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Abstract

Background: Protein kinase A (cAMP-dependent kinase, PKA) is a serine/threonine kinase, for
which ca. 150 substrate proteins are known. Based on a refinement of the recognition motif using
the available experimental data, we wished to apply the simplified substrate protein binding model
for accurate prediction of PKA phosphorylation sites, an approach that was previously successful
for the prediction of lipid posttranslational modifications and of the PTS1 peroxisomal
translocation signal.

Results: Approximately 20 sequence positions flanking the phosphorylated residue on both sides
have been found to be restricted in their sequence variability (region -18...+23 with the site at
position 0). The conserved physical pattern can be rationalized in terms of a qualitative binding
model with the catalytic cleft of the protein kinase A. Positions -6...+4 surrounding the
phosphorylation site are influenced by direct interaction with the kinase in a varying degree. This
sequence stretch is embedded in an intrinsically disordered region composed preferentially of
hydrophilic residues with flexible backbone and small side chain. This knowledge has been
incorporated into a simplified analytical model of productive binding of substrate proteins with
PKA.

Conclusion: The scoring function of the pkaPS predictor can confidently discriminate PKA
phosphorylation sites from serines/threonines with non-permissive sequence environments
(sensitivity of ~96% at a specificity of ~94%). The tool "pkaPS" has been applied on the whole human
proteome. Among new predicted PKA targets, there are entirely uncharacterized protein groups
as well as apparently well-known families such as those of the ribosomal proteins L21e, L22 and L6.

Availability: The supplementary data as well as the prediction tool as WWW server are available
at http://mendel.imp.univie.ac.at/sat/pkaPS.
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Background
Phosphorylation is one of the biologically most impor-
tant post-translational modifications known today.
Eukaryote kinases, which are the enzymes that are respon-
sible for this type of chemical alteration, transfer phos-
phate moieties onto the hydroxyl groups of serines,
threonines or tyrosines of substrate peptides. Phosphor-
ylation plays a key role in a large set of signal transduction
pathways and is known to regulate the functions of a vast
number of different proteins. Not only are substrate
motifs for phosphorylation found in proteins from vari-
ous cellular contexts, there are also >500 kinases [1] with
at least partly non-overlapping substrate specificities
encoded in each of the higher eukaryote genomes. This
broad distribution, coupled with the potential medical
applications, makes them interesting research targets with
regard to their role in signaling cascades. Therefore, it is
important to determine the complete protein substrate set
for each kinase. The sheer number of yet uncharacterized
proteins implies that a lot of phosphorylation motifs
remained undetected so far. Accurate in silico predictors
recognizing kinase substrates from their amino acid
sequences are desirable to bring this task closer to a solu-
tion. A low false-positive prediction rate is especially
important in this context.

Protein kinase A (PKA), alternatively called cAMP-
dependent protein kinase, is one of the best studied mem-
bers of the kinase group of enzymes and, therefore,
appears among the most attractive targets for substrate site
predictor development. It is actually the first kinase for
which the crystal structure has been resolved [2,3]. PKA
acts on serine and, to a lesser extent, threonine residues
that are embedded in a specific recognition motif. In its
first characterizations, the PKA motif was described as
consisting of arginines at the 3rd and 2nd positions prior to
the phosphorylation site, and of a large hydrophobic
amino acid immediately thereafter [4-7].

Several groups already applied various approaches for pre-
dicting PKA phosphorylation sites from primary protein
sequence. NETPHOS [8] was one of the first to outper-
form simpler PROSITE-like approaches [9-11] by apply-
ing artificial neural networks. A more recent version,
NETPHOSK [12], makes kinase-specific predictions.
SCANSITE 2.0 uses position-specific scoring matrices

(PSSM) to predict phosphorylation motifs for 62 different
kinases, again including PKA [13]. PREDPHOSPHO is a
kinase-specific predictor that uses support vector
machines [14]. GPS does not use standard machine learn-
ing approaches but implements a so-called group-based
scoring technique, which makes use of the BLOSUM62
matrix to score distances between query sequences and
known clusters of kinase substrate peptides [15,16]. As
GPS focuses on straight sequence similarity traits, the like-
lihood for GPS to recognize query peptides as phosphor-
ylation targets that are similar to known sites is especially
high whereas GPS might have difficulties if it is con-
fronted with unusual substrate examples of the same
kinase that are not reflected in the learning set. Among
these tools, GPS [15,16] and PREDPHOSPHO [14]
appear to have highest accuracy. Although the sequence
sets used for testing are limited, their sensitivities are
clearly below 90% for specificities estimated to be close to
90%. As more than 10% of the query sites are expected to
be misclassified, database-wide studies that rely solely on
current predictors cannot produce reliable results.

In order to achieve higher sensitivity and specificity, major
improvements are needed. In this work, we implemented
two new aspects: (i) Since there is no "average phosphor-
ylation site", high prediction accuracy can only be
achieved if the function for scoring of putative phosphor-
ylation sites is specific for each kinase system. In our
approach, the scoring function is thought to estimate the
probability of productive binding of the respective sub-
strate protein segment with the binding site of PKA; thus,
the scoring function is a simplified physical model of the
binding process [17-22]. (ii) The motif regions that are
used to discriminate between true sites and non-permis-
sive targets should be as long as possible. These shall
include all substrate sequence stretches that influence the
binding process and should not be restricted to the region
of the motif that is most conserved in terms of amino acid
types. It is also necessary to consider properties of corre-
lated motif positions [23].

It should be noted that, for most post-translational mod-
ifications, only a handful of substrate proteins per modi-
fying enzyme is known. Even for the better studied cases,
the available experimental information can only reliably
parameterize a scoring function with a small number of
fitted values. In similar cases of predictor development
such as for GPI lipid anchoring [17], N-terminal N-myris-
toylation [20], prenylation [21] and peroxisomal target-
ing [22,24], our simplified substrate protein binding
model has been successfully applied. It should be noted
that, in all these cases, the sequence signal coding for the
posttranslational modification or the translocation is
located either at the N- or C-terminal end of the polypep-
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tide chain. In this work, we wanted to test the approach
for an internal sequence signal.

PKA-dependent phosphorylation is an excellent example
in this context since the rich experimental data allow for
the derivation of a quite accurate qualitative binding site
model as we show in this work. Not only are there more
than 200 documented phosphorylation sites for PKA. The
available sequence data is also accompanied by other val-
uable heterogeneous information such as 3D data and
mutation experiments [3,25].

Results
Overview

The whole work consist of two major parts – first, the der-
ivation of the property pattern that characterizes sequence
segments with PKA phosphorylation sites and, second,
the development and the validation of a prediction tool
for the recognition of PKA phosphorylation sites in query
sequences.

The following four sections of the Results ("The motif
length", "Positive charge in the N-terminal flank", "Polar-
ity and flexibility in the C-terminal flank", "Phylogenetic
variation of the substrate binding site of PKA") are dedi-
cated to the derivation of the sequence motif coding for
PKA phosphorylation sites. This work is based on analyses
of the sequence environment of known phosphorylation
sites in substrate proteins and of the PKA sequences and
structures. We correlate amino acid compositions at vari-
ous alignment positions with physical properties of
amino acid residues. As major results, we obtain the
sequence length of the motif and the pattern of physical
properties in various sequence segments surrounding the
phosphorylation site. Moreover, if several phosphoryla-
tion sites occur in one protein, they tend to be sequen-
tially clustered.

The next three sections ("Predictor description and the
self-consistency test", "Neighbor-jackknife test", "Sum-
mary of the prediction performance and comparison to
other tools") describe the development of the prediction
tool and its validation with the self-consistency test and a
rigorous cross-validation procedure called neighbor-jack-
knife test (exclusion of groups of sequentially similar pro-
teins). The specificity and the sensitivity values are close to
95% and, thus, superior compared with previously pub-
lished predictors.

The succeding section of the Results ("Prediction of PKA
targets within the human proteome") describes the appli-
cation of the predictor to the human proteome. Among
new predicted PKA targets, there are entirely uncharacter-
ized protein groups as well as apparently well-known fam-
ilies such as those of the ribosomal proteins L21e, L22 and

L6. The last section of the Results ("Description of the
associated WWW site") supplies information about the
PKA WWW server.

The motif length

The deduction of accurate motif boundaries is not
straightforward, as this region also comprises positions
that make only minor contributions to substrate recogni-
tion by PKA. For example, these include residues that
interact only weakly with the receptor or which are con-
text-dependent upon neighboring positions. As a conse-
quence, it is helpful to base such estimations on a
standard model which has already been successfully
applied in related situations.

The concept of a linker-embedded binding motif is utterly
suited for this task. The underlying assumption is that the
peptide stretch which binds to the receptor enzyme and
which is buried in the catalytic cleft must first be made
accessible for interaction: as part of an intrinsically disor-
dered region, through a permanent native location on the
surface of the globular part of the substrate protein or via
exposure after an induced conformational change. As a
consequence, the flanking regions which connect the
sequence segment that fits into the catalytic cavity and the
rest of the substrate protein must have sufficient confor-
mational flexibility and hydrophilicity. Such a motif
structure has already been observed and successfully
applied in predictor development [21-24,26]. Recent
work by Dunker and co-workers further confirms the
applicability of this model to protein phosphorylation
motifs as they find evidence for inherently disordered
regions surrounding phosphorylated residues. They used
a similar formulation of the concept for "disorder
enhanced" prediction of phosphorylation sites [27].

Mean values of amino acid property indices [23,28]
(including many flexibility and hydrophobicity scales)
were calculated over a gapless multiple alignment of
learning set sequences which consists of the modified sites
in the center together with 40 flanking residues on each
side. Sequence redundancy was removed by applying a
method which involves frequencies of identical residues
on alignment positions -6 to +6 (Materials and Methods).
Exemplarily, we show the outcomes obtained for the
hydrophobicity scale EISD840101 [29] and for
VINM940104 [30] as flexibility measure in Figure 1.

The calculated values deviate from the database averages
over a sequence stretch that covers about twenty positions
both the N- and at the C-terminal side of the documented
phosphorylation site. The curves fall back to the average
database values with increasing distance from the phos-
phorylated site. Moreover, similar behavior is exhibited
by many other hydrophobicity- and flexibility-related
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properties (data not shown). It appears also interesting
that this region is slightly longer on the C-terminal side
than on the N-terminal one. This might be a result of the
more hydrophobic nature of the residues that lie adjacent
to the phosphorylated site on the C-terminal side. As
depicted in Figure 1, the motif boundaries cannot be
boiled down unambiguously to a unique position. We set
the edges well into the regions where the property mean
values do not fall below the steady level of approximately
± 20%. The resulting region is defined from positions -18
to +23 and, thus, we estimate the total length of the
sequence signal for PKA-dependent phosphorylation as
42 positions.

The significance of multiple phosphorylated residues
within the same motif region is an important issue that
needs to be addressed (see also legend to Figure 1). We
find that pairs of phosphorylated serines/threonines are
not separated farther than the 50 residues in the sequence
in two thirds of all cases (Figure 2). This threshold is just
about the motif length derived above. Theoretically, every
proximal neighboring site would prolong one of the link-
ers by at least the distance between the sites. From a bio-

logical point of view, it appears reasonable to pack
multiple phosphorylation sites closely together. In such a
situation, long additional linker stretches that would be
necessary for maintaining an inherent structural disorder
in the environment of phosphorylation sites [27] are
avoided.

Positive charge in the N-terminal flank

Historically, charge requirements were the first observed
characteristics of the PKA motif. Kinetic studies at the end
of the 1970s revealed a cluster of positive residues directly
N-terminally of the phosphorylated site as main determi-
nant for PKA substrate specificity. The main constituents
of this cluster are the 2nd and 3rd positions prior to the
phosphorylated serine or threonine. Kemp et al. [5] postu-
lated that at least one arginine should be present at one of
these locations. Moreover, replacement of the arginine by
lysine was reported to cause less activity loss than substi-
tutions by other amino acids. In another study [31], the
adjacent arginines were positioned at various distances
from the phosphorylated site and activity measurements
were performed. The results demonstrated that the bind-

Variation of hydrophobicity and of flexibility over the motif regionFigure 1
Variation of hydrophobicity and of flexibility over the motif region. The graph depicts the mean value deviations of 
the hydrophobicity-related property EISD840101 [29] and the flexibility scale VINM940104 [30] over the 81 positions that 
encompass the learning set sites. The mean values are presented as deviations from the UNIREF average (baseline) in percent 
of UNIREF standard deviations. The plots were smoothed by applying sliding windows (running averages) over 5 residues. 
Mean values were calculated using two different sequence sets: (i) one that contains all entries from the learning set, and (ii) 
one that consists of all proteins that are phosphorylated only once in the learning set. The difference between these two 
curves is not dramatic although, as a trend, the property values appear to fall back more sharply to the database values if only 
proteins with single PKA phosphorylation sites are taken into account.
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ing affinity is indeed highest at positions -3/-2 and
decreases with increasing distance from the site.

The requirement for positively charged residues is
depicted in the 3D structure of PKA bound to an inhibitor
peptide (Figure 3). The arginines at positions -3 and -2
interact with Glu127 and Glu170/Glu230 of the PKA
enzyme, respectively [3]. Both substrate residues make
close contacts with the enzyme in a spatially restricted
binding pocket, explaining their importance in determin-
ing substrate specificity. In this structure, the arginine at
position -6 also contributes to substrate recognition by
interacting with Glu203.

The requirement for positive charge is highest for residues
-2 and -3 but can be detected as far as 6 to 8 residues prior
to the phosphorylated serine (Figure 4). Several studies
focus on the role of position -6 as this residue apparently
interacts with the PKA enzyme [3,7]. In contrast, it is
unclear how the amino acids at positions -5 and -4 con-
tribute to substrate specificity. Although positive charge at
these locations is as much favored as for position -6, nei-
ther of them makes close contacts with PKA in any solved
structure. The reason could lie in a variable structural con-
text of this N-terminal region. The currently resolved sub-
strate-bound 3D structures have typically been obtained
using the same inhibitor peptide (PKI). Thus, other, yet
unknown conformations might exist if the bound peptide
does not involve a positively charged residue at position -
6. Alternatively, long-range charge interactions might con-
tribute to substrate specificity at these positions. The pref-
erence for positive charge is further confirmed by

Songyang et al. [25], who used an oriented peptide library
to demonstrate that the positional range -4 to -1 has
strong preferences for arginine and to, a lesser extent, for
histidine or lysine.

Physico-chemical preferences in the region prior to the
phosphorylation site are complemented with flexibility
and polarity requirements, e.g. for the property
VINM940103 (normalized flexibility parameters [30], R ≥
0.62) at positions -8 to -6 and -4, or for the hydrophilicity-
related scales EISD840101 [29] (R ≥ -0.66 at position -3
and -0.69 at position -2) and KRIW790102 [32] (R = 0.60
at positions -7, -6 and -4). Although these might be a rem-
nant of charge requirements, it seems clear that a substitu-
tion of arginine by hydrophilic residues is less disfavored
than an exchange by bulky, apolar amino acids.

Polarity and flexibility in the C-terminal flank

The residue at position +1 lies in vicinity of a hydrophobic
pocket that is built up by the side chains of Leu198,
Pro202 and Leu205 (Figure 5). As a consequence, a large
hydrophobic residue was found to be favored at this sub-
strate position [7]. A value of R = 0.78 for NAKH900109
(amino acid composition of membrane proteins [33])
confirms the detected tendency for hydrophobic, apolar
residues. Also, analysis of mean value deviations from the
expected database average indicates a preference for
amino acids that occur more frequently in β-strands.
Properties such as GEIM800105 (β-strand indices [34]) or
KANM800104 (average probability for inner β-sheet [35])
produce significant t-values of 2.71 (99.2%) and 2.59
(98.9%), respectively. These secondary structure scales
typically have elevated property values for aliphatic and
aromatic amino acids.

Interestingly, correlation effects can be detected between
positions +1 and +4, as indicated by an F-value of 1.38
(96.6%) for the property GEIM800107 (β-strand indices
for β-proteins [34]). Few data about the role of residue +4
is available from the literature, as this position is missing
in the currently resolved 3D structures. It has no clear
amino acid preferences, although it is preferentially less
polar than the clearly hydrophilic surrounding positions
(data not shown). Its spatial location in vicinity of the
hydrophobic patch (Figure 5) combined with the correla-
tions with residue +1 could suggest that positions +1 and
+4 both may interact with the apolar surface loop of PKA.
However, alternative conformations which involve an
apolar residue at position +3 also appear possible.

The intermediary positions +2 and +3 can be character-
ized by a preference for small residues. Numerous size-
related scales such as FASG760101 [36] (R of -0.62 and -
0.63 for positions +2 and +3, respectively) produce signif-
icant correlation coefficients. To some extent, position +3

Cumulative distribution of distances between successive sites in learning set proteins with multiple phosphorylated serine/threonine residuesFigure 2
Cumulative distribution of distances between succes-
sive sites in learning set proteins with multiple phos-
phorylated serine/threonine residues. The figure 
demonstrates that about two thirds of all distances are 
within the extended motif length of approximately 50 posi-
tions. The maximum distance, which exceeds the displayed x-
axis, is 1759 amino acids.
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also seems to favor flexible amino acids, as indicated by a
correlation coefficient R of 0.65 for VINM940102 [30].
The respective substrate positions indeed lie in a spatially
constrained region at the mouth of the binding cavity
(Figure 5), which explains the appearance of size restric-
tions.

Phylogenetic variation of the substrate binding site of PKA

When collecting the learning set substrate proteins, we
found 50% human and 89% mammalian example sites.
The remaining 11% were from other metazoan species,
yeasts and plants (see Materials and Methods for detail).
We wished to estimate to which extent substrates and
enzymes from various organisms are exchangeable with
respect to PKA-dependent phosphorylation. In Figure 6,
we show the alignment of the sequences of the catalytic
subunit of PKA in a large variety of organisms spreading
from yeast to human. Positions that are critically impor-
tant for binding the substrate protein stretch are marked
with triangles. Not only are these positions 100% con-
served among all sequences shown, but even their
sequence environment is almost unchanged among taxa.
Therefore, we suggest that substrates for the human PKA
are most likely also substrates for PKA of other taxa and a

predictor for recognizing human substrates can also be
used for finding PKA substrates in other eukaryote organ-
isms.

Predictor description and the self-consistency test

The motif structure that was presented in the preceding
sections served as a basis for the generation of a prediction
tool. The final version of the predictor, called "pkaPS",
uses one profile over 13 sequence positions and 14 phys-
ico-chemical property terms. In the self-consistency test,
the pkaPS predictor generates scores S ≥ 0 for 236 out of
239 (98.7%) positive examples from the learning set, and,
thus, correctly predicts these sequences as potential sub-
strates for PKA-dependent phosphorylation.

The three entries that are not predicted are summarized in
Table 1. Although all of them produce profile scores Sprofile
above zero, the three database sites (i) Ser10 from the rat
brain myelin basic protein [37], (ii) Ser356 from the rat
liver fructose-1,6-bisphosphatase [38] and (iii) Ser197
from human cyclin C1 [39] obviously differ from the con-
sensus represented by the scoring function to a considera-
ble extent. Among other unmet requirements, the charge
pattern on the N-terminal side of the reported phosphor-

Structure of the inhibitor peptide PKI bound to the PKA enzyme: N-terminal region of the substrateFigure 3
Structure of the inhibitor peptide PKI bound to the PKA enzyme: N-terminal region of the substrate. Key 
arginines from the substrate peptide (RCSB Protein Data Bank entry 1JLU [92]) are highlighted. The left part of the figure 
shows the surface of PKA in ochre, the backbone of the substrate peptide in silver and the arginines -6, -3 and -2 of the sub-
strate in blue. Arginines -3 and -2 interact with the binding cleft and thereby make major contributions to substrate specificity. 
A set of acidic enzyme residues interacts with these arginines (zoomed detail-view to the right): Glu170 and Glu230 for Arg-2, 
Glu127 for Arg-3 and Glu203 for Arg-6 [3]. The pictures were generated using VMD [93].
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ylation sites is deviant. Typically, positive charged resi-
dues are observed and negative charges are absent.
Actually, none of these sites harbors an arginine at either
of the important positions -3 or -2. Therefore and given
the current knowledge on substrate binding, it is difficult
to imagine how these targets fit into the binding site of
PKA. Since experimental protocols for determining phos-
phorylation sites are non-trivial and the reports are of con-
siderable age, an experimental re-examination these cases
would be advisable.

The expected rate of false-positive predictions can directly
be estimated using the set of 1026 negative examples. For
a given serine or threonine residue of a query sequence,
the probability of true-negative prediction lies at 93.5%
(Fp-rate of 6.5%). This set was used to generate an empir-
ical score distribution of negative examples. In order to
obtain a value for the false-positive rate for any generated
score S, an analytical approximation of this score distribu-
tion was determined (Materials and Methods).

Neighbor-jackknife test

Thorough cross-validation tests are needed in order to
assess whether the score function is stably parameterized

by the learning set. The pkaPS tool was subjected to a strict
cross-validation test where the query sequence in addition
to sequences which share more than 30% of identical
amino acids with the query were excluded from the
parameterization procedure (neighbor-jackknife test,
Materials and Methods).

As summarized in Table 2, 10 out of the 239 (4.2%) sites
from the learning set were not predicted by pkaPS. As
expected, the entries that were not predicted in the self-
consistency test were not recognized in the cross-valida-
tion test either. In this test, two entries (Q13002, position
697 and P24385, position 197) had profile scores below
zero. Therefore, we think that the learning set is still a little
bit too small to stably determine the profile.

All of the seven entries that were predicted in the self-con-
sistency test but not in the neighbor-jackknife test have
only marginally negative scores between zero and -0.5.
Only the three entries that had scores below zero in the
self-consistency test also had an S < -0.5 in the neighbor-
jackknife test (see Tables 1 and 2). We think that the score
interval between 0.0 and -0.5 represents a twilight zone.

Preference for positive charge at positions located N-terminally with regard to the phosphorylated siteFigure 4
Preference for positive charge at positions located N-terminally with regard to the phosphorylated site. The 
upper graph depicts the increased occurrence of positively charged residues (His, Lys, Arg) compared to the expected data-
base occurrence of 13.6% (deduced from UNIREF). The lower part of the figure shows the correlation coefficients R between 
amino acid frequencies and ZIMJ680104 (isoelectric point) [87] property values. Both plots demonstrate that the preference 
for basic residues is highest at positions -3 and -2, but encompasses at least the entire region between amino acids -6 and -2.
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Summary of the prediction performance and comparison to other 

tools

To conclude, the prediction performance of the pkaPS
tool is considerable. Its sensitivity lies in the range of at
least 95.8% as estimated from the neighbor jackknife test,
and is as high as 98.7% in the self-consistency test. At the
same time, a specificity of 93.5% could be achieved.

The pkaPS tool was compared to a set of currently availa-
ble phosphorylation predictors (Table 3). Unfortunately,
a comparison of these tools on the same test set was
impossible due to the lack of publicly available untrained
versions of the tools that could be used for cross-valida-
tion tests. Hence, the comparisons were based on sensitiv-
ity and specificity values which were taken from the
original papers. The performance values from older pub-
lications do not straightforwardly compare with those in
this work. In general, prediction methods can be expected
to show decreased performance when tested on enlarged,
more recent and diverse sequence sets. More importantly,
the accuracy measured for a prediction tool is also influ-
enced by the rigor of the cross-validation test. This type of
test should determine how predictors perform on query

sequences that are dissimilar to the learning set examples.
In our work, a strict method has been applied, the neigh-
bor-jackknife test. In the leave-one-out procedure, we
excluded not only the entry under consideration but also
all sequentially similar examples.

As judged from the published predictor performance rat-
ings, pkaPS provides a better specificity and sensitivity
than all other currently available tools. Among these
methods, only DISPHOS [27] is a predictor for "average
phosphorylation" sites without considering kinase specif-
icity. All other tools have implementations for specific
kinases including PKA. The algorithms that come closest
to the performance of pkaPS are PREDPHOSPHO, which
uses a support vector machine based implementation
[14], and GPS, which rests upon a group-based scoring
method [15].

Prediction of PKA targets within the human proteome

In addition to thorough cross-validation tests, the per-
formance of the pkaPS tool was studied by analyzing pre-
dicted PKA-dependent phosphorylation sites in the
human proteome. The human protein sequences were

Structure of the inhibitor peptide PKI bound to the PKA enzyme: C-terminal region of the substrateFigure 5
Structure of the inhibitor peptide PKI bound to the PKA enzyme: C-terminal region of the substrate. Overall 
(left) and detail views (right) of the substrate region that lies on the C-terminal side of the phosphorylated serine in complex 
with the kinase PKA (RCSB Protein Data Bank entry 1JLU [92]) are shown. Ile+1, His+2 and Asp+3 of the PKI substrate as well 
as the surface of the PKA enzyme to the left are colored according to residue types: white/gray for apolar, green for polar, blue 
for basic, and red for acidic amino acids. Compared with Figure 3, the orientation of the complex roughly corresponds to a 
counterclockwise rotation of 90 degrees around the vertical axis. The detail view to the right shows the hydrophobic patch at 
the surface of PKA which interacts with the substrate residue that lies C-terminally adjacent to the phosphorylated site. The 
pictures were generated using VMD [93].
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retrieved from the NCBI FTP-site (40877 sequences, Sep-
tember 14th 2006 at [40]). From a total of 2,485,866 ser-
ines and threonines, 258,271 (10.4%) were predicted as
putative phosphorylation sites with scores S > 0. In our
understanding, the list of predicted sites contains (a) true
phosphorylation PKA sites, (b) sites that are phosphor-
ylated in vitro by PKA but not in vivo due to the absence of
biological context (see the comment on hidden signals in
the discussion and in ref. [41]) and (c) real false-positive
predictions of phosphorylated serines/threonines that are
in sequence stretches without capability of productive
interaction with the catalytic site of PKA. The considera-
tion of additional functional sequence regions has a sig-
nificant impact on the rate of predicted PKA-dependent
phosphorylation sites. For example, there are 649979 ST-
sites in 10195 proteins with predicted signal peptides
(with any of the taxonomic versions of SIGNALP 3.0
[42]). pkaPS generates hits for 56970 sites (8.8%), a con-
siderably lower value than that for the full proteome.

Proteins with many serines/threonines are likely to have
multiple PKA-dependent phosphorylation site predic-
tions. For the human proteome, we find that the more
sites are predicted per proteins, the smaller the mean dis-
tance between them (Figure 7). This confirms the trends

observed in Figure 2 that proteins with many phosphor-
ylation sites tend to pack these closely together into uni-
fied serine/threonine-rich regions.

The probability of wrongly predicting a site within a gen-
erally non-phosphorylated protein appears to dramati-
cally increase with the number of S/T sites in its sequence.
Among the 40877 sequences that are included in the
retrieved file, only 4860 entries (11.9%) do not have a sin-
gle predicted site for PKA-dependent phosphorylation.
This result strongly emphasizes the main difficulty of pre-
dicting post-translational modifications that can occur in
a query protein with multiple suitable serines/threonines.
In such cases, a single false-positive site may be responsi-
ble for an incorrect assignment of the entire protein.

An increase in prediction accuracy may be obtained by
grouping predicted entries together to clusters of related
sequences. Naturally, predictions for a single post-transla-
tional modification can be considered more reliable if
they are frequently observed in a protein family as
opposed to a lone protein sequence [43] although this
trend is not absolute even for closely related homologues
[17,44]. To test the pkaPS tool on families of homologous
sequences, the human proteome was clustered into 14674

Multiple alignment of the binding site regions across PKA orthologue sequencesFigure 6
Multiple alignment of the binding site regions across PKA orthologue sequences. Starting with the mouse sequence 
(accession NP_032880) of the protein in the crystal structure 1JLU [92], we searched for orthologues of the catalytic subunit 
of PKA with the ANNOTATOR suite [45]. In the alignment (generated with T-COFFEE [94]), we present 40 variants thereof 
ranging as far as from yeast to human (sequence position numbering is without leading methionines according to the 1.29 Å 
rule [56,57]). The figure focuses on the protein polypeptide stretch that encompasses the residues forming the surface of the 
binding site at substrate position from -3 to +1. Red triangles (at Glu127, Glu170 and Glu230 in the numbering of 1JLU without 
the leading methionine in NP_032880) mark positions that form the pocket for substrate residues -3 and -2. Blue triangles (at 
Leu198, Pro202 and Leu205) mark the hydrophobic pocket-forming positions that accept substrate residue +1 [4–7].
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groups with the MCL algorithm [45] (as implemented
within the ANNOTATOR suite [46]) and each group was
analyzed with the predictor separately. Many of these clus-
ters only contained a single or a few sequences. All groups
with less than 20 entries were removed from further con-
siderations. The remaining 182 clusters were sorted
according to the ratio between predicted serines/thre-
onines and the total number of these residues in the clus-
ter. The 20 clusters with the highest ratio are listed in
Table 4. The good performance of the predictor is sup-
ported by the fact that families of proteins known to be
good PKA targets occupy the top ranks in this listing. In
addition to known phosphorylated sequence classes (e.g.
histone H2A), there are also entirely uncharacterized
groups of proteins that deserve experimental analysis. It is
remarkable that this list does not contain any obviously
false-positive sequence family.

The prediction of phosphorylation sites in ribosomal pro-
teins such as L21e, L22 and L6 deserves special attention
in context with the recent discovery of phosphorylation of
some ribosomal proteins by specific kinases (such as the
ribosomal protein S6 kinase (S6K)) and the important
biological role of this phosphorylation [47,48].

Description of the associated WWW site

Supplementary data as well as the pkaPS WWW-server are
available at the Mendel WWW-site [49]. The pkaPS server
currently accepts up to 500 sequences in fasta-format

(with no more 10000 S/T residues). For analyzing larger
sets, we recommend contacting the authors. In interpret-
ing the results, we advise to consider scores above 0 as
good predictions; the twilight zone limit is -0.5. The pre-
dictor pkaPS analyzes the capability of the query sequence
to productively interact with PKA. Additional information
should be gathered from the literature or from predictors
for other sequence properties to decide whether the pre-
diction is not a hidden signal and makes sense in the bio-
logical context of the query. Additionally, we provide (i)
access to the learning set, (ii) detailed results of the self-
consistency and the neighbor-jackknife tests, (iii) down-
loads of the predictions for the human proteome both in
plain and MCL-clustered forms [45].

Discussion
Despite considerable algorithmic advances in the field,
none of the prediction tools for PKA-dependent phospho-
rylation previously described in the literature achieves
specificity and sensitivity rates both above 90%. In our
view, several biological and computational aspects con-
tribute to this development. Among them, there are sev-
eral problems: (a) with the availability of experimental
data, (b) with serine/threonine-rich regions, (c) with the
incorporation of the available physico-chemical and bio-
logical knowledge into the scoring function used to dis-
criminate between productively interacting substrates
from non-permissive sequence stretches, (d) with the
issue of accessibility of the phosphorylation motif within

Table 2: Results of the neighbor-jackknife test

Score Profile Tj Access. Site Sequence Reference

-0.108 0.268 T7,T8 P02687 33 SASTMDHARHGFLPRHRDTGILDSLGRFFGSDRGAPKRGSGK Kishimoto et al. 1985 [37]
-0.158 0.733 T2,T4 P12336 489 VLVFTLFTFFKVPETKGKSFDEIAAEFRKKSGSAPPRKATVQ Thorens et al. 1996 [61]
-0.174 0.560 T4,T7 P24155 643 RFKQEGVLSPKVGMDYRTSILRPGGSEDASTMLKQFLGRDPK Tullai et al. 2000 [69]
-0.264 0.145 T2 P02643 19 GDEEKRNRAITARRQHLKSVMLQIAATELEKEEGRREAEKQN Huang et al. 1974 [82]
-0.367 0.113 T2,T10 Q07954 4517 PTNFTNPVYATLYMGGHGSRHSLASTDEKRELLGRGPEDEIG Li et al. 2001 [83]
-0.469 0.564 T4,T12 P25961 473 VAIIYCFCNGEVQAEIRKSWSRWTLALDFKRKARSGSSSYSY Blind et al. 1996 [62]
-0.469 -0.028 T2,T12 Q13002 697 KIEYGAVEDGATMTFFKKSKISTYDKMWAFMSSRRQSVLVKS Wang et al. 1993 [84]
-0.619 0.891 T1,T2 P02687 10 ---------AAQKRPSQRSKYLASASTMDHARHGFLPRHRDT Kishimoto et al. 1985 [37]
-1.813 0.038 T1-T4 P19112 356 SRPSLPLPQSRARESPVHSICDELF----------------- Ekdahl 1987 [38]
-1.867 -0.409 many P24385 197 RKHAQTFVALCATDVKFISNPPSMVAAGSVVAAVQGLNLRSP Sewing & Müller 1994 [39]

Phosphorylated sites from the learning set that are not predicted by pkaPS in the neighbor-jackknife test. The three entries with the lowest scores 
are not predicted in the self-consistency test either (Table 1). The listed penalties Tj are the terms which make the highest contributions to the 
negative overall scores.

Table 1: Results of the self-consistency test

Score Profile Tj Access. Site Sequence Reference

-0.381 1.114 T1,T2 P02687 10 ---------AAQKRPSQRSKYLASASTMDHARHGFLPRHRDT Kishimoto et al. 1985 [37]
-1.338 0.495 T1-T4 P19112 356 SRPSLPLPQSRARESPVHSICDELF----------------- Ekdahl 1987 [38]
-1.368 0.069 many P24385 197 RKHAQTFVALCATDVKFISNPPSMVAAGSVVAAVQGLNLRSP Sewing & Müller 1994 [39]

Phosphorylated sites from the learning set that are not predicted by the normally parameterized pkaPS predictor (false-negatives in the self-
consistency test). The listed penalties Tj are the terms which make the highest contributions to the negative overall scores.
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the protein's three-dimensional structure (intrinsically
disordered regions surrounding the site) [27,50] and (e)
with the issue of hidden signals (proteins that would be
phosphorylated if they were in contact with PKA but
which never have the appropriate biological context dur-
ing their life cycle) [41].

With regard to point (a), little experimental data is availa-
ble for most kinases with regard to the sequence variabil-
ity of substrates, structural detail of kinase-substrate
complexes, kinetic or energetic aspects of the interaction.
Only a few kinases including PKA are reasonably well
studied in this respect. For example, the number of
sequentially dissimilar substrate sequences for the reliably
parameterization of the profile term was estimated at least
200 in [50]. This number is reached for PKA even in the
neighbor jackknife test (among the 239 sequence exam-
ples, the number of excluded sequences has never been
above 10) and the results of this test show that stable pro-
file parameterization has almost been achieved.

The issue of many serines/threonines in the sequence (b)
is especially challenging since ST-rich regions are com-
mon in intra- and extracellular proteins. To detect phos-
phorylated proteins on a large-scale basis, every single
potential site in a sequence must be taken into considera-
tion. If Sp (measured as value between 0 and 1) is the rate

of correct rejection of a site and if there are n serine/thre-
onine residues in a query sequence, the specificity of the
task for classification of query proteins decreases signifi-

cantly (to  << 1). Considering the difficulties associ-

ated with prediction of potentially multiple sites in ST-
rich regions, it is clear that very high accuracies are needed

if such algorithms are to be applied routinely on a large-
scale proteome basis.

The incorporation of the heterogeneous knowledge about
the PKA-substrate protein relationship into the scoring
function (issue c) is a non-trivial problem. Experimental
reports usually do not provide the knowledge in the form
that is necessary for formulating algorithms. There are two
ways to deal with this problem – either to take the infor-
mation as is and to hope that machine learning proce-
dures filter the aspects of the data that are relevant for
prediction, or to formulate a physically reasonable model
of productive binding events with the kinase directly.
Machine learning approaches have shown their usability
in a variety of applications, especially in cases where lots
of uniform data are available. The classical example is
SIGNALP, for the derivation of which learning sets in the
size of thousands of substrate proteins were collected
[42].

In many other biological applications, the data situation
is by far not that comfortable. In such circumstances, the
usage of machine learning software packages as "black
boxes" for autonomous extraction of score function
parameters without human interference and without
explicitly considering the physico-chemical and biological
realities of the problem under study can become danger-
ous. In their letter to the editors of the Biophysics Journal
in 1994 [51], Frank Darius and Raul Rojas analyze the dif-
ficulties arising from the discrepancy between the very
high dimension of the parameter space in modern
machine learning approaches and scarce data when exem-
plarily criticizing an alternative signalpeptide predictor.
To summarize, the problem is that the calculated parame-
ters are not reliable and it is not clear whether the correla-
tions found are numerical noise of the data or biologically

Sp
n

Table 3: Prediction performances of available algorithms compared to pkaPS.

Prediction performance

Algorithm Sn [%] Sp [%] Reference

DISPHOS ca. 76 ca. 85 Iakoucheva et al. 2004 [27]
SCANSITE 70.7 92.9 Zhou et al. 2004 [15]
NETPHOSK 79 89 Blom et al. 2004 [12]
GPS 88.9 90.6 Xue et al. 2005 [16]
PREDPHOSPHO 88.3 91.1 Kim et al. 2004 [14]
pkaPS 95.8 93.5 this work

The table shows the prediction performances of five other programs compared to the worst performance (Sn from neighbor jackknife-test) of the 
pkaPS predictor. All listed values except for those from DISPHOS refer to PKA-specific versions of the prediction tools. The pkaPS program 
outperforms all currently available methods that can be used to detect PKA-dependent phosphorylation. The sensitivities (Sn) and specificities (Sp) 
were directly taken from the original papers. Iakoucheva et al. [27] provide two possible values for the specificity as performance measure for the 
DISPHOS predictor, one that takes into account the possible occurrence of noise in the negative learning set (higher Sp) and one that does not 
(lower Sp). For DISPHOS, the Sn value of 76% for serine (none is mentioned for threonine) and the higher, estimated specificity value of 85% (for 
serine) were used. The prediction performance for the SCANSITE program was not taken from the corresponding publication (Obenauer et al. 
2003 [13]) but from Table 2 in the GPS paper [15]. The reason is that no evaluation of the SCANSITE performance in detecting sites for 
phosphorylation by PKA could be found in the paper from Obenauer et al. 2003 [13]. Here, the values for the low stringency cut-off were taken.
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meaningful. If the data are scarce and no one tells the
"black box" how the substrate protein interacts with the
receptor, then the box would indeed need to be a "magic
box" to know about it in order to pick the correct signifi-
cant parameters.

As a direct consequence, human involvement and addi-
tional biological knowledge are indispensable for dimen-
sionality reduction. In contrast to machine learning
approaches, a physically justified model of productive
binding with the kinase already provides a reasonable
analytical form of scoring function terms. In this context,
it is not so important whether this form can be further
improved. We wish to emphasize that the number of
parameters to be determined with the help of learning
data is dramatically reduced.

In our approach, we consequently follow these considera-
tions and try to incorporate all biologically relevant infor-
mation into the analytical form of the prediction
function. For example, it is utterly important that among
all sequence positions, which carry relevant information,
as many as possible are considered for the prediction pro-
cedure. In the case of PKA, we found the region to occupy
the segment -18...+23. Also, we have very few parameters:
a profile term over 13 positions centered around the puta-
tive site and 14 physical property terms Tj (typically
involving 3 parameters: the mean and the standard devia-
tion of an amino acid index averaged over some sequence
region as well as a weight factor for the whole term). Espe-
cially the latter set of parameters is determined with high
significance given the 239 positive examples. We think
that the simplicity of our algorithm is its big strength since
the output of the decision function clearly indicates what
kind of property supports or prevents the prediction of a
query as PKA substrate. In the process of predictor devel-
opment, human interference can assure that only the bio-
logically meaningful among the significant correlations
enter the decision function.

The influence of the structure of the protein on the acces-
sibility of the phosphorylation motif to the kinase (issue
d) is difficult to estimate at present. By demanding an
excess of hydrophilic, small and flexible residues in the
region -18...+23 with the physical property terms, it
becomes quite unlikely that a sequence region hit by our
predictor is actually part of a 3D structure but rather rep-
resents an intrinsically disordered segment. Nevertheless,
it cannot be excluded that sequence stretches that are not
included in the motif definition might cause the entire
protein to fold in such a way that the potential phospho-
rylation site is not accessible to its modifying kinase.

Finally, the cellular context is important (issue e). In the
case of some translocation signals, it has been experimen-

tally shown that even the presence of an in vivo functional
motif does not mean that the carrying protein is also
imported into the corresponding subcellular compart-
ment [41]. This discovery of hidden sequence signals
highlights the significance of cellular hierarchies for small
functional protein motifs. Hence, current phosphoryla-
tion predictors including pkaPS do not really predict
phosphorylation, but the potential of a sequence stretch
to interact productively with the modifying kinase. This
seemingly small detail may appear negligible but it is
important to be considered in all predictions. E.g. a target-
ing signal located far away from a functional phosphor-
ylation site on the same protein may lead to a removal
from the cellular compartment of the respective kinase,
thereby overriding the phosphorylation motif. This
means that the analyzed motif is not the sole sequence
stretch on the protein which is responsible for the modi-
fication.

These considerations mean that a phosphorylation pre-
dictor is not the only source of information that must be
consulted when evaluating the phosphorylation state of a
protein. Moreover, the number of apparently wrong pre-
dictions (if only the physiologically relevant cases are
counted) of an algorithm is not only determined by the
imperfection of its design since the predictor focuses on
the query sequence stretch. Hence, even if all permissive
amino acid permutations of the substrate motif are
known, the theoretical accuracy of any post-translational
modification predictor will have an upper limit clearly
below 100%.

Conclusion
The refinement of the PKA phosphporylation motif
showed that approximately 20 sequence positions flank-
ing the phosphorylated residue on both sides are
restricted in their sequence variability. The conserved
physical pattern can be rationalized in terms of a qualita-
tive binding model with the catalytic cleft of the protein
kinase A. The pkaPS predictor based on this motif descrip-
tion confidently discriminates PKA phosphorylation sites
from serines/threonines with non-permissive sequence
environments (sensitivity of ~96% at a specificity of
~94%).

Methods
Learning set construction

UNIPROT [52-54] accessions and positions of sites which
are phosphorylated via PKA were retrieved from the Phos-
pho.ELM database version 4.0 [55]. Subsequently, an
alignment was generated which contains the 81-residue
long sequences that span the phosphorylated residue in
addition to the 40 flanking amino acids on each side.
Positions outside of the N- or C-terminal ends were
treated as non-occupied (without amino acid) in further
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calculations. The original sequences of the substrate pro-
teins were obtained from the UNIPROT database [56].
Initiator methionines were removed according to the
1.29Å rule [57,58].

Previous analyses of typical annotation errors in databases
[17,20,22,42] emphasized the importance of learning set
curation. As expected, a couple of entries were inaccurate
or had unclear verifications. Therefore, the following
modifications were introduced (protein sequences are
indicated by UNIPROT accession numbers):

• The first phosphorylation site of P02646 is actually a
double site that lies at positions 22/23 instead of position
20 [59,60].

• Position 137 of the Casein-B precursor sequence
(P02666) contains arginine, not serine. According to the
paper where the experimental verification is reported [61],
phosphorylation occurs in a "variant B" which contains
this mutation.

• The experimental verification in the paper cited for the
entry P11168 was actually performed for the rat (RINm5F
cell line), not the human protein [62]. As a consequence,
the entry was replaced by the corresponding rat sequence
P12336, with the reported phosphorylation sites located
at positions 489, 501, 503 and 510.

• The exact localization of the PKA-dependent phosphor-
ylation sites in the PTH/PTHrP type I receptor (P25107)
was performed using the rat protein, not the one from
opossum [63]. Therefore, P25107 was replaced by
P25961 (positions 491, 473 and 475).

• Phosphorylation of the sites in P00698 appears to occur
only in the denaturized protein [64]. As the experimental
verification status of the entry is not entirely clear, it was
excluded from the dataset.

• Entry P13280 is removed from the dataset because the
experimental verification for this extremely unusual motif
is unclear [65].

• Serine 259 from P04049 is phosphorylated [66] but not
listed in Phosph.ELM and was, therefore, added subse-
quently.

• According to the corresponding paper [67] and the UNI-
PROT entry, the phosphorylated residue of P20020 lies at
position 1216 and not 1178.

• Phosphorylation of γ-aminobutyric-acid receptor β1 is
originally reported for the mouse protein instead of the

human counterpart [68]. As a consequence, entry P18505
was replaced by P50571.

• The reported phosphorylation sites for P32245 are only
proposed to be potential sites for PKA and GRK. They
actually lack any direct experimental verification [69] for
PKA-dependent phosphorylation. The corresponding
entries were removed from the learning set as a conse-
quence.

• Phosphorylation of the metallopeptidase EP24.15 is
reported for the rat instead of the human protein [70].
Entry P52888 was, therefore, replaced by P24155 includ-
ing the correct location of the phosphorylated serine.

• The phosphorylated serine in P07101 is located at posi-
tion 71, not 40. Although the original paper reports Ser40
as site [71], the PKA-motif is shifted in direction of the C-
terminus in the UNIPROT entry as a result of additional
N-terminal regions from splice variants. Moreover, the
experimental verification was performed using the rat pro-
tein, and the phosphorylated serine is annotated as "by
similarity" in the UNIPROT sequence. Hence, the entry
was removed from the learning set.

• P01233 can theoretically be phosphorylated at three
sites. However, the post-translational modification states
depend on whether the implicated β-subunit is free and in
its native form [72]. Therefore, the corresponding entry
was removed from the learning set.

To generate a set of negative examples, the references of a
set of learning set sequences were screened. If it could be
deduced that the phosphorylated S/T-sites reported in a
publication were the sole amino acids that are modified
by PKA, then all remaining S/T-sites were added to the set
of negative examples.

The final learning sets consist of 143 sequences with 239
phosphorylated sites and 28 sequences with 1026 non-
phosphorylated serines and threonines. Although the set
of positive examples contains entries from various taxo-
nomical groups, it is mostly centered on mammalian spe-
cies. Around one half of the 239 sites originate from H.
sapiens (120 sites). Together with the other mammalian
entries (93 sites), they make up 89% of the learning set.
From the remaining entries, 21 originate from other meta-
zoan species, and only 5 are from yeast and viridiplantae.

It should be noted that phosphorylation frequently occurs
at multiple sites of the same substrate protein (in contrast
to several other posttranslational modifications) and this
is reflected in the learning set. From 143 sequences
included in the set of positive examples, more than one
third has more than one verified serine or threonine resi-
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due. As a consequence, two thirds of the phosphorylated
sites in the learning set originate from proteins with mul-
tiple modifications. The corresponding distribution of the
numbers of phosphorylation sites per protein (shown in
Table 5) seems to fall exponentially.

Sequence analysis part 1. Redundancy removal

The phosphorylated serines/threonines of a learning set
together with their flanking sequences are represented in
a gapless multiple alignment of npos = 81 positions. The
nseq = 239 phosphorylated sites occupy a single column
that acts as reference location with an assigned position
number of 0. Sequence positions further N-terminally
have negative values, positions further C-terminally have
positive values.

To remove redundancy from over-represented sequence
sets in the learning alignment [73], we used a technique
similar to the "sum of mismatches"-method from Vingron
and Argos [74,75]. The central consideration is that the
higher the similarity of a sequence is to all remaining
sequences in the alignment, the lower its weight w should
be. Here, the number of identical residues between two
sequences k and i is chosen as a distance measure. For
each sequence k, the weight wk is calculated using Kro-
necker's delta according to equation 1. The value γ is
obtained from the normalization to ∑wk = nseq. The use of
a modified version of the original Vingron and Argos
method is due to the disproportionally high weights that
the original method assigns to sequences with many non-
amino acid positions such as ones which are outside of
the sequence for sites close to either the N- or C-termini.

Sequence analysis part 2. Derivation of physical property 

characteristics

To assess physical and chemical requirements at specific
motif positions, we make use of 20-dimensional property
vectors v which assign characteristic values va to each
amino acid a. These values have been measured in various
experimental setups and quantify amino acid properties
such as e.g. hydrophobicity, volume or charge. We used a
pre-compiled property database [23,28] for the motif
analysis. Here, single property vectors are typically speci-
fied by short identifiers such as EISD840101. We use only
properties which have defined values for all 20 amino
acids.

One means of detecting amino acid requirements for a
sequence position l is to compare property mean values

(l) with expected mean values DB from biological

databases. Significances can be assessed using Student's t-
distribution with the help of the property value dispersion

σ(l). The values pa represent the database occurrences of

amino acid type a calculated on the basis of UNIREF.
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Table 4: Prediction of the clustered human proteome.

Cluster number Total entries Predicted S/T (%) Predicted S/T Predicted entries (%) Predicted entries Common domains/superfamily

171 21 39.7 52 100 21 High mobility group
88 32 36.2 141 100 32 Histone H2A
43 48 30.8 518 91.7 44 Splicing factor, predicted RNA-binding
84 34 29 249 100 34 TAFII28-like
109 27 27.3 81 100 27 Unknown
72 36 26.4 101 94.4 34 GAGE protein
131 24 24.7 80 87.5 21 Ribosomal protein L21e
123 25 22.8 146 100 25 Ribosomal protein L22
172 21 22.5 108 100 21 Histone H2B
33 59 21.6 390 98.3 58 Cyclophilin-like
94 30 21.1 111 93.3 28 Histones H3/H4
105 27 20.9 88 96.3 26 KRAB domain
7 136 20 1300 96.3 131 GTPase-activating protein
10 123 19.7 412 84.6 104 Unknown
115 26 19.6 126 100 26 60S ribosomal protein L6
154 22 18.7 94 100 22 HIV-1 Vpr-binding, High mobility group
79 35 17.5 206 91.4 32 Ras GTPase-activating protein
38 52 17.4 287 92.3 48 Septins
153 22 16.3 105 77.3 17 RNA-binding protein TIA-1/TIAR (RRM superfamily)
160 22 16.1 465 100 22 Uncharacterized conserved protein (KOG4791)

The table shows the 20 clusters with the best ratio between predicted and total S/T-sites. The column to the right displays a summary of the cluster 
with respect to the most common domains found using the CDD [85] and PFAM [86] databases (e-value cutoff of 0.01). Lower cluster numbers 
indicate clusters with more sequences included.
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A more sensitive method involves the calculation of the
correlation coefficient R(l) between the property values va

and the observed amino acid counts c(a, l) at an align-
ment position l. The underlying consideration is that
amino acids with high values va of a required property
should occur more frequently than residues with hinder-
ing, low property values (or vice versa).

The statistical significance of R (l) can be calculated using
the decision criterion [76]:

tα is the argument of the Student's distribution function
for a one-sided criterion with the confidence level α, and
3 stands for the number of conditions (two for the linear

regression and one for the sum of all residue type frequen-
cies being unity).

We employ Fisher's test for the detection of inter-posi-
tional correlations. Here, the sum of the squared variances
s(li) for all npos isolated positions li is compared to the
squared variance σ(l1,l2,...,lnpos) of the combined positions
[20-24,26]:

The obtained F-value follows an F-distribution with nseq –
1 degrees of freedom [76]. For weighted sequences, nseq

needs to be replaced by the sum of the weights of all
sequences that are included in F-value calculation.

Mean values and standard deviations (equations 2, 3 and
4) as well as property correlations (equations 5 and 6) and
F-tests (equation 7) have been routinely used in the deri-
vation of the physical property pattern surrounding the
phosphorylation sites (see first three sections of Results).

In the Results, we often write , σ, R and F without posi-
tional arguments when we describe the positions in the
text.

Details of the prediction methodology

Each prediction produces a score S that is composed of a
profile term Sprofile and a physico-chemical penalty value
Sppt.

S = Sprofile + Sppt  (8)

The query sequence is predicted if the score is ≥ than a pre-
defined threshold b. We chose a threshold of b = 0 for the
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Table 5: Distribution of the number of phosphorylated sites per sequence in the learning set.

Sites per sequence Nsequences % % (cum.) Nsites % % (cum.)

1 88 61.5 61.5 88 36.8 36.8
2 30 21.0 82.5 60 25.1 61.9
3 15 10.5 93.0 45 18.8 80.7
4 7 4.9 97.9 28 11.7 92.4
5 1 0.7 98.6 5 2.1 94.5
6 1 0.7 99.3 6 2.5 97.0
7 1 0.7 100.0 7 3.0 100.0

Total 143 100.0 100.0 239 100.0 100.0

Positive examples in the dataset contain up to seven sites per sequence. Although approximately two thirds (88) of all entries (143) contain only 
one phosphorylated serine or threonine, this accounts for just slightly more than one third of the total number of included sites (239). It should be 
noted that, for many proteins, additional phosphorylation sites might have been undetected so far.
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prediction of PKA-dependent phosphorylation and b = -
0.5 for the twilight zone (see Results). The profile term is
calculated using the PSIC algorithm [77], a method that
provides sequence- and alignment position-specific
weights, to remove redundancy from homologous
sequences that originate from over-represented protein
families. Note that the redundancy removal for the physi-
cal property calculation was carried out differently with a
modification of the Vingron and Argos procedure [74,75]
(see Sequence analysis part 1 in Methods). As different
motif positions generally have different importance for
substrate binding efficiency, the profile value contribu-
tions Sj(a(lj)) of amino acids a at positions lj are weighted
using factors αprofile, j For a profile that consists of npos posi-
tions, the term Sprofile can be expressed as:

The total penalty Sppt is simply the sum of all npenalties pen-
alty terms Tj, where each Tj reflects a piece of the acquired
knowledge about substrate binding requirements in the
motif region. The height of the penalty can be adjusted
using the corresponding weight factor αppt, j.

Each term Tj has an associated property vj that represents

the type of physico-chemical requirement, e.g. hydropho-

bicity or size. Its mean value in the query sequence

 over a set of npos motif positions li, together

with the respective mean value over the learning set

, the learning set dispersion

 and a freely selectable parameter tj are

used as a basis for calculation of Tj.

We use two different types of penalties: (i) fixed ones and
(ii) gauss-type penalties. Fixed penalties are simple penal-
ties that are applied if the property mean value

 in the query sequence exceeds the prede-

fined threshold tj, without taking the learning set into

account. Tj is then either 0 or -1.

Whereas fixed Tj only penalize the mere occurrence of

potentially hindering amino acids, Gaussian-type penal-
ties also take into account the level of deviation from
property preferences at motif positions. To exclude
sequences that strongly deviate from the derived consen-
sus, the value of Tj increases with the square of the differ-

ence between  and the learning set mean

value:

The criterion Φj in equation 11 determines whether a pen-
alty is applied or not. Depending on whether small or
great property values should be penalized, Φj can be
expressed using the two equations below. Here, the poten-
tially freely selectable parameter tj ≥ 0 can be used to
change the stringency of the threshold.

In our concept, the value tj is not thought to be an adjust-
able parameter depending on the learning set. Generally,
the value tj is set equal to zero for all Gaussian-type terms
but needs to be determined for the fixed penalties to
define the level of the threshold (see Table 6). We see the
introduction of tj as a way to achieve equal formal nota-
tion of Gaussian terms and fixed penalties.
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Mean distances between pairs of neighboring predicted sites depending on the total number of predicted sites in the query proteinsFigure 7
Mean distances between pairs of neighboring pre-
dicted sites depending on the total number of pre-
dicted sites in the query proteins. The red line displays 
the linear regression (y = 59.3 - 0.271x; R = -0.66) calculated 
using these data points.
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Evaluation of predictor performance

The prediction outcomes of an algorithm can be grouped
into the following four categories: "true-positives (TP)" are
correctly predicted queries that contain the analyzed fea-
ture; "false-negatives (FN)" contain the feature but are pre-
dicted not to do so; "true-negatives (TN)" are correctly
predicted not to contain the feature; "false-positives (FP)"
do not contain the feature but are wrongly predicted to do
so. The number of prediction results that fall into these
categories are used to calculate measures for predictor per-
formances. These are typically calculated in terms of sen-
sitivity (Sn) and specificity (Sp). The former is defined as
the proportion of positive sites that the method can iden-
tify, and the latter as the fraction of negative sites that is
correctly classified [12,78].

Alternatively, one can use the "false-negative" (Fn) and
"false-positive" (Fp) rates. They express the opposite of
sensitivity and specificity, namely the amount of wrongly
classified sequences for each prediction class, and are
equal to 1 minus the respective Sn or Sp values.

"On the fly" estimation of false-positive rates

To assess false-positive rates "on the fly" for obtained total
scores S, a previously described estimation methodology
[17,20,79,80] is used that follows the spirit of BLAST p-
values [81]. This allows an easier interpretation of the
total score S and provides the possibility for a better com-
parison with outputs from other prediction programs. The
probability of false-positive prediction is approximated to
the empirical distribution of sequences that are known
not to carry the feature of interest. If a set of negative
examples exists, it can be directly used for this task. If none
is available, the function can be extrapolated from the dis-
tribution of low scores.

The generalized analytical form of the extreme-value dis-
tribution that has successfully been applied in the MyPS
[20] and big-Π predictors [17,79] is used for this approxi-
mation task. The probability P of a score S to be larger
than a threshold Sth is calculated using a polynomial f
(Sth) of the score threshold Sth and can be described by:

where

The qualities of the fits are evaluated with the residual Rn

of the least-squares fit for all sequences k included in each
fit evaluation (1 ≤ k ≤ nseq; nseq is the number of sequences
included in fit evaluation, Sth,k is the total score for the kth

sequence):

Approximations of the empirical distributions are calcu-
lated using iterative non-linear curve fitting implemented
in the XMGRACE tool [82].

Predictor implementation

The predictor for protein kinase A (PKA) dependent phos-
phorylation, pkaPS, integrates the motif-related knowl-
edge presented in the preceding sections. The profile term
Sprofile is calculated using positions -6 to +6. The imple-
mented terms Tj reflect the structure of the substrate motif
as deduced from the available sequence, structural and
kinetic data. The main determinants for substrate specifi-
city are the residues that interact with the enzyme in its
binding pocket, and the adjacent positions at the mouth
of the cavity. Various terms analyze these amino acids and
combinations thereof for deviations from the typical
physico-chemical motif fingerprint. Another group of
terms evaluates the quality of the linkers that flank this
region. These must have a minimal length to ensure that
the phosphorylation site and its adjacent positions are
sufficiently separated from the core of the respective sub-
strate protein. The last set of terms is calculated over a
region that extends further than the minimal linker
length. The purpose of these functions is to exclude
hydrophobic domains that might fold to protein cores,
and thereby become inaccessible for substrate recogni-
tion. A summary of these terms, including the utilized
physico-chemical properties, the implicated positions and
references to the underlying rationales is presented in
Table 6.

False-positive prediction rate within sets of proven 

negative examples

The 1026 unphosphorylated serines/threonines that were
collected in the course of learning set construction served
as a basis to evaluate the false-positive prediction rate of
the pkaPS tool. A program run over these sequences
revealed that 6.5% of the included entries produced scores
S ≥ 0, and, thus, can be classified as false-positives. To
assess the false-positive rate for any produced score S on
the fly, an analytical score distribution was generated
using the methodology presented above. Due to the avail-
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ability of a real set of non-phosphorylated sequences, the
analytical distribution could directly be approximated to
the empirical score distribution of the set of negative
examples (Figure 8).

Reviewers' comments
Reviewer's report I

Erik van Nimwegen, Biozentrum, University of Basel,
Switzerland.

This is a very thorough description of an algorithm for
identifying phosphorylation sites of Protein Kinase A
(PKA). It is clear that the authors put a lot of effort in
deciding which physical features to use and how to use
them. I am generally quite convinced that the pkaPS pre-
dictor provides the current state-of-the-art for PKA phos-
porylation site prediction. Therefore this is clearly a very
worthwhile paper. I have two main points of criticism:

• The paper is too long. I appreciate all the information
that the authors provide but I think the paper could be
made much more readable by moving a lot of the material
to supplementary materials and leaving a much more con-
densed and structured description of the key points. Right
now there is just too much material to wade through for
the reader to get a good overview of what is being done.

Author response: Our previous predictor developments have
always been described in a pair of papers – one for the analysis
of the property pattern near the modification site, another for
the description and validation of the predictor. Thus, two differ-
ent but related scientific tasks have been composed into one

text. Further, we wish to supply all information that an inter-
ested reader can recreate the whole work and the implementa-
tion of the predictor. We feel that none of the information
provided is dispensable. Nevertheless, we understand the con-
cerns of the reviewer and decided to add an introductory over-
view section to the Results that summarizes the purpose of the
respective sections and the major results described therein.

• I have concerns about over-fitting. There are a lot of
parameters that go into the method that seem to have
been set by hand (actually it is not entirely clear from the
text how the parameters were set. This could be better
explained). Examples are the collections of α weights and
the thresholds tj . Given this moderately large set of
parameters that have been tuned by the authors one won-
ders about over-fitting. In the description of the neighbor-
jackknife test there is mention of "the parameterization
procedure (neighbor-jackknife test, Materials and Meth-
ods)" but I did not see any description of this parameteri-
zation procedure. To address over-fitting, I propose that
the authors do something like randomly dividing both
the data set of positive examples as well as the set of neg-
ative examples in half. The parameters of the model
should then be tuned independently on these two half-
sets and false positive/negative rates can then be estimated
by applying the two predictors to the half-sets not used in
the training.

Author response: The revised version of the Methods section
clarifies that the values tj have not been used as adjustable
parameters but as a concept to formally unify Gaussian-type
physical property terms and fixed penalties. The values tj have

Table 6: Summary of the physical terms Tj in the scoring function of the pkaPS predictor.

Tj Property Positions αppt,j Description

T1 (+) H, K, R -3/-2 1.0 Positive charge
T2 EISD860102 [29] -3/-2 0.030 Hydrophilic residues
T3 ZIMJ680104 [87] -6 to -2 0.020 Isoelectric point (positive charge), long range
T4 (+) H, K, R; (-) D, E -6 to -2 0.48 Total charge, long range
T5 GEIM800106 [34] +1 0.070 β-strand preference
T6 GEIM800107 [34] +1/+4 0.040 β-strand preference, compensated
T7 HAGECH94_V [88] +2/+3 0.040 Size restrictions
T8 KARP850101 [89] +3 0.040 Flexibility
T9 KARP850101 [89] -9 to -4 0.040 Minimal linker – flexibility
T10 EISD840101 [29] -9 to -4 0.040 Minimal linker – hydrophilicity
T11 EISD840101 [29] +4 to +9 0.058 Minimal linker – hydrophilicity
T12 KARP850101 [89] +4 to +9 0.058 Minimal linker – flexibility
T13 CIDH920105 [90] -18 to -6, +6 to +23 0.040 Avoid buried regions – hydrophilicity
T14 VINM940101 [30] -18 to -6, +6 to +23 0.040 Avoid buried regions – flexibility

The table shows the complete list of physical property terms in the score function. The values tj in equations 12 and 13 are set equal to zero for 
Gaussian-type terms and equal to 0.1 for fixed penalties T1 and T4. The only adjustable parameter per term is the weight αppt,j (equation 10). These 
parameters have been selected so that Sppt is close to zero for most of the learning set examples. The values αprofile,j (equation 9) for the positions -
6...+6 are the following multiples of a normalization factor 0.051: 7, 6, 3, 5, 6, 6, 6, 3, 2, 5, 3, 4, and 1. Initial guesses for the αppt,j and αprofile,j 
parameters have been calculated with linear kernel support vector machines as implemented in the LIBSVM library [91]. These weights have 
subsequently been rounded to two significant positions and edited manually to avoid non-positive numbers and to achieve close-to-zero Tj values 
for the learning set sequences.
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been described in the legend of Table 6. The only adjustable
parameters in the physical property term part of the score are
the 14 αppt,j. These are listed in Table 6 and the procedure for
their determination is specified in the legend of Table 6. The
exact values of the αppt,j are not critical since the physical prop-
erty terms never generate a positive score (their purpose is to
penalize non-permissive queries) and it is only important that
the physical property terms do generate values close to zero for
most of the learning set sequences. In the initial versions of the
score function, each physical property term was even checked
individually against the learning set to find maximal values for
the αppt,j. Simple linear kernel support vector machines were
used to obtain optimized guesses and, thus, to reduce the size of
the twilight zone, a zone of scores indicating unclear hits. The
question of parameter overfitting has already been answered in
the neighbor jack-knife test when whole homologous groups of

sequences have been taken out of the learning set. This is a more
rigorous approach compared with the random selection of
sequences since the score function can be biased already due to
the occurrence of a single homologue in the set.

• page 3: "a prototypic model for the kinase group". In
what sense is PKA prototypic?

Author response:The reformulation emphasizes that PKA is
the one of the best studied kinases and, therefore, well suited for
substrate site predictor development.

• page 30: "The fact that phosphorylation frequently
occurs .... is shown in table 4." I don't understand the rea-
soning here. In table 5 the number of phosphorylation
sites per protein just seems to fall exponentially suggesting

Approximation of the empirical score distribution of non-phosphorylated sitesFigure 8
Approximation of the empirical score distribution of non-phosphorylated sites. The empirical score distribution 
was approximated using equations 16 and 17. With a correlation coefficient of 0.9988, the applied polynomial fit of 3rd order 
provides a sufficiently accurate approximation of the expected false-positive rate. The parameters with respect to equation 17 
are: u = -1.76847, λ1 = -0.766775, λ2 = 0.166677 and λ3 = -0.0298602. The polynomial fit was calculated using the XMGRACE 
tool [81].
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that the distribution might simple be a Poisson distribu-
tion, i.e no particular bias toward having multiple sites
per protein.

Author response:The respective paragraph has been expanded
to clarify that we just wish to describe the phosphorylation site
distribution of the learning set. We do not intend to postulate a
specific bias except for the observation that, if multiple sites do
occur in one protein, they tend to cluster together (see Results).

• Page 33: Quantity R(l). Is this quantity ever used in the
predictor? If not, what is the use of introducing it here?

Author response: The equations described in the Methods sec-
tion "Sequence analysis part 2. Derivation of physical property
characteristics" are used to filter the physical property pattern
(see first three sections of the Results) prior to predictor devel-
opment. We added text to this section to clarify this issue.

• page 35: "using the PSIC algorithm..." I am confused
because on page 31 it was mentioned that the "sum of
mismatches" method of Vingron and Argos is used.

Author response:Redundancy removal due to the occurrence
of homologous sequences in the learning set is carried out dif-
ferently for the physical property terms (with a modification of
the Vingron-Argos procedure [74,75]) and for the profile term
(with the PSIC method [77]). The PSIC method is more sensi-
tive but requires independent consideration of alignment posi-
tions. In physical property terms, we regularly consider multiple
positions and the PSIC concept is formally not applicable in this
context.

• page 39: "Sth is a polynomial..." The expression in (16)
is not a polynomial.

Author response:True, f(Sth) is the polynomial function con-
sidered here. We reformulated the respective part.

Reviewer's report II

Sandor Pongor, International Centre for Genetic Engi-
neering and Biotechnology, Trieste, Italy.

The manuscript of Neuberger et al "pkaPS: Prediction of
Protein Kinase A Phosphorylation Sites with the Simpli-
fied Kinase-Substrate Binding Model" describes an heuris-
tic method for describing PKA phosphorylation sites
based on the distribution of various physicochemical
parameters in the region flanking the phosphorylated res-
idue as well as information on the foldedness of the
polypeptide region. They present a scoring function that
can confidently discriminate PKA phosphorylation sites
from S/T residues in other environments. The predictor is
made publicly available on a website. The description of
the work is detailed and reproducible, and is in line with

the groups previous works on similar subjects. The
improvement over the other existing methods is convinc-
ing, and the idea of combining a physically reasonable
model with statistical learning is an attractive one. I sug-
gest the manuscript be published without modifications.

Reviewer's report III

Igor Zhulin, University of Tennessee, Oak Ridge National
Laboratory, USA.

In this paper, authors present the development of a pre-
diction tool termed "pkaPS" for the purpose of identifying
substrate proteins for the serine/threonine kinase PKA.
Through a very thorough sequence/structure analysis,
authors built a PKA-specific binding motif model, which
can discriminate between PKA phosphorylation sites and
other potential serine/threonine sites.

In my opinion, both the strength and the weakness of this
paper are in its very detailed format. The manuscript is
quite long and jam-packed with information even though
the authors moved most technical details into the meth-
ods section. I am sure that bioinformaticians will find this
paper very interesting, whereas most biologists are
unlikely to reach the third page of the results section. This
is unfortunate, because some of the derived predictions
would be quite interesting for them (see below). I recom-
mend adding information on biologically relevant predic-
tions to the abstract at the expense of some technical
details. This may capture attention of those to whom this
information is addressed.

While skipping some details, I managed to follow authors'
logic, which eventually resulted in building the analytical
model for the kinase binding motif. I have to admit that
this is a very difficult and noble task. The tendency to pro-
duce large numbers of false positives is a signature of most
"sequence-only" motif predictors, and any attempt to
overcome this problem inevitably leads to the need to
incorporate chemistry and structure into the model. The
authors did just that.

Ultimately, the success of the new predictive method and
associated tool will be measured by the number of cor-
rectly identified targets (although shown measures of sen-
sitivity and specificity are important). Authors indicate
that when applied to the human proteome, the predictor
ranked most highly protein families that are known PKA
targets, such as histone H2A. I found it very intriguing that
the top scorers also include ribosomal proteins L21e, L22,
L6 that are not known to undergo phosphorylation or
interact with protein kinases. However, there is a new
body of evidence that some ribosomal proteins, for exam-
ple S6, can be phosphorylated by specific protein kinases
(Ruvinsky & Meyuhas, 2006 Trends Biochem Sci 31:342-
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8). Thus, predictions look very exciting and indeed pro-
duce testable hypotheses that might lead to novel discov-
eries in eukaryotic signal transduction.

Author response: Similar to the first reviewer, this referee
expresses his concern with respect to readability of the article.
We think that the new introductory overview section of the
Results removes these concerns. We are grateful for the hint to
the Ruvinsky & Meyuhas article that supports some of the pre-
dictions in this work. We complement the summary with some
of our biological results.

Availability and requirements
The prediction tool is available as WWW server at http://
mendel.imp.univie.ac.at/sat/pkaPS/ and it is thought for
fair use. Please contact the authors if large sets (>500
sequences) are planned to be analyzed. The access is pos-
sible with any web-browsing tool.
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