours in completed medium with or without 10 µM rolipram before 

FACS analysis. 

Immunostaining and Confocal Imaging 

Cells, transiently or stably expressing the PKA-GFP sensor, were washed three times 

with ice cold D-PBS. The centrosome was exposed by treatment with PHEM solution 

(45 mM Pipes, 45 mM HEPES, 10 mM EGTA, 5 mM MgCl2, 1 mM PMSF and 0.1% (v/v) 

Triton X-100, pH 6.9) for 30 seconds at room temperature. Cells were then fixed with ice 

cold methanol for 5 minutes at -20°C, washed twice in D-PBS and saturated in 3% BSA 

for 30 minutes at room temperature. Primary antibodies were diluted in 3% BSA and 

incubated overnight in a wet chamber. CTR453 (Bailly et al., 1989) was used at a 1:5 

dilution, rabbit anti-PDE4D3 (kind gift from Prof Miles Houslay, University of Glasgow, 

UK) was used at a 1:500 dilution and goat anti γ-tubulin (C-20) (Santa Cruz) was used 

at 1:2000. Goat anti-mouse AlexaFluor® 568 (Invitrogen), goat anti-rabbit AlexaFluor® 

568 (Invitrogen) and donkey anti-goat AlexaFluor® 488 (Invitrogen) were used as 

secondary antibodies. Secondary antibody alone was used for controls. Confocal 

images were acquired with a Nikon Eclipse TE300 inverted microscope equipped with a 

spinning disk confocal system (Ultraview LCI; PerkinElmer), a 60×1.4 NA PlanApo 

objective (Nikon) and an Orca ER 12-bit CCD camera (Hamamatsu). Cells were excited 

at 568 nm laser line of a 643 series Argon-Krypton-Laser Melles Griot (643-Ryb-A02; 

Melles Griot) for imaging of the AlexaFluor568 fluorophore and the 405 nm line of a 

diode laser (iFlex2000; Point Source) for imaging CFP. The emission filters were 607/45 

for the red emission and 480/30 for the cyan emission, respectively. 
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Flow cytometry scan analysis  

Approximately 106 of cells were treated as indicated and grown in a T75 flask for 48 

hours. After 48 hours exponentially growing cells were trypsinized, washed twice with D-

PBS, and re-suspended in 300 μl of D-PBS. 700 μl of ice-cold 70% (v/v) EtOH/PBS was 

added drop-wise and the samples were incubated at 4°C for 1 hour. After incubation 

cells were spun down, washed with 1 ml of D-PBS, re-suspended in 250 μl of D-PBS 

containing 5 μl of 10 mg/ml RNAaseA (SIGMA) and incubated for 1 hour at 37°C. 

Samples were stained with 5 μl of 1 mg/ml of propidium iodide and kept in the dark at 

4°C until analysis. Flow cytometric analysis was performed using a FACSCalibur flow 

cytometer (Becton Dickinson) and data collected were analyzed with FlowJo software 

and computed using the "Dean-Jett-Fox” model.  

Statistics 

Data are presented as mean ± standard error (SEM). Two tailed paired and un-paired 

Student’s t-tests were used to determine significance between groups, as indicated. 

Number of replicates and the type of Student’s t-test used are indicated in the text. 

Asterisks are used to indicate levels of significance based on p-values: ∗ p<0.05; ∗∗ 

0.001<p<0.01; ∗∗∗ p<0.001. 

Online supplementary material.  

FigS1 shows that PKA-GFP localizes at the centrosome and that its over-expression 

does not affect the centrosome morphology. Fig.S2 shows a schematic representation 

of the RII_epac sensor, AKAP450 and AKAP450-2 fragment. A schematic of the 
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interaction between the FRET-based sensors and AKAP constructs used in this study is 

also shown. Fig. S3 shows the localization of the PKA-GFP sensor and PDE4D3 in the 

non-transformed cell line RPE1. Fig.S3 shows also analysis of the basal FRET signal at 

the centrosome and in the bulk cytosol in the same cell line. Fig.S4 shows the 

localization of endogenous PDE4D3 in CHO cells, the efficiency of its knock-down and 

the localization of the over-expressed catalytically dead PDE4D3 isoform in CHO cells. 

Fig.S5 shows the FACS analysis of cell cycle progression in CHO, CHO treated with 

rolipram and CHO stably expressiong the catalytically dead PDE4D3 after 

synchronization in G1/S phase.  
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Abbreviations List  

aa = amino acid 

AC = adenylyl cyclases 

AKAP = A Kinase anchoring proteins 

AKAR3 = A-Kinase activity reporter 

cAMP = 3’, 5’ cyclic adenosine monophosphate 

CFP = cyan fluorescent protein  

CREB = CRE binding protein 

D/D = docking domain 

EHNA = erythro-9-2-hydroxy-3-nonyl adenine 

ERK = extracellular regulation kinase 

FACS = Flow cytometry scan analysis  

FRET = fluorescence resonance energy transfer 

GFP = green fluorescent protein  

MPF = Maturation Promoting Factor 

mRFP = monomeric ref fluorescent protein 

PDE = phosphodiesterase  

PKA = cAMP-dependent protein kinase 

SEM = standard error of measurement or mean 

YFP = yellow fluorescent protein 
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Figure legends 

 

Figure 1. The FRET sensor PKA-GFP localizes to the centrosome via binding to 

endogenous AKAPs. A) Upper panel: Schematic representation of the cAMP sensor 

PKA-GFP. RII-CFP: PKA regulatory subunit type II (RII) fused to the cyan fluorescent 

protein (CFP). D/D indicates the dimerization/docking domain; IS indicates the catalytic 

inhibitory site and auto-phosphorylation site; domain A and domain B indicate the cAMP 

binding domain A and B, respectively. C-YFP: catalytic subunit of PKA (C) fused to the 

yellow fluorescent protein (YFP). The lower panel illustrates the interaction of PKA-GFP 

with an AKAP (in green) and its mechanism of activation upon binding of cAMP. The 

yellow and blue halos around YFP and CFP indicate fluorescence emission from the 

fluorophores upon excitation of CFP at 430nm. B) Subcellular distribution of the sensor 

in a CHO cells stably expressing PKA-GFP in interphase (left) and mitosis (right). White 

arrows point to the centrosome and one of the centrioles, respectively. C) CHO cells 

stably expressing PKA-GFP and immunostained with a γ-tubulin specific antibody (top 

panels) and with the AKAP450-specific antibody CTR453 (middle panels). A negative 

control (nc) in which the primary antibody is omitted is shown in the bottom panels. The 

signal from the C-YFP component of the sensor is not shown. D) CHO cells expressing 

SuperAKAP-IS-GFP (left upper panel) and RIAD-GFP (left lower panel) in combination 

with RII-RFP (upper and lower panel on the right). Size bars = 10µm. 

 

Figure 2. Basal cAMP in interphase cells is lower at the centrosome than in the 

cytosol. A) CHO cell stably expressing the PKA-GFP sensor. The middle panel in gray 
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scale is the image acquired at 480nm upon excitation at 430nm and shows the 

subcellular distribution of the sensor. The signal generated by the C-YFP component of 

the PKA-GFP sensor is not shown. The FRET signal from the same cell, calculated as 

480nm/540nm emission intensity ratio upon excitation at 430nm, is shown in pseudo-

color. Panels on the left show a higher magnification of the centrosomal region. White 

arrows point to the centrosome. The panel on the right shows the average basal FRET 

signal measured in the bulk cytosol (cyt) and at the centrosome (centr) of cells stably 

expressing PKA-GFP. FRET values are the average calculated within a region of 

interest (ROI) drawn to include the entire cytosolic area or the centrosome, respectively 

(an example is provided in Fig 4 A, B) and are expressed relative to the FRET value 

measured in the cytosol. n= 34 B) CHO cells stably expressing the unimolecular sensor 

RII_epac. Description of panels is as in A). n= 31. C) Sensor distribution and FRET 

pseudo-color images of RAW264.7 cells, SH-SY5Y cells, primary human olfactory 

neurons (HON) and primary rat cardiac fibroblasts (RCF) expressing RII_epac. For 

each cell type bottom panels show the average FRET signal in the cytosol and at the 

centrosome calculated as described in A). n≥ 5. For all experiments, error bars 

represent SEM. Two tailed; paired t-test, ∗ p<0.05; ∗∗∗ p<0.001. Size bars = 10µm. 

 

Figure 3. The low cAMP compartment at the centrosome depends on centrosomal 

PDE4D3. A) Sensor distribution and FRET pseudo-color image of a representative 

CHO cell stably expressing PKA-GFP and treated with 10 µM rolipram. Panels on the 

left are a magnification of the centrosomal region. B) Average basal FRET signal 

calculated in the cytosol and at the centrosome in CHO cells expressing PKA-GFP and 
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treated with the PDE4 inhibitor rolipram (10 µM). n = 44 C) Average basal FRET signal 

calculated in the cytosol and at the centrosome in CHO cells expressing RII_epac and 

treated with 10 µM rolipram. n = 25 D) Sensor distribution and FRET pseudo-color 

image of representative CHO cells stably expressing PKA-GFP and treated with the 

PDE2 inhibitor EHNA (10 µM) and E) average basal FRET signal calculated in the 

cytosol and at the centrosome in the same cells. n = 46 F) Average basal FRET signal 

calculated in the cytosol and at the centrosome of CHO cells stably expressing PKA-

GFP and treated with the PDE3 inhibitor cilostamide (10 µM). n = 39 G) Sensor 

distribution and FRET pseudo-color image of a representative CHO cell stably 

expressing PKA-GFP and in which PDE4D isoforms have been knocked down by small 

interference RNA treatment. The average FRET signal in the cytosol and centrosome in 

these cells and in cells expressing the control sequence siGLO are shown in H) (n = 40) 

and I) (n = 40), respectively. J) Sensor distribution and FRET pseudo-color image of a 

representative CHO cell stably expressing PKA-GFP and a catalytically inactive mutant 

of PDE4D3 (dnPDE4D3); the average FRET signal in the cytosol and centrosome (n = 

31) is shown in K). L) Summary of the basal CFP/YFP ratio values recorded in the 

cytosol and at the centrosome of cells expressing a catalytically inactive mutant of 

PDE4A4 (n = 21). Error bar represents SEM. Two-tailed, paired t-test, ∗ p<0.05; ∗∗∗ 

p<0.001). Size bars = 10µm. 

 

Figure 4. PKA-GFP anchored to AKAP450 shows increased sensitivity to cAMP. A) 

On the left CHO cell stably expressing the RII_epac sensor. Representative region of 

interest (ROI) within which the ratio values are averaged for ‘bulk cytosol’ (black line) 
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and centrosome (grey line) are shown. On the right: normalized average kinetics ( n = 

31) of FRET change induced by 25 μM forskolin (frsk) in CHO cells stably expressing 

RII_epac and recorded in the cytosol (cyt; black circles) and at the centrosome (centr; 

grey circles). B) Left panel: CHO cell stably expressing the PKA-GFP sensor. Right 

panel: normalized average kinetics of FRET change detected in response to 25 μM frsk 

in CHO cells stably expressing PKA-GFP and recorded in the cytosol and at the 

centrosome (n = 35). C) Distribution of the GFP-tagged AKAP450-2 fragment in a 

representative CHO cell. D) Western blot analysis of lysates from CHO cells over-

expressing the GFP-tagged AKAP450-2 fragment. AKAP450-2 was immunoprecipitated 

using GFP-trap beads and the total lysate (L), the unbound fraction (NB) and the protein 

bound fraction (B) to the GFP-trap beads were immunoblotted with anti-RII antibody. 

Similar results were obtained in three independent experiments. E) Normalized average 

kinetics (n = 25) of FRET change induced by 25 μM forskolin (frsk) in CHO cells 

expressing PKA-GFP in the presence (open circles) or absence (full circles) of 

AKAP450-2. F) Dose-response curve of FRET change at different concentration of 

forskolin in CHO cells expressing PKA-GFP in the presence (open circles) or absence 

(full cycles) of AKAP450-2. For each concentration point n ≥ 10. G) FRET change 

induced by 25 µM forskolin in CHO cells expressing PKA-GFP in the presence or 

absence of AKAP450-2 fragment and SuperAKAP-IS; n ≥ 18 H) FRET change induced 

by 25 µM forskolin in CHO cells expressing the deletion mutant sensor  ΔPKA-GFP in 

the presence or absence of AKAP450-2; n ≥ 23 I) FRET change induced by 25 µM 

forskolin in CHO cells expressing PKA-GFP in the presence or absence of the 

AKAP450-2 and mutAKAP450-2. n ≥ 14 J) FRET change induced by 25 µM forskolin in 
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CHO cells expressing the RII_epac sensor in the presence or absence of the AKAP450-

2; n ≥ 34 K) FRET change induced by 25 µM forskolin in CHO cells expressing PKA-

GFP in the presence or absence of AKAP79 fragment (amino acid 352 to 428); n ≥ 24 

L) FRET change induced by 25 µM forskolin in CHO cells expressing PKA-GFP in the 

presence or absence of AKAP149 fragment (amino acid 284 to 385); n ≥ 24 M) FRET 

change induced by 25 µM forskolin in CHO cells expressing PKA-GFP in the presence 

or absence of the AKAP Rt31 fragment (amino acid 2 to 1678); n ≥ 17. Error bars are 

SEM. Two-tailed, un-paired t-test, ∗ p<0.05; ∗∗ 0.001<p<0.01; ∗∗∗ p<0.001. Size bars = 

10µm 

 

Figure 5. Binding of PKA to AKAP450-2 increases PKA activity. A) FRET change 

measured in response to 25 µM forskolin in CHO cells expressing AKAR3 in the 

presence or absence of AKAP450-2. n = 53. B) FRET change measured in response to 

25 µM forskolin in CHO cells expressing AKAR3 in the presence or absence of AKAP79 

fragment. n = 14. Two tailed, paired t-test.  C) Gray scale image acquired at 480nm 

upon excitation at 430nm and showing the subcellular distribution of the RII_AKAR3 

sensor. The pseudo-color panel shows the FRET signal from the same cell, calculated 

as 540nm/480nm emission intensity ratio upon excitation at 430nm. Panels on the left 

show a higher magnification of the centrosomal region. Arrows point to the centrosome. 

D) Average of basal FRET signal measured in the bulk cytosol (cyt) and at the 

centrosome (centr) of cells stably expressing the RII_AKAR3 sensor. FRET values are 

expressed relative to the FRET value measured in the cytosol, n= 30. Two tailed, paired 

t-test. E) Average of FRET change elicited by 100nM forskolin in cells stably expressing 
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the RII_AKAR3 sensor and recorded in the cytosol and at the centrosome. Error bars 

represents SEM. Two tailed, un-paired t-test, ∗ p<0.05; ∗∗ 0.001<p<0.01; ∗∗∗ p<0.001. 

Size bars = 10µm. 

 

Figure 6. AKAP450-bound PKA is more sensitive to cAMP activation as a result of 

increased auto-phosphorylation of RII. A) Representative western blot analysis of 

total RII and phospho-RII subunits. Lysates from CHO cells over-expressing PKA-GFP 

in the presence or absence of AKAP450-2 were blotted and probed for phospho-RII 

(upper panel) and total RII (lower panel) using specific antibodies. 80kDa and 53kDa 

are the expected molecular weight for recombinant RII-CFP and endogenous RII 

subunit, respectively. B) Quantification of endogenous phospho-RII (gray columns) and 

recombinant phospho-RII-CFP (black columns). Data are the mean of 5 independent 

experiments. Two-tailed, un-paired t-test. C) Western blot analysis of lysates from CHO 

cells expressing the PKA-GFP sensor or a mutant sensor (mutPKA-GFP) containing a 

S114A mutation in the RII-CFP subunit. Total and phosphor-RII subunits are detected 

as in A). D) FRET changes induced by 25 µM forskolin in CHO cells expressing PKA-

GFP (black columns) and mutPKA-GFP (white columns) in the presence or absence of 

the AKAP450-2 fragment. n = 28. Two-tailed, un-paired t-test.  E) Effect of 25 µM 

forskolin on the FRET signal detected in the cytosol (cyt) and at the centrosome (centr) 

of CHO cells expressing PKA-GFP (black columns) or mutPKA-GFP (white columns). n 

= 16. Insert: distribution of mutPKA-GFP in a representative CHO cell. Arrow points to 

the centrosome. Error bars are SEM. Two tailed, paired t-test, ∗ p<0.05; ∗∗ 

0.001<p<0.01; ∗∗∗ p<0.001. Size bars = 10µm. 
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Figure 7. The centrosomal microdomain with low cAMP is abrogated in mitosis. A) 

Representative mitotic CHO cell stably expressing the RII_epac sensor. The gray scale 

image shows the subcellular distribution of the RII_epac sensor and the pseudo-color 

image shows the FRET signal from the same cell. Arrows point to one of the centrioles. 

The histogram on the right displays the average basal FRET signal measured in the 

bulk cytosol (cyt) and at the centrioles (centr) in n=30 cells. FRET values are expressed 

relative to the FRET value measured in the cytosol, B) Comparison of the FRET signal 

recorded in the bulk cytosol in interphase (I) and in mitotic (M) CHO cells stably 

expressing RII_epac. n = 30. Two tailed, un-paired t-test. C) Representative mitotic 

CHO cell stably expressing the RII_AKAR3 sensor. Panels are as described in A. n= 22. 

Two tailed, paired t-test. D) Average FRET change measured before and after 

treatment with 10nM EGF in serum depleted CHO cells stably expressing RII_epac. 

n=20. Error bars represent SEM. Two tailed, un-paired t-test, ∗ p<0.05; ∗∗∗ p<0.001. 

Size bars = 10µm. 

 

Figure 8. Displacement of PDE4D3 results in altered cell cycle progression. A) 

Quantification of flow cytometry scan analysis of control CHO cells and CHO cells stably 

expressing the RFP-tagged and catalytic inactive mutant of PDE4D3 

(dnPDE4D3mRFP). The same analysis was performed for CHO cells treated with 25µM 

forskolin (B) CHO cells stably expressing the catalytic inactive mutant of PDE4A4 

(dnPDE4A4-GFP) (C) and CHO cells treated with 10 µM rolipram (D). Histograms 

indicate the mean percentages of cells in various phases of the cell cycle. Data are the 

mean of at least 6 independent experiments. Error bars are SEM. Two tailed, un-paired 
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t-test, ∗ p<0.05; ∗∗ 0.05<p<0.01; ∗∗∗ p<0.001. E) Effect of over-expression of 

dnPDE4D3mRFP, 10 µM rolipram (Rol), 25 µM forskolin (FRSK) and over-expression of 

dnPDE4A4-GFP on cytosolic (cyt) and centrosomal (centr) cAMP compared to 

untreated and unstimulated CHO control cells (CTRL). Two tailed, un-paired t-test, ∗ 

p<0.05; ∗∗∗ p<0.001 

Figure 9. Over-expression of dnPDE4D3 results in accumulation of cells in 

prophase. A) Representative living CHO cells stably expressing dnPDE4A4RFP and 

the GFP-tagged H2B imaged in interphase and in different phases of the mitotic cycle 

as appearent from the analysis of chromosome condensation. B) Summary of the 

results of seven independent experiments in which multiple snapshots of living CHO 

cells expressing either GFP-tagged H2B and dnPDE4A4RFP or RFP-tagged H2B and 

dnPDE4D3GFP were acquired and cells assigned to the different stages of the cell 

cycle as defined in A. At least 120 mitotic cells were analyzed for each experiment. Data 

are expressed as percentage of mitotic cells that appears to be in prophase.  

 

 





















Supplemental material 

 

Supplementary figure1: A) CHO cells transiently expressing the PKA-GFP sensor 

(right, upper panel) immunostained with the centrosomal marker γ-tubulin (left, 

bottom panel). The bright field image (BF) is also shown. The right, bottom panel 

shows the overlay between the PKA-GFP signal, γ-tubulin and DAPI. The γ-tubulin 

staining clearly show that over-expression of PKA-GFP does not affect centrosome 

morphology. Size bars = 10µm. 

 

Supplementary figure2: A) Schematic representation of cAMP sensor RII_epac. 

D/D indicates the dimerization/docking domain; CBD indicates the cAMP binding 

domain; CFP and YFP are respectively the cyan and yellow fluorescent protein. 

Similarly to PKA-GFP this sensor shows high FRET in the presence of low cAMP 

and vice versa. B) Schematic representation of AKAP450 (aa 1-3908) and 

AKAP450-2 fragment (aa 933-1834; highlighted in green) encompassing the 

amphipatic helix (shown in black). The PACT-domain is also indicated. C) Schematic 

representation of the interaction between the FRET-based sensors and the AKAP 

constructs used in this study. 

 

Supplementary figure3: A) Image in grey scale shows the subcellular localization 

of PKA-GFP in RPE1 cells. The FRET signal from the same cell is shown in pseudo-

color. Panels on the left show a higher magnification of the centrosomal region. 

Arrows point to the centrosome. The panel on the right shows the average basal 



FRET signal measured in the bulk cytosol (cyt) and at the centrosome (centr) of 

RPE1 cells expressing the PKA-GFP sensor. FRET values are expressed relative to 

the FRET value measured in the cytosol. n= 20. Error bars represent SEM. Two 

tailed; paired t-test, ∗ p<0.05; ∗∗ 0.001<p<0.01; ∗∗∗ p<0.001. Size bars = 10µm.B) 

Representative RPE1 cell expressing PKA-GFP (middle panel) and immunostained 

for PDE4D3 (left panel). The overlay between the PKA-GFP and the PDE4D3 

signals is shown on the right. Arrows point to the centrosome. Bars size = 10µm. C) 

RT-PCR analysis of PDE4D3 wild type and dominant negative variants in RPE1 

cells, RPE1 cells selected for stable expression of dnPDE4D3mRFP, RPE1 cells 

transiently transfected with dnPDE4D3mRFP and CHO line stably expressing the 

dnPDE4D3mRFP. The 650 bp band expected from the wild type isoform of the 

PDE4D3 is detectable in the entire set of samples analysed (left panel), whereas 

only the RPE1 cells transiently expressing the dnPDE4D3mRFP and the CHO stably 

expressing the dnPDE4D3mRFP show amplification of the dominant negative variant 

of PDE4D3. The above data indicate that while in cells transiently transfected with 

dnPDE4D3mRFP the transgene can be detected, RPE1 cells that have been 

selected for stable expression of dnPDE4D3mRFP have lost the transgene.  

 

Supplementary figure4: A) Representative CHO cell co-immunostained with a 

PDE4D3 specific antibody (left upper panel) and with the centrosome-specific 

antibody γ-tubulin (middle upper panel). A negative control (nc) in which the primary 

antibody is omitted is shown in the bottom panels. The overlay between the PDE4D3 

(shown on the left) and the γ-tubulin signal is shown on the right panels. Arrows point 

to the centrosome. Bars size = 10µm B) Representative western blot analysis of 



PDE4 expression in CHO cells treated as indicated. Lysates from control CHO cells 

(CTRL) and CHO cells over-expressing either the small RNA interference of PDE4D 

(siRNAPDE4D) or the control sequence siGLO (SIGLO) were blotted and probed 

with specific antibody for PDE4D (top panel) and γ-tubulin (bottom panel). Bands 

above and below 100kDa correspond respectively to PDE4D5/7 and PDE4D3/8/9 

isoforms. γ-tubulin detection (lower panel), indicated by the 50KDa band, was used 

as a control for the amount of protein loaded. C) Upper panels: Representative CHO 

cell stably expressing the RFP-tagged and catalytically inactive PDE4D3 

(dnPDE4D3mRFP, left panel) and transiently transfected with CFP tagged PKA type 

II regulatory subunit (RII-CFP, middle panel). Lower panel: Representative CHO cell 

stably expressing the GFP-tagged and catalytically inactive PDE4A4 (dnPDE4A4-

GFP, left) and transiently transfected with RFP tagged PKA type II regulatory subunit 

(RII-RFP, middle). Pictures on the right show the overlay between the two signals. 

Arrow points to the centrosome. Size bars = 10µm. 

 

Supplementary figure 5: Cell synchronization confirms an arrest of the cell 

cycle progression in G2/M of cells expressing the dnPDE4D3. A) Quantification 

of flow cytometry scan analysis of control CHO cells and CHO cells treated with 10 

µM rolipram. B) Quantification of flow cytometry scan analysis for CHO and CHO 

stably expressing the catalytic inactive mutant of PDE4D3 (dnPDE4D3mRFP). 

Histograms indicate the mean percentages of cells in various phases of the cell 

cycle. Data are the mean of at least 3 independent experiments. Error bar represents 

SEM. Two tailed; un-paired t-test, ∗ p<0.05; ∗∗ 0.001<p<0.01; ∗∗∗ p<0.001. 

 












	eprintscitation_temp.pdf
	0B0Bhttp://eprints.gla.ac.uk/69882/


