Annales de l'institut Fourier

N. HASHIGUCHI
 $P L$ representations of Anosov foliations

Annales de l'institut Fourier, tome 42, no 4 (1992), p. 937-965
http://www.numdam.org/item?id=AIF_1992__42_4_937_0
© Annales de l'institut Fourier, 1992, tous droits réservés.
L'accès aux archives de la revue «Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

PL-REPRESENTATIONS OF ANOSOV FOLIATIONS

by Norikazu HASHIGUCHI

0. Introduction.

Let Σ_{g} be the closed oriented surface of genus $g(\geq 2)$ with a hyperbolic metric. The geodesic flow of the unit tangent vector bundle $T_{1} \Sigma_{g}$ of Σ_{g} is an Anosov flow. To study this flow, Fried gave a good Birkhoff section for it, and Ghys showed that it is obtained from the suspension flow of some hyperbolic toral automorphism by a certain Dehn surgery (see [F] and $[\mathrm{Gh}]$). In other words, the geodesic flow on $T_{1} \Sigma_{g}$ restricted to the complement of the $4 g+4$ closed orbits $\left\{ \pm G_{1}, \pm G_{2}, \pm G_{3}, \ldots, \pm G_{2 g+2}\right\}$ is topologically equivalent to the suspension of $\overline{A_{g}}: T^{2} \rightarrow T^{2}$ restricted to the complement of the $4 g+4$ closed orbits $\left\{O_{l}^{m}\right\}_{l=0,1,2, \ldots, 2 g+1, m=0,1}$ (see §1). This toral automorphism $\overline{A_{g}}$ and the orbits $\left\{O_{l}^{m}\right\}$ are determined by the author as well as the type of the Dehn surgery (see [Ha1]).

Since the suspension of the (un)stable linear foliation of the torus by the hyperbolic toral automorphism is a transversally affine foliation, certain Dehn surgeries along leaf curves with nontrivial holonomy give rise to a transversally PL foliation (see $\S 1$). Since the (un)stable foliation of the geodesic flow a $T_{1} \Sigma_{g}$ is transverse to the fibre of the projection $T_{1} \Sigma_{g} \rightarrow \Sigma_{g}$, this transversally PL foliation can be seen as a PL foliated S^{1}-bundle. In other words, there exists a homomorphism

$$
\Phi_{g}: \pi_{1}\left(\Sigma_{g}\right) \rightarrow P L_{+}\left(S^{1}\right)
$$

such that the (un)stable foliation of the geodesic flow on $T_{1} \Sigma_{g}$ is topologically conjugate to the suspension of Φ_{g} (see [Gh]). Here $P L_{+}\left(S^{1}\right)$ is the

[^0]group of orientation preserving homeomorphisms of S^{1} which lift to piecewise linear homeomorphisms of \mathbb{R}. The elements in the image of Φ_{g} have almost everywhere defined derivatives which are multiple of a real quadratic λ_{g}. Ghys used this fact to show that the (extended) Godbillon-Vey invariant is not topologically invariant.

The purpose of this paper is to describe the homomorphism Φ_{g} concretely and study various properties of this homomorphism.

The organization of this paper is as follows. In $\S 1$, first we review how the Dehn surgery of transversally affine foliation gives rise to a transversally PL foliation. Secondly, we review the identification between $T_{1} \Sigma_{g}-\left\{ \pm G_{1}, \pm G_{2}, \pm G_{3}, \ldots, \pm G_{2 g+2}\right\}$ and the suspension of $\overline{A_{g}}$ with $\left\{O_{l}^{m}\right\}$ deleted, and we see how the fibres of $T_{1} \Sigma_{g} \rightarrow \Sigma_{g}$ are in the suspension of $\overline{A_{g}}$. Then we determine the holonomy homomorphism Φ_{g}. In order to determine Φ_{g}, it is enough to determine only one PL homeomorphism f_{g}. Since this f_{g} satisfies

$$
\left\{f_{g} \circ T\left(-\frac{1}{g+1}\right)\right\}^{g+1}=\left\{f_{g} \circ T\left(-\frac{1}{2(g+1)}\right)\right\}^{2(g+1)}=1
$$

we can determine the holonomy on the generators of $\pi_{1}\left(\Sigma_{g}\right)$, and we verify that these holonomies on the generators respect the relations of $\pi_{1}\left(\Sigma_{g}\right)$. Here, $T(\theta)\left(\theta \in \mathbb{R} / \mathbb{Z}=S^{1}\right)$ denotes the rotation by θ.

In $\S 2$, we calculate the discrete Godbillon-Vey invariant of Φ_{g}. This invariant is defined by Ghys and Sergiescu (see [GS] and [Gh]). They gave the 2 -cocycle representing the discrete Godbillon-Vey class $\bar{g} \bar{v} \in$ $H^{2}\left(P L_{+}\left(S^{1}\right) ; \mathbb{R}\right)$. So we evaluate $\Phi_{g}^{*}(\overrightarrow{g v}) \in H^{2}\left(\pi_{1}\left(\Sigma_{g}\right) ; \mathbb{R}\right)$ on the fundamental class of $\pi_{1}\left(\Sigma_{g}\right)$. The value is $-4(g+1)\left(\log \lambda_{g}\right)^{2}$. Let $\mathcal{D}_{+}\left(S^{1}\right)$ denote the homomorphisms of class P of S^{1} (see [He]). The usual Godbillon-Vey class $g v \in H^{2}\left(\operatorname{Diff}_{+}^{2}\left(S^{1}\right) ; \mathbb{R}\right)$ as well as $\overline{g v} \in H^{2}\left(P L_{+}\left(S^{1}\right) ; \mathbb{R}\right)$ is extended to $H^{2}\left(\mathcal{D}_{+}\left(S^{1}\right) ; \mathbb{R}\right)$ (see [Gh]). As a corollary of the above calculation, we obtain again the result of Ghys which says that each $\alpha g v+\beta \overline{g v} \in$ $H^{2}\left(\mathcal{D}_{+}\left(S^{1}\right) ; \mathbb{R}\right)\left(\alpha, \beta \in \mathbb{R}, \alpha^{2}+\beta^{2} \neq 0\right)$ is not a topological invariant.

In $\S 3$, we give remarks related to our result. The presentation of $\pi_{1}\left(\Sigma_{g}\right)$ we used to describe Φ_{g} is interesting in itself. We exhibit a fundamental domain in the Poincaré disk for this presentation. Then we geometrically show that Φ_{g} factors through a homomorphism

$$
\phi_{g}: \Gamma_{g} \rightarrow P L_{+}\left(S^{1}\right)
$$

where Γ_{g} is a triangle group $\Gamma(g+1,2 g+2,2 g+2)$.

We study the deformation of ϕ_{g} and Φ_{g} in [Ha2]. We saw the foliation obtained from transversally affine foliation by Dehn surgery along leaf curves with nontrivial holonomy is transversally PL. The GodbillonVey invariant and the discrete Godbillon-Vey invariant of a transversally affine foliation are 0 . By the result of the above calculation of the discrete Godbillon-Vey invariant, one would conjecture that each (1,1)-Dehn surgery along the closed orbit $\left\{O_{l}^{m}\right\}$ decreases $\overline{g v}$ by $\left(\log \lambda_{g}\right)^{2}$. We will also see that this conjecture is true by using the result of Greenberg. We will show it in a future paper.

Finally, the author would like to thank Professor T. Tsuboi for helpful advice and continuous encouragement.

1. Geodesic flows on Σ_{g}.

Let Σ_{g} be a closed orientale surface of genus $g(\geq 2)$. We consider a Riemannian metric with constant negative curvature -1 on it. Let F_{t} denote the geodesic flow on the unit tangent vector bundle $T_{1} \Sigma_{g}$ and π, the projection $T_{1} \Sigma_{g} \rightarrow \Sigma_{g}$.

Fried constructed the Birkhoff section S for F_{t} in [F] as follows. Let $\pm G_{i} \subset T_{1} \Sigma_{g}(i=1,2,3, \ldots, 2 g+2)$ be the oriented closed geodesics shown in Figure 1. Then $G_{i}=\pi\left(\pm G_{i}\right) \subset \Sigma_{g}$ is a closed geodesic. $\left\{G_{1}, G_{2}, G_{3}, \ldots, G_{2 g+2}\right\}$ divide Σ_{g} into four $2 g+2$ gons $P_{1}, P_{2}, P_{3}, P_{4}$ where P_{1} and P_{2} are named so that they intersect at only $2 g+2$ vertices. Let $p_{i} \in \Sigma_{g}$ be $G_{i} \cap G_{i+1}$ where $i=1,2,3, \ldots, 2 g+2, G_{2 g+3}=G_{1}$ (see Figure 1). For $i=1,2$, we choose a family C_{i} of convex smooth simple closed curves which fill the interior of P_{i} with one singularity o_{i} deleted. Let S be the closure of the set of unit vectors which are tangent to the curves belonging to $C_{i} . \partial S=\left(\bigcup_{i=1}^{2 g+2}\left(+G_{i}\right)\right) \cup\left(\bigcup_{i=1}^{2 g+2}\left(-G_{i}\right)\right), \pi^{-1}\left(o_{i}\right) \subset S(i=1,2)$ and S is diffeomorphic to a torus with $4 g+4$ open disks deleted. Let $b_{1} \subset S$ denote $\pi^{-1}\left(o_{1}\right)$ and $b_{2} \subset S$, a component of $S \cap \pi^{-1}\left(\underline{b_{2}}\right)$ where $\underline{b_{2}}$ is the closed geodesic through $o_{1}, p_{1}, o_{2}, p_{g+2}$ and o_{1}. If we take $\left\langle b_{1}, b_{2}\right\rangle$ as the basis of S, then the first return map of F_{t} about S is semi conjugate to the hyperbolic toral automorphism induced by

$$
A_{g}=\left(\begin{array}{cc}
2 g^{2}-1 & 2 g(g-1) \\
2 g(g+1) & 2 g^{2}-1
\end{array}\right) \in S L(2, \mathbb{Z})
$$

Figure 1
Similarly, we can construct the Birkhoff section S^{\prime} for F_{t} over $P_{3} \cup P_{4}$ from families C_{3} and C_{4} which are mapped on C_{2} and C_{1} by the reflection of a plane V, respectively. Here, V divides Σ_{g} into $P_{1} \cup P_{3}$ and $P_{2} \cup P_{4} . F_{t}$ can be constructed from the matrix A_{g} as follows (see [Ha1]). The matrix A_{g} acts on T^{2} as a diffeomorphism $\overline{A_{g}}$ and let M be the torus bundle over S^{\prime} with monodromy $\overline{A_{g}}$, and ϕ_{t}, the suspension flow of $\overline{A_{g}}$. More explicitly, let

$$
\widetilde{\phi}_{t}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}
$$

be the flow defined by $\widetilde{\phi}_{t}(x, y, z)=(x, y, z+t)$. Consider the equivalence relation \sim on \mathbb{R}^{3} generated by $(x+1, y, z) \sim(x, y, z),(x, y+1, z) \sim(x, y, z)$ and $(x, y, z+1) \sim\left(t\left(A_{g}\binom{x}{y}\right), z\right)$. Then M is the quotient space \mathbb{R}^{3} / \sim, and we obtain the induced Anosov flow

$$
\phi_{t}: M \rightarrow M
$$

Let

$$
q: \mathbb{R}^{3} \rightarrow M
$$

be the quotient map. We construct an Anosov flow

$$
\varphi_{t}: T_{1} \Sigma_{g} \rightarrow T_{1} \Sigma_{g}
$$

from the suspension flow ϕ_{t} by (1,1)-Dehn surgeries along $4 g+4$ closed orbits $\left\{O_{l}^{m}\right\}$ of period 1. Here,

$$
\begin{gathered}
O_{l}^{m}=q\left(\left\{\left(\frac{l}{2(g+1)}, \frac{m}{2}, t\right) \in \mathbb{R}^{3} ; t \in\left[-\frac{1}{2}, \frac{1}{2}\right]\right\}\right) \\
(l=0,1, \ldots, 2 g+1, m=0,1)
\end{gathered}
$$

These closed orbits correspond to $4 g+4$ oriented closed geodesics

$$
\left\{ \pm G_{1}, \pm G_{2}, \ldots, \pm G_{2 g+2}\right\}
$$

shown in Figure 1. Then in [Ha1], we showed F_{t} is topologically equivalent to φ_{t}.

We will show that the unstable foliation $\mathcal{F}^{u^{\prime}}$ of φ_{t} is transversally piecewise linear. It is easy to see that the unstable foliation \mathcal{F}^{u} of ϕ_{t} is induced from a linear foliation on a torus and transversally affine. More precisely, the holonomy pseudogroup of \mathcal{F}^{u} is generated by the affine maps

$$
y=\left(\lambda_{g}\right)^{\sigma} x+\tau(\sigma \in \mathbb{Z}, \tau \in \mathbb{R})
$$

where $\lambda_{g}=2 g^{2}-1+2 g \sqrt{g^{2}-1}$ is the larger eigenvalue of A_{g}. The leaves of \mathcal{F}^{u} are diffeomorphic to \mathbb{R}^{2} or $S^{1} \times \mathbb{R}$. Each O_{l}^{m} is a leaf curve in a cylindrical leaf L_{l}^{m} and the holonomy of O_{l}^{m} is an affine map $y=\lambda_{g}^{-1} x$. There is a neighborhood N of O_{l}^{m} such that it is homeomorphic to $[-\varepsilon, \varepsilon] \times[-\varepsilon, \varepsilon] \times S^{1},\{0\} \times\{0\} \times S^{1}=O_{l}^{m}$ and $\{0\} \times[-\varepsilon, \varepsilon] \times S^{1}$ is a component of $N \cap L_{l}^{m}$ where ε is a very small positive number and $S^{1}=\mathbb{R} / \mathbb{Z}$. The holonomy of L_{l}^{m} along O_{l}^{m} is $y=\lambda_{g}^{-1} x$ and the holonomy of L_{l}^{m} along the leaf curve $\{(0, t, 0) \in N ;-\varepsilon \leq t \leq \varepsilon\}$ is the identity.

The (1,1)-Dehn surgery along O_{l}^{m} used in $[\mathrm{F}]$ is as follows. Let a torus $T_{l}^{m}=\{(\theta, u) \in \mathbb{R} / \mathbb{Z} \times \mathbb{R} / \mathbb{Z}\}$ be the blowing-up of O_{l}^{m} with a flow $\phi_{t}^{(l, m)}$ on T_{l}^{m} induced from ϕ_{t}. We divide T_{l}^{m} into the circles

$$
\begin{gathered}
S_{r}^{1}=\left\{(\theta, r) \in T_{l}^{m} ; 0 \leq \theta \leq \frac{1}{2}\right\} \cup\left\{(\theta, 2 \theta+r-1) \in T_{l}^{m} ; \frac{1}{2} \leq \theta \leq 1\right\} \\
(0 \leq r \leq 1)
\end{gathered}
$$

We can perturb the latter part of S_{r}^{1} in order that S_{r}^{1} is a smooth circle and transverse to $\phi_{t}^{(l, m)}$. Contracting each S_{r}^{1} to a point, we obtain a closed orbit $O_{l}^{m^{\prime}}$ in a cylindrical leaf $L_{l}^{m^{\prime}}$. There is also a neighborhood N^{\prime} of $O_{l}^{m^{\prime}}$ such that it is induced from N and it has the same properties as N. The holonomy of $L_{l}^{m^{\prime}}$ along $O_{l}^{m^{\prime}}$ is $y=\lambda_{g}^{-1} x$. The holonomy of $L_{l}^{m^{\prime}}$ along $\left\{(0, t, 0) \in N^{\prime} ;-\varepsilon \leq t \leq \varepsilon\right\}$ is piecewise linear as follows. By the choice of S_{0}^{1}, the rectangle $\left\{(s, t, 0) \in N^{\prime} ; 0 \leq s \leq \varepsilon,-\varepsilon \leq t \leq \varepsilon\right\}$ is induced from the rectangle $\{(s, t, 0) \in N ; 0 \leq s \leq \varepsilon,-\varepsilon \leq t \leq \varepsilon\}$. And the rectangle $\left\{(s, t, 0) \in N^{\prime} ;-\varepsilon \leq s \leq 0,-\varepsilon \leq t \leq \varepsilon\right\}$ is induced from

$$
\begin{aligned}
& \{(s, t, 0) \in N ;-\varepsilon \leq s \leq 0,-\varepsilon \leq t \leq 0\} \\
& \cup\{(s, 0, \theta) \in N ;-\varepsilon \leq s \leq 0,-1 \leq \theta \leq 0\} \\
& \cup\{(s, t-1) \in N ;-\varepsilon \leq s \leq 0,0 \leq t \leq \varepsilon\}
\end{aligned}
$$

So the holonomy along $\left\{(0, t, 0) \in N^{\prime} ;-\varepsilon \leq t \leq \varepsilon\right\}$ is

$$
y= \begin{cases}x & \text { for } x \geq 0 \\ \lambda_{g} x & \text { for } x \leq 0\end{cases}
$$

Hence, $\mathcal{F}^{u \prime}$ is transversally piecewise linear in the neighborhood of $O_{l}^{m^{\prime}}$. It implies that $\mathcal{F}^{u \prime}$ is transversally piecewise linear.

Similarly in general, operating ($1, n$)-Dehn surgeries along finite leaf curves of a transversally affine foliation, we obtain a transversally piecewise linear foliation.

Since the unstable foliation of F_{t} is transverse to the fibre of the projection $\pi: T_{1} \Sigma_{g} \rightarrow \Sigma_{g}$, the transversally piecewise linear foliation $\mathcal{F}^{u \prime}$ can be seen as a PL-foliated S^{1} bundle. So the total holonomy of $\mathcal{F}^{u \prime}$

$$
\Phi_{g}: \pi_{1}\left(\Sigma_{g}\right) \rightarrow P L_{+}\left(S^{1}\right)
$$

is determined. Now we consider the spaces

$$
\mathbb{L}^{3}=[0,1] \times[0,1] \times\left[-\frac{1}{2}, \frac{1}{2}\right] \subset \mathbb{R}^{3}
$$

and

$$
\mathbb{L}_{*}^{3}=\mathbb{L}^{3}-\left(\bigcup_{l=0}^{2 g+1} q^{-1}\left(O_{l}^{0}\right)\right) \cup\left(\bigcup_{l=0}^{2 g+1} q^{-1}\left(O_{l}^{1}\right)\right)
$$

By the above construction, $T_{1} \Sigma_{g_{*}}=T_{1} \Sigma_{g}-\left\{ \pm G_{1}, \pm G_{2}, \ldots, \pm G_{2 g+2}\right\}$ is obtained from \mathbb{L}_{*}^{3} by identifying opposite faces of \mathbb{L}_{*}^{3} by the equivalence relation \sim. We note that, in particular, for each $i \in\{-g,-(g-1), \ldots, 3 g+$ $1,3 g+2\}$, two segments in $\partial \mathrm{L}_{*}^{3}$

$$
\left\{\left(x, \frac{g+1}{g}\left(x-\frac{i}{2(g+1)}\right)+\frac{1}{2},-\frac{1}{2}\right) ; x \in \mathbb{R}\right\} \cap \mathbb{L}_{*}^{3}
$$

and

$$
\left\{\left(x,-\frac{g+1}{g}\left(x-\frac{i}{2(g+1)}\right)+\frac{1}{2}, \frac{1}{2}\right) ; x \in \mathbb{R}\right\} \cap \mathbb{L}_{*}^{3}
$$

are identified.
In order to determine Φ_{g}, we need to study the "bundle" structure $\mathrm{L}_{*}^{3} / \sim \rightarrow \Sigma_{g}$ corresponding to $\left.\pi\right|_{T_{1} \Sigma_{*}}: T_{1} \Sigma_{g_{*}} \rightarrow \Sigma_{g}$. So we see how the fibre of $\left.\pi\right|_{T_{1} \Sigma_{*}}$ are in \mathbb{L}_{*}^{3}. This correspondence is only determined up to parallel transformations in x-direction. From the above construction, $\operatorname{Int}(S)$, which is a $4 g+4$ punctured torus, corresponds to $[0,1] \times[0,1] \times\{0\} \cap \mathbb{L}_{*}^{3}$. More precisely, $\operatorname{Int}(S) \cap \pi^{-1}\left(P_{i}\right)(i=1,2)$ corresponds to

$$
R_{i}=[0,1] \times\left[\frac{i-1}{2}, \frac{i}{2}\right] \times\{0\} \cap \mathbb{L}_{*}^{3} .
$$

$\operatorname{Int}\left(S^{\prime}\right) \cap \pi^{-1}\left(P_{3}\right)$ corresponds to

$$
R_{3}=\left\{\left(t\left(B_{g}\binom{x}{y}\right), \frac{1}{2}\right) \in \mathbb{R} ;(x, y) \in[0,1] \times\left[\frac{1}{2}, 1\right]\right\}
$$

or

$$
R_{3}^{\prime}=\left\{\left(t\left(B_{g}^{-1}\binom{x}{y}\right),-\frac{1}{2}\right) \in \mathbb{R} ;(x, y) \in[0,1] \times\left[\frac{1}{2}, 1\right]\right\}
$$

and $\operatorname{Int}\left(S^{\prime}\right) \cap \pi^{-1}\left(P_{4}\right)$ corresponds to

$$
R_{4}=\left\{\left(t\left(B_{g}\binom{x}{y}\right), \frac{1}{2}\right) \in \mathbb{R} ;(x, y) \in[0,1] \times\left[0, \frac{1}{2}\right]\right\}
$$

or

$$
R_{4}^{\prime}=\left\{\left(t\left(B_{g}^{-1}\binom{x}{y}\right),-\frac{1}{2}\right) \in \mathbb{R} ;(x, y) \in[0,1] \times\left[0, \frac{1}{2}\right]\right\}
$$

where

$$
B_{g}=\left(\begin{array}{cc}
-g & -(g-1) \\
-(g+1) & -g
\end{array}\right)
$$

satisfying that $\left(B_{g}\right)^{2}=A_{g}$. Since $b_{1}=\pi^{-1}\left(o_{1}\right)$ is the base of S, it corresponds to the center line of R_{1}, i.e.,

$$
L_{1}=\left\{\left(x, \frac{1}{4}, 0\right) \in \mathbb{L}_{*}^{3} ; x \in[0,1]\right\} \quad(\text { see Figures } 1 \text { and } 2)
$$

Similarly, $\pi^{-1}\left(o_{2}\right)$ corresponds to the center line of R_{2}

$$
L_{2}=\left\{\left(x, \frac{3}{4}, 0\right) \in \mathbb{L}_{*}^{3} ; x \in[0,1]\right\}
$$

Since b_{2} is another base of S, it corresponds to $\left\{\frac{1}{4(g+1)}\right\} \times[0,1] \times\{0\} \cap \mathbb{R}_{*}^{3}$.
The correspondence between closed orbits $\left\{ \pm G_{i}\right\}$ and $\left\{O_{\ell}^{m}\right\}$ is as follows. From the definition of $b_{2}, \partial\left(\operatorname{Int}(S) \cap \pi^{-1}\left(P_{1}\right)\right) \cap b_{2} \cap \pi^{-1}\left(p_{1}\right)$ is between $q_{2}^{+}=\partial\left(\operatorname{Int}(S) \cap \pi^{-1}\left(P_{1}\right)\right) \cap\left(+G_{2}\right)$ and $q_{1}^{+}=\partial\left(\operatorname{Int}(S) \cap \pi^{-1}\left(P_{1}\right)\right) \cap$ $\left(+G_{1}\right)$. So, operating (1,1)-Dehn surgery along O_{0}^{0} (resp. O_{1}^{0}), we obtain $+G_{2}$ (resp. $+G_{1}$). Similarly, since $\partial\left(\operatorname{Int}(S) \cap \pi^{-1}\left(P_{1}\right)\right) \cap b_{2} \cap \pi^{-1}\left(p_{g+2}\right)$ is between $q_{g+2}^{+}=\partial\left(\operatorname{Int}(S) \cap \pi^{-1}\left(P_{1}\right)\right) \cap\left(-G_{g+2}\right)$ and $q_{g+3}^{+}=\partial(\operatorname{Int}(S) \cap$ $\left.\pi^{-1}\left(P_{1}\right)\right) \cap\left(-G_{g+3}\right), O_{0}^{1}\left(\right.$ resp. $\left.O_{1}^{1}\right)$ corresponds to $-G_{g+3}\left(\right.$ resp. $\left.-G_{g+2}\right)$. $\partial\left(\operatorname{Int}(S) \cap \pi^{-1}\left(P_{1}\right)\right)$ intersects

$$
\begin{gathered}
+G_{2}+G_{1},+G_{2 g+2}, \ldots,+G_{3} \\
\left(\text { resp. }-G_{g+3},-G_{g+2}, \ldots,-G_{2},-G_{1},-G_{2 g+2}, \ldots,-G_{g+4}\right)
\end{gathered}
$$

in this order. Hence,

$$
O_{2}^{0}, O_{3}^{0}, \ldots, O_{2 g+1}^{0}, O_{2}^{1}, O_{3}^{1}, \ldots, O_{2 g+1}^{1}
$$

correspond to

$$
+G_{2 g+2},+G_{2 g+1}, \ldots,+G_{3},-G_{g+1},-G_{g}, \ldots,-G_{1},--G_{2 g+2}, \ldots,-G_{g+4},
$$

respectively. $\pi^{-1}\left(p_{i}\right) \cap \partial\left(\operatorname{Int}(S) \cap \pi^{-1}\left(P_{1}\right)\right)$ is two open intervals $\left(q_{2}^{+}, q_{1}^{+}\right)$ and $\left(q_{2}^{-}, q_{1}^{-}\right) \subset \partial\left(\operatorname{Int}(S) \cap \pi^{-1}\left(P_{1}\right)\right)$ where $q_{i}^{-}=\partial\left(\operatorname{Int}(S) \cap \pi^{-1}\left(P_{1}\right)\right) \cap$ $\left(-G_{i}\right)(i=1,2)$. The other part of $\pi^{-1}\left(p_{1}\right)$ is $\pi^{-1}\left(p_{1}\right) \cap \partial\left(\operatorname{Int}\left(S^{\prime}\right) \cap\right.$ $\pi^{-1}\left(P_{3}\right)$) which are two open intervals. Because of the correspondence between $\operatorname{Int}(S) \cap \pi^{-1}\left(P_{1}\right)$ (resp. $\left.\operatorname{Int}\left(S^{\prime}\right) \cap \pi^{-1}\left(P_{3}\right)\right)$ and R_{1} (resp. $R_{3} \subset$
$\left.\left\{\left(x, y, \frac{1}{2}\right) ; x, y \in \mathbb{R}\right\}\right), \pi^{-1}\left(p_{1}\right)$ can be considered to be corresponding to the union of four segments

$$
\begin{aligned}
S_{1}= & \left\{(x, 0,0) \in \mathbb{L}_{*}^{3} ; x \in\left(0, \frac{1}{2(g+1)}\right)\right\} \\
& \cup\left\{\left(x, \frac{g+1}{g}\left(x-\frac{1}{2}\right)+\frac{1}{2},-\frac{1}{2}\right) \in \mathbb{L}_{*}^{3} ; x \in\left(\frac{1}{2(g+1)}, \frac{1}{2}\right)\right\} \\
& \cup\left\{\left(x, \frac{1}{2}, 0\right) \in \mathbb{L}_{*}^{3} ; x \in\left(\frac{1}{2}, \frac{1}{2}+\frac{1}{2(g+1)}\right)\right\} \\
& \cup\left\{\left(x,-\frac{g+1}{g}\left(x-\frac{1}{2}-\frac{1}{2(g+1)}\right)+\frac{1}{2}, \frac{1}{2}\right) \in \mathbb{L}_{*}^{3} ;\right. \\
& \left.x \in\left(\frac{1}{2}+\frac{1}{2(g+1)}, 1\right)\right\},
\end{aligned}
$$

or

$$
\begin{aligned}
S_{1}^{\prime}= & \left\{(x, 1,0) \in \mathbb{L}_{*}^{3} ; x \in\left(0, \frac{1}{2(g+1)}\right)\right\} \\
& \cup\left\{\left(x,-\frac{g+1}{g}\left(x-\frac{1}{2}\right)+\frac{1}{2}, \frac{1}{2}\right) \in \mathbb{L}_{*}^{3} ; x \in\left(\frac{1}{2(g+1)}, \frac{1}{2}\right)\right\} \\
& \cup\left\{\left(x, \frac{1}{2}, 0\right) \in \mathbb{L}_{*}^{3} ; x \in\left(\frac{1}{2}, \frac{1}{2}+\frac{1}{2(g+1)}\right)\right\} \\
& \cup\left\{\left(x, \frac{g+1}{g}\left(x-\frac{1}{2}-\frac{1}{2(g+1)}\right)+\frac{1}{2},-\frac{1}{2}\right) \in \mathbb{L}_{*}^{3} ;\right. \\
& \left.x \in\left(\frac{1}{2}+\frac{1}{2(g+1)}, 1\right)\right\},
\end{aligned}
$$

(see Figure 2).
In the same way as the case of $\pi^{-1}\left(p_{1}\right)$, we can see that each $\pi^{-1}\left(p_{i}\right)(i=2,3,4, \ldots, 2 g+2)$ corresponds to

$$
\left\{\left(x-\frac{i-1}{2 g+2}, y, z\right) ;(x, y, z) \in S_{1}\right\} \equiv S_{i} \subset \mathbf{L}_{*}^{3},
$$

Figure 2
or

$$
\begin{gathered}
\left\{\left(x-\frac{i-1}{2 g+2}, y, z\right) ;(x, y, z) \in S_{1}^{\prime}\right\} \equiv S_{i}^{\prime} \subset \mathbb{L}_{*}^{3} \\
(\bmod \mathbb{Z} \text { in } x-\text { coordinate })
\end{gathered}
$$

Let $l_{1} \subset \Sigma_{g}$ be a geodesic arc between o_{1} and $p_{1} . \pi^{-1}\left(l_{1}\right)$ is an annulus and it corresponds to a helicoid $H_{1} \subset \mathbb{Q}_{*}^{3}$ such that its center line is L_{1} and its edge is S_{1} which is a spiral around L_{1}. Similarly, let $l_{i}\left(\right.$ resp. $\left.l_{i}^{\prime}\right) \subset \Sigma_{g}$ be the geodesic arc between o_{1} (resp. o_{2}) and $p_{i}(i=1,2,3, \ldots, 2 g+2)$, then $\pi^{-1}\left(l_{i}\right)\left(\right.$ resp. $\left.\pi^{-1}\left(l_{i}^{\prime}\right)\right)$ corresponds to a helicoid $H_{i}\left(\right.$ resp. $\left.H_{i}^{\prime}\right) \subset \mathbb{L}_{*}^{3}$ such that its center line is $L_{1}\left(\right.$ resp. $\left.L_{2}\right)$ and its edge is $S_{i}\left(\right.$ resp. $\left.S_{i}^{\prime}\right)$. We only need H_{i} and H_{i}^{\prime} to calculate Φ_{g}. Other fibres correspond to some curves in \mathbb{L}_{*}^{3} as follows (see Figure 2). For $p \in \operatorname{Int}\left(G_{i} \cap \partial P_{j}\right)(i=1,2,3, \ldots, 2 g+2, j=$ $1,2), \pi^{-1}(p)$ corresponds to the union of two curves and for $p^{\prime} \in \operatorname{Int} P_{j}(j=$ $1,2), \pi^{-1}\left(p^{\prime}\right)$ corresponds to a compatibly oriented spiral around L_{j}. Curves corresponding to fibres over $\operatorname{Int}\left(P_{3}\right)\left(\operatorname{resp} . \operatorname{Int}\left(P_{4}\right)\right)$ are the spirals around the center lines of R_{3} or $R_{3}^{\prime}\left(\right.$ resp. R_{4} or $\left.R_{4}^{\prime}\right)$.

To sum up, we obtain a continuous map

$$
\pi^{\prime}=\left(\left.\pi\right|_{\mathbf{L}_{*}^{3} / \sim}\right) \circ\left(\left.q\right|_{\mathbb{L}_{*}^{3}}\right): \mathbb{L}_{*}^{3} \rightarrow \Sigma_{g}
$$

such that $\left(\pi^{\prime}\right)^{-1}\left(l_{i}\right)=H_{i},\left(\pi^{\prime}\right)^{-1}\left(l_{i}^{\prime}\right)=H_{i}^{\prime}(i=1,2,3, \ldots, 2 g+2)$ and $\left(\pi^{\prime}\right)^{-1}\left(P_{j}\right)(j=1,2)$ is $(2 g+2$ gon $) \times[0,1]$ which twists around L_{j}. $\left(\pi^{\prime}\right)^{-1}\left(P_{3}\right)\left(\right.$ resp. $\left.\left(\pi^{\prime}\right)^{-1}\left(P_{4}\right)\right)$ is $(2 g+2$ gon $) \times[0,1]$ which twists around the center line of R_{3} or R_{3}^{\prime} (resp. R_{4} or R_{4}^{\prime}).

To calculate the piecewise linear total holonomy of a foliated S^{1} bundle over Σ_{g}, a presentation of the fundamental group $\pi_{1}\left(\Sigma_{g}\right)$ is adopted here. That is,

$$
\begin{aligned}
& \pi_{1}\left(\Sigma_{g}\right)=\left\langle a_{1}, a_{2}, a_{3}, \ldots, a_{2 g+2}\right. \\
& \left.\qquad a_{1} a_{2} a_{3} \ldots a_{2 g+2}=a_{1} a_{3} \ldots a_{2 g+1}=a_{2} a_{4} \ldots a_{2 g+2}=1\right\rangle
\end{aligned}
$$

(see Figure 1 and Proposition 2 in $\S 3$).
Let α_{i} be the loop in Σ_{g} which starts o_{1} and passes p_{i}, o_{2}, p_{i+1} and reaches o_{1} such that α_{i} represents a_{i} in $\pi_{1}\left(\Sigma_{g}\right)$. It is easy to see that

$$
\left(\pi^{\prime}\right)^{-1}\left(\alpha_{i}\right)=H_{i} \cup H_{i}^{\prime} \cup H_{i+1}^{\prime} \cup H_{i+1} .
$$

Now we calculate the PL total holonomy ϕ_{g} of the unstable foliation $\mathcal{F}^{u \prime}$ of φ_{t}. The total holonomy of the stable foliation is conjugate to Φ_{g}
by $T(1 / 2)$. An eigenvector of A_{g} corresponding to λ_{g} is $\left(1, \sqrt{\frac{g+1}{g-1}}\right)$. Let $\Pi_{s}(s \in \mathbb{R})$ be the plane

$$
\left\{\left(x, \sqrt{\frac{g+1}{g-1}} x+s, z\right) \in \mathbb{R}^{3} ; x, z \in \mathbb{R}\right\}
$$

The leaves of $\left.\mathcal{F}^{u \prime}\right|_{L^{3} / \sim}$ are made of

$$
\left\{\Pi_{s} \cap \mathbb{L}_{*}^{3} ; s \in\left(-\sqrt{\frac{g+1}{g-1,1}}\right)\right\}
$$

Now, for $p \in\left(\pi^{\prime}\right)^{-1}\left(o_{1}\right)=L_{1}$, there exists $s \in\left(-\sqrt{\frac{g+1}{g-1}}, 1\right)$ such that $p \in \Pi_{s}$ and we move p on

$$
\Pi_{s} \cap\left(H_{1} \cup H_{1}^{\prime} \cup H_{2}^{\prime} \cup H_{2}\right)
$$

along α_{1} in \mathbb{L}_{*}^{3} following the next rule; if a point reaches a face of the cube \mathbb{L}_{*}^{3} then the point is moved in the opposite face by the equivalence relation \sim and starts from the face into $\operatorname{Int}\left(\mathbb{L}_{*}^{3}\right)$. During this move, p passes S_{1}, L_{2}, S_{2} one by one. Finally, p returns to L_{1}. But any points which pass some $q^{-1}\left(O_{l}^{m}\right)$ cannot return to L_{1}. Hence we obtain a return map defined on $L_{1} / \sim-\{12$ points $\}$. This return map can be extended to the homeomorphism

$$
f_{g}^{-1}: L_{1} / \sim=\mathbb{R} / \mathbb{Z}=S^{1} \rightarrow L_{1} / \sim
$$

Then f_{g} is a PL homeomorphism whose left (right) differential coefficients are $\left(\lambda_{g}\right)^{\sigma}(\sigma=-1,0,1)$ as it is described below. (Here we parametrize L_{1} by the x-coordinate.) f_{g} has four non-differentiable points and these points are caused by four of twelve points deleted from L_{1} / \sim.

Now we prepare some notations. In order to describe a PL homeomorphism h of $S^{1}=\mathbb{R} / \mathbb{Z}$, the lift homeomorphism of $h, \widetilde{h}: \mathbb{R} \rightarrow \mathbb{R}$, is described by using non-differentiable points of \widetilde{h}. If $a, b \in \mathbb{R}(a<b)$ are non-differentiable points of \widetilde{h} and $\left.\widetilde{h}\right|_{[a, b]}$ is

$$
y=\lambda x+\nu(\lambda, \nu \in \mathbb{R})
$$

then $\widetilde{h}_{[a, b]}$ is denoted by

$$
\begin{gathered}
a \longmapsto c=\lambda a+\nu \\
{[\lambda]} \\
b \longmapsto d=\lambda b+\nu
\end{gathered}
$$

For example, $T(\theta)\left(\theta \in S^{1}=\mathbb{R} / \mathbb{Z}\right)$ is denoted by

$$
T(\theta): 0 \longmapsto \theta
$$

[1]

$$
1 \longmapsto \theta+1
$$

Then f_{g} or its lift $\widetilde{f_{g}}$ is described as follows:

$$
\begin{aligned}
& \frac{4 g^{2}-2+(1-4 g) \sqrt{g^{2}-1}}{4(g+1)} \mapsto \frac{2+\sqrt{g^{2}-1}}{4(g+1)} \\
& \text { [1] } \\
& \frac{2 g-\sqrt{g^{2}-1}}{4(g+1)} \mapsto \frac{(4 g-1) \sqrt{g^{2}-1}-4 g^{2}+2 g+4}{4(g+1)} \\
& {\left[\left(\lambda_{g}\right)^{-1}\right]} \\
& \frac{4 g+2+\sqrt{g^{2}-1}}{4(g+1)} \mapsto \frac{4 g+2-3 \sqrt{g^{2}-1}}{4(g+1)} \\
& \text { [1] } \\
& \begin{array}{c}
\frac{2 g+4+3 \sqrt{g^{2}-1}}{4(g+1)} \mapsto \frac{2 g+4-\sqrt{g^{2}-1}}{4(g+1)} \\
{\left[\lambda_{g}\right]}
\end{array} \\
& \frac{4 g^{2}-2+(1-4 g) \sqrt{g^{2}-1}}{4(g+1)}+1 \mapsto \frac{2+\sqrt{g^{2}-1}}{4(g+1)}+1 .
\end{aligned}
$$

Similarly, with respect to $\alpha_{i}(i=2,3, \ldots, 2 g+2)$, we obtain a PLhomeomorphism

$$
T\left(-\frac{i-1}{2(g+1)}\right) \circ f_{g}^{-1} \circ T\left(\frac{i-1}{2(g+1)}\right)
$$

The next lemma is proved by the induction.

Lemma 1. - Let $f_{g}^{(i)}(i=1,2)$ be $f_{g} \circ T\left(-\frac{1}{i(g+1)}\right) \cdot \mathcal{L}_{g}$ and \mathcal{M}_{g} denote $2 \lambda_{g}(g+1)$ and $\sqrt{\lambda_{g}}(g+1)$, respectively.
(1) For $m=1,2, \ldots, g-1, g,\left\{f_{g}^{(1)}\right\}^{m}:$

$$
\frac{4 g^{2}+2+(1-4 g) \sqrt{g^{2}-1}}{4(g+1)}-\frac{m-1}{\mathcal{M}_{g}} \longmapsto \frac{2+\sqrt{g^{2}-1}}{4(g+1)}
$$

[1]

$$
\begin{gathered}
\frac{2 g+4-\sqrt{g^{2}-1}}{4(g+1)} \longmapsto \frac{(4 g-1) \sqrt{g^{2}-1}-4 g^{2}+2 g+4}{4(g+1)}+\frac{m-1}{\mathcal{M}_{g}} \\
{\left[\left(\lambda_{g}\right)^{-1}\right]} \\
\frac{4 g+6+\sqrt{g^{2}-1}}{4(g+1)} \longmapsto \frac{4 g+2-3 \sqrt{g^{2}-1}}{4(g+1)}+\frac{m-1}{\mathcal{M}_{g}}
\end{gathered}
$$

[1]

$$
\begin{gathered}
\frac{2 g+8+3 \sqrt{g^{2}-1}}{4(g+1)}-\frac{m-1}{\mathcal{M}_{g}} \longmapsto \frac{2 g+4-\sqrt{g^{2}-1}}{4(g+1)} \\
\frac{\left[\lambda_{g}\right]}{4(g+1)}-4 g+6+(1-4 g) \sqrt{g^{2}-1} \\
4-\frac{m-1}{\mathcal{M}_{g}} \longmapsto \frac{4 g+6+\sqrt{g^{2}-1}}{4(g+1)} .
\end{gathered}
$$

(2) For $m=3,4, \ldots, g, g+1,\left\{f_{g}^{(2)}\right\}^{m}:$

$$
\begin{gathered}
\frac{\left(8 g^{2}-4 g-1\right) \sqrt{g^{2}-1}-8 g^{3}+4 g^{2}+6 g}{4(g+1)}+\frac{m-3}{\mathcal{L}_{g}} \mapsto \frac{2 g+2-\sqrt{g^{2}-1}}{4(g+1)} \\
{\left[\lambda_{g}\right]} \\
\frac{\left(8 g^{2}-8 g-1\right) \sqrt{g^{2}-1}-8 g^{3}+8 g^{2}+6 g-2}{4(g+1)}+\frac{m-3}{\mathcal{L}_{g}} \mapsto \frac{2 g+4-\sqrt{g^{2}-1}}{4(g+1)} \\
{\left[\left(\lambda_{g}\right)^{2}\right]} \\
\frac{8 g^{2}-2+(1-8 g) \sqrt{g^{2}-1}}{4(g+1)}+\frac{m-3}{\mathcal{L}_{g}} \mapsto \frac{4 g+4+\sqrt{g^{2}-1}}{4(g+1)} \\
{\left[\lambda_{g}\right]}
\end{gathered}
$$

$$
\frac{12 g^{2}-4+(1-12 g) \sqrt{g^{2}-1}}{4(g+1)}+\frac{m-3}{\mathcal{L}_{g}} \mapsto \frac{4 g+6+\sqrt{g^{2}-1}}{4(g+1)}
$$

[1]

$$
\left.\begin{array}{c}
\frac{2 g+2-\sqrt{g^{2}-1}}{4(g+1)} \mapsto \frac{(12 g-1) \sqrt{g^{2}-1}-12 g^{2}+6 g+12}{4(g+1)}-\frac{m-3}{\mathcal{L}_{g}} \\
\frac{2 g+4-\sqrt{g^{2}-1}}{4(g+1)} \mapsto \frac{(8 g-1) \sqrt{g^{2}-1}-8 g^{2}+6 g+10}{4(g+1)}-\frac{m-3}{\mathcal{L}_{g}} \\
{\left[\left(\lambda_{g}\right)^{-2}\right]}
\end{array}\right] \begin{aligned}
& \frac{4 g+4+\sqrt{g^{2}-1}}{4(g+1)} \mapsto \frac{8 g^{3}-8 g^{2}+10-\left(8 g^{2}-8 g-1\right) \sqrt{g^{2}-1}}{4(g+1)}-\frac{m-3}{\mathcal{L}_{g}} \\
& \frac{\left[\left(\lambda_{g}\right)^{-1}\right]}{4 g+6+\sqrt{g^{2}-1}} 5 \mapsto \frac{8 g^{3}-4 g^{2}+8-\left(8 g^{2}-4 g-1\right) \sqrt{g^{2}-1}}{4(g+1)}-\frac{m-3}{\mathcal{L}_{g}} \\
& {[1]} \\
& \frac{\left(8 g^{2}-4 g-1\right) \sqrt{g^{2}-1}-8 g^{3}+4 g^{2}+10 g+4}{4(g+1)}+\frac{m-3}{\mathcal{L}_{g}} \mapsto \frac{6 g+6-\sqrt{g^{2}-1}}{4(g+1)} .
\end{aligned}
$$

Lemma 2. - The map

$$
\Phi_{g}: \pi_{1}\left(\Sigma_{g}\right) \mapsto P L_{+}\left(S^{1}\right)
$$

defined by

$$
\Phi_{g}\left(a_{i}\right)=T\left(-\frac{i-1}{2(g+1)}\right) \circ f_{g} \circ T\left(\frac{i-1}{2(g+1)}\right)(i=1,2, \ldots, 2(g+1))
$$

is a group homomorphism.

Proof. - By Lemma 1,

$$
\left\{f_{g}^{(1)}\right\}^{g+1}=1 \text { and }\left\{f_{g}^{(2)}\right\}^{2(g+1)}=\left[\left\{f_{g}^{(2)}\right\}^{g+1}\right]^{2}=1
$$

Hence

$$
\begin{aligned}
\Phi_{g}\left(a_{1} a_{3} \ldots a_{2 g+1}\right) & =\left\{f_{g}^{(1)}\right\}^{g} \circ f_{g} \circ T\left(\frac{2 g}{2(g+1)}\right) \\
& =\left\{f_{g}^{(1)}\right\}^{g} \circ f_{g} \circ T\left(-\frac{1}{g+1}\right)=\left\{f_{g}^{(1)}\right\}^{g+1}=1, \\
\Phi_{g}\left(a_{2} a_{4} \ldots a_{2(g+1)}\right) & =T\left(-\frac{1}{g+1}\right) \circ \Phi_{g}\left(a_{1} a_{3} \ldots a_{2 g+1}\right) \circ T\left(\frac{1}{g+1}\right)=1,
\end{aligned}
$$

and

$$
\begin{aligned}
\Phi_{g}\left(a_{1} a_{2} \ldots a_{2(g+1)}\right) & =\left\{f_{g}^{(2)}\right\}^{2 g+1} \circ f_{g} \circ T\left(\frac{2 g+1}{2(g+1)}\right) \\
& =\left\{f_{g}^{(2)}\right\}^{2 g+1} \circ f_{g} \circ T\left(-\frac{1}{2(g+1)}\right)=\left\{f_{g}^{(2)}\right\}^{2(g+1)}=1
\end{aligned}
$$

These verify that Φ_{g} is a group homomorphism.
To sum up, we obtain the following theorem.

Theorem. - Let Σ_{g} be the orientable closed surface of genus $g(\geq 2)$. Consider a Riemannian metric on Σ_{g} of constant negative curvature -1 , and let

$$
\Psi_{g}: \pi_{1}\left(\Sigma_{g}\right) \rightarrow P S L(2, \mathbb{R})
$$

denote the total holonomy of the unstable foliation of the geodesic flow F_{t} on the unit tangent vector bundle. Then Ψ_{g} is topologically conjugate to the above homomorphism Φ_{g}. That is to say, there exists a homeomorphism $h: S^{1} \rightarrow S^{1}$ such that

$$
\Psi_{g}(\gamma)(\theta)=\left(h \circ \Phi_{g}(\gamma) \circ h^{-1}\right)(\theta)\left(\text { for all } \gamma \in \pi_{1}\left(\Sigma_{g}\right) \text { and } \theta \in S^{1}\right)
$$

Proof. - In [Gh] and [Ha1], it is shown that the unstable foliation of F_{t} is topologically equivalent to the unstable foliation of φ_{t}, that is, their total holonomies are topologically conjugate each other. On the other hand, Φ_{g} is the total holonomy of φ_{t} (cf. [CN], Chapter V). So Ψ_{g} is topologically conjugate to Φ_{g}.

Remark. - Φ_{g} is independent of the choice of the metric of constant negative curvature -1 but dependent on the choice of the basis of the Birkhoff section.

2. The discrete Godbillon-Vey invariant of Φ_{g}.

The discrete Godbillon-Vey invariant $\overline{G V}$ (see [Gr], [GS], [Gh] and $[T])$ is the $\mathbb{R} \otimes_{\mathbb{Z}} \mathbb{R}$ - valued 2-cocycle of $P L_{+}\left(S^{1}\right)$ defined by

$$
\overline{G V}\left(h_{1}, h_{2}\right)=\frac{1}{2} \sum_{x \in S^{1}} C\left(h_{2}, h_{1} \circ h_{2}\right)(x)\left(h_{1}, h_{2} \in P L_{+}\left(S^{1}\right)\right),
$$

where $C\left(k_{1}, k_{2}\right)(x)=\log k_{1}^{\prime}(x+0) \otimes \Delta\left(\log k_{2}^{\prime}\right)(x)-\log k_{2}^{\prime}(x+0) \otimes$ $\Delta\left(\log k_{1}^{\prime}\right)(x)\left(k_{1}, k_{2} \in P L_{+}\left(S^{1}\right), x \in S^{1}\right)$ and for a map $k: S^{1} \rightarrow \mathbb{R}, \Delta k(x)=$ $k(x+0)-k(x-0)$ if k has

$$
k(x \pm 0) \lim _{\varepsilon \rightarrow 0} k(x \pm \varepsilon)\left(\text { for } x \in S^{1}\right)
$$

From this definition, we have the next lemma.
Lemma 3. - For $\theta \in S^{1}$,
(1) $\overline{G V}\left(T(\theta) \circ h_{1}, h_{2}\right)=\overline{G V}\left(h_{1}, h_{2}\right)$,
(2) $\overline{G V}\left(h_{1} \circ T(\theta), h_{2}\right)=\overline{G V}\left(h_{1}, T(\theta) \circ h_{2}\right)$,
(3) $\overline{G V}\left(h_{1}, h_{2} \circ T(\theta)\right)=\overline{G V}\left(h_{1}, h_{2}\right)$.

Let $\boldsymbol{\Sigma}_{g} \in H_{2}\left(\pi_{1}\left(\Sigma_{g}\right) ; \mathbb{Z}\right)=\mathbb{Z}$ be the fundamental class. According to [EM], Σ_{g} is represented by the 2-cycle

$$
\begin{aligned}
\mathbf{\Sigma}_{g} & =\left(a_{1}, a_{3}\right)+\left(a_{1} a_{3}, a_{5}\right)+\ldots+\left(a_{1} a_{3} a_{5} \ldots a_{2 g-3}, a_{2 g-1}\right) \\
& +\left(a_{2}, a_{4}\right)+\left(a_{2} a_{4}, a_{6}\right)+\ldots+\left(a_{2} a_{4} a_{6} \ldots a_{2 g-2}, a_{2 g}\right) \\
& -\left\{\left(a_{1}, a_{2}\right)+\left(a_{1} a_{2}, a_{3}\right)+\ldots+\left(a_{1} a_{2} a_{3} \ldots a_{2 g-1}, a_{2 g}\right)\right. \\
& \left.-\left(a_{2 g+2}^{-1}, a_{2 g+1}^{-1}\right)\right\} \\
& =\left(a_{1}, a_{3}\right)+\left(a_{1} a_{3}, a_{5}\right)+\ldots+\left(a_{1} a_{3} a_{5} \ldots a_{2 g-3}, a_{2 g-1}\right) \\
& +\left(a_{2}, a_{4}\right)+\left(a_{2} a_{4}, a_{6}\right)+\ldots+\left(a_{2} a_{4} a_{6} \ldots a_{2 g-2}, a_{2 g}\right) \\
& -\left\{\left(a_{1}, a_{2}\right)+\left(a_{1} a_{2}, a_{3}\right)+\ldots+\left(a_{1} a_{2} a_{3} \ldots a_{g}, a_{g+1}\right)\right. \\
& +\left(a_{2 g+2}^{-1} a_{2 g+1}^{-1} a_{2 g}^{-1} \ldots a_{g+2}^{-1}, a_{g+2}\right)+\left(a_{2 g+2}^{-1} a_{2 g+1}^{-1} a_{2 g}^{-1} \ldots a_{g+3}^{-1}, a_{g+3}\right) \\
& \left.+\ldots+\left(a_{2 g+2}^{-1} a_{2 g+1}^{-1} a_{2 g}^{-1} a_{2 g-1}^{-1}, a_{2 g-1}\right)+\left(a_{2 g+2}^{-1} a_{2 g+1}^{-1} a_{2 g}^{-1}, a_{2 g}\right)\right\} \\
& +\left(a_{2 g+2}^{-1}, a_{2 g+1}^{-1}\right) .
\end{aligned}
$$

The next lemma is proved by Lemma 3 and the fact $T\left(-\frac{2 g+1}{2(g+2)}\right)=$ $T\left(\frac{1}{2(g+1)}\right)$.

Lemma 4.

(1) $\overline{G V}\left(\Phi_{g *}\left(a_{1} a_{3} \ldots a_{2 m-3}, a_{2 m-1}\right)\right)=\overline{G V}\left(\left(f_{g}^{(1)}\right)^{m-1}, f_{g}^{(1)}\right)(m=2,3, \ldots, g)$.
(2) $\overline{G V}\left(\Phi_{g *}\left(a_{2} a_{4} \ldots a_{2 m-2}, a_{2 m}\right)\right)=\overline{G V}\left(\left(f_{g}^{(1)}\right)^{m-1}, f_{g}^{(1)}\right)(m=2,3, \ldots, g)$.
(3) $\overline{G V}\left(\Phi_{g *}\left(a_{1} a_{2} \ldots a_{m-1}, a_{m}\right)\right)=\overline{G V}\left(\left(f_{g}^{(2)}\right)^{m-1}, f_{g}^{(2)}\right)(m=2,3, \ldots, g+1)$.
(4) $\overline{G V}\left(\Phi_{g *}\left(a_{2 g+2}^{-1} a_{2 g+1}^{-1} \ldots a_{2 g-m}^{-1}, a_{2 g-m}\right)\right)=\overline{G V}\left(\left(f_{g}^{(2)}\right)^{-m-3}, f_{g}^{(2)}\right)$

$$
(m=0,1, \ldots, g-2)
$$

(5) $\overline{G V}\left(\Phi_{g *}\left(a_{2 g+2}^{-1}, a_{2 g+1}^{-1}\right)\right)=\overline{G V}\left(\left(f_{g}^{(2)}\right)^{-1},\left(f_{g}^{(2)}\right)^{-1}\right)$.

If $h_{1}, h_{2} \in P L_{+}\left(S^{1}\right)$, then it is the order of the non-differentiable points of h_{2} and $h_{1} \circ h_{2}$ that determines the value of $\overline{G V}\left(h_{1}, h_{2}\right)$. Let

$$
d_{g}^{(i)}(m ; \sigma, \tau) \in S^{1}(i=1,2 ; m \in \mathbb{Z} ; \sigma, \tau \in\{-2,-1,0,1,2\})
$$

be the non-differentiable points of $\left(f_{g}^{(i)}\right)^{m}$ such that

$$
\left\{\left(f_{g}^{(i)}\right)^{m}\right\}^{\prime}\left(d_{g}^{(i)}(m ; \sigma, \tau)-0\right)=\left(\lambda_{g}\right)^{\sigma}
$$

and

$$
\left\{\left(f_{g}^{(i)}\right)^{m}\right\}^{\prime}\left(d_{g}^{(i)}(m ; \sigma, \tau)+0\right)=\left(\lambda_{g}\right)^{\tau}
$$

$\left(f_{g}^{(i)}\right)^{m}\left(d_{g}^{(i)}(m ; \sigma, \tau)\right)$ is denoted by $r_{g}^{(i)}(m ;-\sigma,-\tau)$ which is the nondifferentiable points of $\left(f_{g}^{(i)}\right)^{-m}$ such that

$$
\left\{\left(f_{g}^{(i)}\right)^{-m}\right\}^{\prime}\left(r_{g}^{(i)}(m ;-\sigma,-\tau)-0\right)=\left(\lambda_{g}\right)^{-\sigma}
$$

and

$$
\left\{\left(f_{g}^{(i)}\right)^{-m}\right\}^{\prime}\left(r_{g}^{(i)}(m ;-\sigma,-\tau)+0\right)=\left(\lambda_{g}\right)^{-\tau}
$$

We know the values of $d_{g}^{(i)}(m ; \sigma, \tau)$ and $r_{g}^{(i)}(m ; \sigma, \tau)$ by Lemma 2 except $d_{g}^{(2)}(m ; \sigma, \tau)$ and $r_{g}^{(2)}(m ; \sigma, \tau)(m=1,2)$, but it is easy to calculate them.
$S^{1}=\mathbb{R} / \mathbb{Z}$ has the cyclic order \prec determined by the orientation of S^{1}. The orders of non-differentiable points which are used to calculate $\overline{G V}\left(\Phi_{g *}\left(\Sigma_{g}\right)\right)$ are as follows.

Lemma 5.

(1) $d_{g}^{(1)}(m ; 1,0) \prec d_{g}^{(1)}(1 ; 0,1) \prec d_{g}^{(1)}(1 ; 1,0)$

$$
\begin{aligned}
& \prec d_{g}^{(1)}(1 ; 0,-1)= d_{g}^{(1)}(m ; 0,-1) \prec d_{g}^{(1)}(1 ;-1,0)=d_{g}^{(1)}(m ;-1,0) \\
& \prec d_{g}^{(1)}(m ; 0,1) \prec d_{g}^{(1)}(m ; 1,0) \\
&(m=2,3, \ldots, g) .
\end{aligned}
$$

(2) $d_{g}^{(2)}(2 ; 0,1) \prec d_{g}^{(2)}(2 ; 1,2) \prec d_{g}^{(2)}(1 ; 1,0)=d_{g}^{(2)}(2 ; 2,1)$

$$
\begin{aligned}
& \prec d_{g}^{(2)}(2 ; 1,0) \prec d_{g}^{(2)}(1 ; 0,-1)=d_{g}^{(2)}(2 ; 0,-1) \prec d_{g}^{(2)}(2 ;-1,-2) \\
& \prec d_{g}^{(2)}(1 ;-1,0)=d_{g}^{(2)}(2 ;-2,-1) \prec d_{g}^{(2)}(1 ; 0,1)=d_{g}^{(2)}(2 ;-1,0) \\
& \\
& \prec d_{g}^{(2)}(2 ; 0,1) .
\end{aligned}
$$

(3) $d_{g}^{(2)}(3 ; 0,1) \prec d_{g}^{(2)}(1 ; 1,0) \prec d_{g}^{(2)}(3 ; 1,2) \prec d_{g}^{(2)}(3 ; 2,1)$

$$
\begin{aligned}
& \prec d_{g}^{(2)}(3 ; 1,0) \prec d_{g}^{(2)}(1 ; 0,-1)=d_{g}^{(2)}(3 ; 0,-1) \prec d_{g}^{(2)}(3 ;-1,-2) \\
& \prec d_{g}^{(2)}(1 ;-1,0)=d_{g}^{(2)}(3 ;-2,-1) \prec d_{g}^{(2)}(1 ; 0,1) \\
& \quad \prec d_{g}^{(2)}(3 ;-1,0) \prec d_{g}^{(2)}(3 ; 0,1) .
\end{aligned}
$$

(4) $d_{g}^{(2)}(m ; 0,1) \prec d_{g}^{(2)}(m ; 1,2) \prec d_{g}^{(2)}(m ; 2,1) \prec d_{g}^{(2)}(m ; 1,0)$

$$
\prec d_{g}^{(2)}(1 ; 0,-1)=d_{g}^{(2)}(m ; 0,-1) \prec d_{g}^{(2)}(m ;-1,-2)
$$

$$
\prec d_{g}^{(2)}(1 ;-1,0)=d_{g}^{(2)}(m ;-2,-1) \prec d_{g}^{(2)}(1 ; 0,1) \prec d_{g}^{(2)}(m ;-1,0)
$$

$$
\prec d_{g}^{(2)}(1 ; 1,0) \prec d_{g}^{(2)}(m ; 0,1)
$$

$$
(m=4,5, \ldots, g+1)
$$

(5) $r_{g}^{(2)}(2 ; 0,-1) \prec r_{g}^{(2)}(2 ;-1,-2) \prec d_{g}^{(2)}(1 ;-1,0)=r_{g}^{(2)}(2 ;-2,-1)$

$$
\begin{aligned}
\prec d_{g}^{(2)}(1 ; 0,1) & \prec r_{g}^{(2)}(2 ;-1,0) \prec d_{g}^{(2)}(1 ; 1,0) \prec r_{g}^{(2)}(2 ; 0,1) \\
\prec r_{g}^{(2)}(2 ; 1,2) & \prec r_{g}^{(2)}(2 ; 2,1) \prec d_{g}^{(2)}(1 ; 0,-1)=r_{g}^{(2)}(2 ; 1,0) \\
& \prec r_{g}^{(2)}(2 ; 0,-1) .
\end{aligned}
$$

(6) $d_{g}^{(2)}(1 ; 0,-1)=r_{g}^{(2)}(m ; 0,-1) \prec r_{g}^{(2)}(m ;-1,-2)$

$$
\prec d_{g}^{(2)}(1 ;-1,0)=r_{g}^{(2)}(m ;-2,-1) \prec d_{g}^{(2)}(1 ; 0,1) \prec r_{g}^{(2)}(m ;-1,0)
$$

$$
\begin{gathered}
\prec d_{g}^{(2)}(1 ; 1,0) \prec r_{g}^{(2)}(m ; 0,1) \prec r_{g}^{(2)}(m ; 1,2) \prec r_{g}^{(2)}(m ; 2,1) \\
\prec r_{g}^{(2)}(m ; 1,0) \prec d_{g}^{(2)}(1 ; 0,-1)=r_{g}^{(2)}(m ; 0,-1) \\
(m=3,4, \ldots, g) . \\
(7) r_{g}^{(2)}(1 ; 1,0)=r_{g}^{(2)}(2 ; 0,-1) \prec r_{g}^{(2)}(1 ; 0,-1)=r_{g}^{(2)}(2 ;-1,-2) \\
\prec r^{(2)}(2 ;-2,-1) \prec r_{g}^{(2)}(1 ;-1,0)=r_{g}^{(2)}(2 ;-1,0) \prec r_{g}^{(2)}(2 ; 0,1) \\
\prec r_{g}^{(2)}(1 ; 0,1)=r_{g}^{(2)}(2 ; 1,2) \prec r_{g}^{(2)}(2 ; 2,1) \prec r_{g}^{(2)}(2 ; 1,0) \\
\prec r_{g}^{(2)}(1 ; 1,0)=r_{g}^{(2)}(2 ; 0,-1) .
\end{gathered}
$$

Consequently,

Proposition 1.

$$
\left(\Phi_{g}^{*}(\overline{G V})\right)\left(\mathbf{\Sigma}_{g}\right)=\overline{G V}\left(\Phi_{g *}\left(\mathbf{\Sigma}_{g}\right)\right)=-4(g+1) \log \lambda_{g} \otimes \log \lambda_{g} .
$$

Proof. - For $m=2,3, \ldots, g$, Lemma 4 (1), (2) and Lemma 5 (1) imply that

$$
\begin{aligned}
& \overline{G V}\left(\Phi_{g *}\left(a_{1} a_{3} \ldots a_{2 m-3}, a_{2 m-1}\right)\right)=\overline{G V}\left(\Phi_{g *}\left(a_{2} a_{4} \ldots a_{2 m-2}, a_{2 m}\right)\right) \\
&= \overline{G V}\left(\left(f_{g}^{(1)}\right)^{m-1}, f_{g}^{(1)}\right)=\frac{1}{2} \sum_{x \in S^{1}} C\left(f_{g}^{(1)},\left(f_{g}^{(1)}\right)^{m}\right)(x) \\
&= \frac{1}{2}\left\{C\left(f_{g}^{(1)},\left(f_{g}^{(1)}\right)^{m}\right)\left(d_{g}^{(1)}(m ; 1,0)\right)+C\left(f_{g}^{(1)},\left(f_{g}^{(1)}\right)^{m}\right)\left(d_{g}^{(1)}(1 ; 0,1)\right)\right. \\
&+C\left(f_{g}^{(1)},\left(f_{g}^{(1)}\right)^{m}\right)\left(d_{g}^{(1)}(1 ; 1,0)\right)+C\left(f_{g}^{(1)},\left(f_{g}^{(1)}\right)^{m}\right)\left(d_{g}^{(1)}(1 ; 0,-1)\right) \\
&\left.+C\left(f_{g}^{(1)},\left(f_{g}^{(1)}\right)^{m}\right)\left(d_{g}^{(1)}(1 ;-1,0)\right)+C\left(f_{g}^{(1)},\left(f_{g}^{(1)}\right)^{m}\right)\left(d_{g}^{(1)}(m ; 0,1)\right)\right\} \\
&\left(\text { where } d_{g}^{(1)}(1 ; 0,-1)=d_{g}^{(1)}(m ; 0,-1)\right. \\
&\text { and } \left.d_{g}^{(1)}(1 ;-1,0)=d_{g}^{(1)}(m ;-1,0)\right) \\
&= \frac{1}{2}\left\{\left(0 \otimes\left(-\log \lambda_{g}\right)-0 \otimes 0\right)+\left(\log \lambda_{g} \otimes 0-0 \otimes \log \lambda_{g}\right)\right. \\
&+\left(0 \otimes 0-0 \otimes\left(-\log \lambda_{g}\right)\right) \\
& \quad+\left(\log \left(\lambda_{g}\right)^{-1} \otimes \log \left(\lambda_{g}\right)^{-1}-\log \left(\lambda_{g}\right)^{-1} \otimes \log \left(\lambda_{g}\right)^{-1}\right) \\
& \quad+\left(0 \otimes\left(-\log \left(\lambda_{g}\right)^{-1}-0 \otimes\left(-\log \left(\lambda_{g}\right)^{-1}\right)\right)\right. \\
&\left.\quad+\left(0 \otimes \log \lambda_{g}-\log \lambda_{g} \otimes 0\right)\right\}=0 .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\overline{G V}\left(\Phi_{g *}\left(a_{1}, a_{2}\right)\right)=\overline{G V}(& \left.f_{g}^{(2)}, f_{g}^{(2)}\right) \\
& =\frac{1}{2} \sum_{x \in S^{1}} C\left(f_{g}^{(2)},\left(f_{g}^{(2)}\right)^{2}\right)(x)=3 \log \lambda_{g} \otimes \log \lambda_{g} \\
\overline{G V}\left(\Phi_{g *}\left(a_{1} a_{2}, a_{3}\right)\right)=\overline{G V} & \left(\left(f_{g}^{(2)}\right)^{2}, f_{g}^{(2)}\right) \\
& =\frac{1}{2} \sum_{x \in S^{1}} C\left(f_{g}^{(2)},\left(f_{g}^{(2)}\right)^{3}\right)(x)=3 \log \lambda_{g} \otimes \log \lambda_{g}
\end{aligned}
$$

$$
\overline{G V}\left(\Phi_{g *}\left(a_{1} a_{2} \ldots a_{m-1}, a_{m}\right)\right)=\overline{G V}\left(\left(f_{g}^{(2)}\right)^{m-1}, f_{g}^{(2)}\right)
$$

$$
=\frac{1}{2} \sum_{x \in S^{1}} C\left(f_{g}^{(2)},\left(f_{g}^{(2)}\right)^{m}\right)(x)=2 \log \lambda_{g} \otimes \log \lambda_{g}
$$

$$
(m=4,5, \ldots, g+1)
$$

$$
\overline{G V}\left(\Phi_{g *}\left(a_{2 g+2}^{-1} a_{2 g+1}^{-1} \ldots a_{2 g-m}^{-1}, a_{2 g-m}\right)\right)=\overline{G V}\left(\left(f_{g}^{(2)}\right)^{-m-3}, f_{g}^{(2)}\right)
$$

$$
=\frac{1}{2} \sum_{x \in S^{1}} C\left(f_{g}^{(2)},\left(f_{g}^{(2)}\right)^{-m-2}\right)(x)=2 \log \lambda_{g} \otimes \log \lambda_{g}
$$

$$
(m=1,2, \ldots, g-2)
$$

$$
\overline{G V}\left(\Phi_{g *}\left(a_{2 g+2}^{-1} a_{2 g+1}^{-1} a_{2 g}^{-1}, a_{2 g}\right)\right)=\overline{G V}\left(\left(f_{g}^{(2)}\right)^{-3}, f_{g}^{(2)}\right)
$$

$$
=\frac{1}{2} \sum_{x \in S^{1}} C\left(f_{g}^{(2)},\left(f_{g}^{(2)}\right)^{-2}\right)(x)=3 \log \lambda_{g} \otimes \log \lambda_{g}
$$

$$
\overline{G V}\left(\Phi_{g *}\left(a_{2 g+2}^{-1}, a_{2 g+1}^{-1}\right)\right)=\overline{G V}\left(\left(f_{g}^{(2)}\right)^{-1},\left(f_{g}^{(2)}\right)^{-1}\right)
$$

$$
\left.=\frac{1}{2} \sum_{x \in S^{1}} C\left(f_{g}^{(2)}\right)^{-1},\left(f_{g}^{(2)}\right)^{-2}\right)(x)=-3 \log \lambda_{g} \otimes \log \lambda_{g}
$$

Therefore,

$$
\begin{aligned}
\overline{G V} & \left(\Phi_{g *}\left(\mathbf{\Sigma}_{g}\right)\right) \\
& =\{0 \times 2(g-1)-(3+3+2 \times 2(g-2)+3)-3\} \log \lambda_{g} \otimes \log \lambda_{g} \\
& =-4(g+1) \log \lambda_{g} \otimes \log \lambda_{g}
\end{aligned}
$$

Let $\operatorname{Homeo}_{\widetilde{+}}\left(S^{1}\right)$ be the group of orientation preserving homeomorphism f of \mathbb{R} satisfying that

$$
f(x+1)=f(x)+1, \text { for all } x \in \mathbb{R}
$$

Definition ([He]). - For $f \in \operatorname{Homeo}_{\sim}^{\sim}\left(S^{1}\right)$, we say that f is of class P if f is differentiable except at most countably many points of \mathbb{R} and there exists a function $h: \mathbb{R} \rightarrow \mathbb{R}$ satisfying that
(i) $h(x+1)=h(x)$ for all $x \in \mathbb{R}$,
(ii) $h(x)>a>0$ for all $x \in \mathbb{R}$,
(iii) $\left.h\right|_{[0,1]}$ is of bounded variation,
(iv) f^{\prime} coincides with h except at most countably many points of \mathbb{R}.
$\widetilde{\mathcal{D}}_{+}\left(S^{1}\right)$ denotes the homeomorphisms of class P of \mathbb{R}. In [He], some remarks about $\widetilde{\mathcal{D}}_{+}\left(S^{1}\right)$ are stated.

Remark.

(1) If $f \in \widetilde{\mathcal{D}}_{+}\left(S^{1}\right)$ then both of f, f^{-1} are absolutely continuous and Lipschitz continuous.
(2) If $f \in \widetilde{\mathcal{D}}_{+}\left(S^{1}\right)$ then so is f^{-1} and if $f, g \in \widetilde{\mathcal{D}}_{+}\left(S^{1}\right)$ then so is $f \circ g$. Hence $\widetilde{\mathcal{D}}_{+}\left(S^{1}\right)$ is a group.
(3) In the above definition, $\log h$ is of bounded variation.
(4) f is of class P if and only if for all $x \in \mathbb{R}, f$ has the right derivative $f^{\prime}(x+0)$ and $\log f^{\prime}(\cdot+0)$ has bounded variation on $[0,1]$.
$\mathcal{D}_{+}\left(S^{1}\right)$ denotes the orientation preserving homeomorphisms of S^{1} whose lifts belong to $\widetilde{\mathcal{D}}_{+}\left(S^{1}\right)$. So $\mathcal{D}_{+}\left(S^{1}\right)$ is a group and $P L_{+}\left(S^{1}\right) \cup$ $P S L(2, \mathbb{R}) \subset \mathcal{D}_{+}\left(S^{1}\right) \subset$ Homeo $_{+}\left(S^{1}\right)$. Let $\rho: \mathbb{R} \otimes_{\mathbb{Z}} \mathbb{R} \rightarrow \mathbb{R}$ be the homomorphism defined by $\rho(a \otimes b)=a \times b(a, b \in \mathbb{R})$. $\overline{g v}$ denotes the composition $\rho \circ \overline{G V}$ which can define the \mathbb{R}-valued 2-cocycle of $\mathcal{D}_{+}\left(S^{1}\right)$. On the other hand, for $h_{1}, h_{2} \in \operatorname{Diff}_{+}^{2}\left(S^{1}\right)$, the Godbillon-Vey cocycle is defined by

$$
g v\left(h_{1}, h_{2}\right)=\frac{1}{2} \int_{S^{1}}\left|\begin{array}{cc}
\log h_{2}^{\prime}(x) & \log \left(h_{1} \circ h_{2}\right)^{\prime}(x) \\
\left(\log h_{2}^{\prime}\right)^{\prime}(x) & \left(\log \left(h_{1} \circ h_{2}\right)^{\prime}\right)^{\prime}(x)
\end{array}\right| d x
$$

From Remark (3) and (4), this integral has a finite value for $h_{1}, h_{2} \in$ $\mathcal{D}_{+}\left(S^{1}\right)$. So the Godbillon-Vey cocycle can be defined for $\mathcal{D}_{+}\left(S^{1}\right)$ by the same formula.

Now we prove that each of non-trivial linear combinations $g v$ and $\overline{g v}$ is not a topological invariant in $\mathcal{D}_{+}\left(S^{1}\right)$.

Corollary ([Gh], Thérorème 1). - Each

$$
\alpha g v+\beta \overline{g v}\left(\alpha, \beta \in \mathbb{R}, \alpha^{2}+\beta^{2} \neq 0\right)
$$

is not a topological invariant in $\mathcal{D}_{+}\left(S^{\mathbf{1}}\right)$.
Proof. - The above proposition implies that

$$
\left(\Phi_{g}^{*}(\overline{g v})\right)\left(\mathbf{\Sigma}_{g}\right)=-4(g+1)\left(\log \lambda_{g}\right)^{2}
$$

It is well known that

$$
\begin{aligned}
\left(\Psi_{g}^{*}(g v)\right)\left(\Sigma_{g}\right) & =-2 \pi \cdot \text { volume of }\left\{P S L(2, \mathbb{R}) / \Psi_{g}\left(\pi_{1}\left(\Sigma_{g}\right)\right)\right\} \\
& =(2 \pi)^{2} 2(1-g)=-8(g-1) \pi^{2}
\end{aligned}
$$

By definitions,

$$
\left(\Psi_{g}^{*}(\overline{g v})\right)\left(\Sigma_{g}\right)=\left(\Phi_{g}^{*}(g v)\right)\left(\Sigma_{g}\right)=0 .
$$

Hence,

$$
\begin{gathered}
\left(\Psi_{g}^{*}(\alpha g v+\beta \overline{g v})\right)\left(\boldsymbol{\Sigma}_{g}\right)=-8(g-1) \pi^{2} \alpha \\
\left(\Phi_{g}^{*}(\alpha g v+\beta \overline{g v})\right)\left(\mathbf{\Sigma}_{g}\right)=-4(g+1)\left(\log \lambda_{g}\right)^{2} \beta
\end{gathered}
$$

From Theorem in $\S 1, \Psi_{g}$ is topologically conjugate to Φ_{g}. So, if $\alpha g v+\beta \overline{g v}$ is a topological invariant, then

$$
-8(g-1) \pi^{2} \alpha=-4(g+1)\left(\log \lambda_{g}\right)^{2} \beta(\text { for all } g(\geq 2))
$$

Therefore,

$$
\beta=\frac{2(g-1) \pi^{2}}{(g+1)\left(\log \lambda_{g}\right)^{2}} \alpha
$$

On the other hand,

$$
\lim _{g \rightarrow \infty} \frac{g-1}{g+1} \cdot \frac{1}{\left(\log \lambda_{g}\right)^{2}}=0
$$

This implies that $\beta=0$, therefore, $\alpha=0$. This contradicts the assumption, $\alpha^{2}+\beta^{2} \neq 0$.

Figure 3
3. Some remarks on Ψ_{g} and Φ_{g}.

In previous sections, we use the presentation of $\pi_{1}\left(\Sigma_{g}\right)$ whose generators are $2 g+2$ loops $a_{1}, a_{2}, a_{3}, \ldots, a_{2 g+2}$. The fundamental domain of Σ_{g} corresponding to this presentation is a $4 g+4$ gon in the Poincaré disk D, where $D=\{z \in \mathbb{C} ;|z|<1\}$ with the Poincaré metric

$$
d s=\frac{2|d z|}{1-|z|^{2}}
$$

Now we will construct a symmetric fundamental domain R as is shown in Figure 3.

Let P be the regular orthogonal $2 g+2$ gon whose center coincides with $o \in D \subset \mathbb{C}$ and whose edges are a part of geodesics called $s_{1}, s_{2}, s_{3}, \ldots, s_{2 g+2}$ in the clockwise order. $\frac{l}{2}$ denotes the length of edges of P. Let e_{i} and $e_{i}^{\prime}(i=1,2,3, \ldots, 2 g+2)$ be the geodesics satisfying the following conditions (see Figure 3) :
(1) they are outside P and orthogonal to s_{i},
(2) the distance between $e_{i}\left(e_{i}^{\prime}\right)$ and P is $\frac{l}{4}$.

Then, the $4 g+4$ gon surrounded by $e_{1}, e_{1}^{\prime}, e_{2}, e_{2}^{\prime}, \ldots, e_{2 g+2}, e_{2 g+2}^{\prime}$ is the desired fundamental domain R. In order to obtain Σ_{g} from R, we identify e_{i} with e_{i}^{\prime} by the translation by the length l along s_{i}, for $i=1,2,3, \ldots, 2 g+2$. Hence, we have the presentation of $\pi_{1}\left(\Sigma_{g}\right)$ (see [Ma]).

Proposition 2.

$$
\begin{aligned}
& \pi_{1}\left(\Sigma_{g}\right)=\left\langle a_{1}, a_{2}, a_{3}, \ldots, a_{2 g+2}\right. \\
& \left.\qquad a_{1} a_{2} a_{3} \ldots a_{2 g+2}=a_{1} a_{3} \ldots a_{2 g+1}=a_{2} a_{4} \ldots a_{2 g+2}=1\right\rangle
\end{aligned}
$$

Let $h_{g} \in \operatorname{PSL}(2, R)$ be the hyperbolic element corresponding to the translation by the length l along s_{1} such that $h_{g}\left(e_{1}^{\prime} \cap s_{1}\right)=e_{1} \cap s_{1}$. Then we obtain the next proposition.

Proposition 3. - The total holonomy of the unstable foliation of the geodesic flow F_{t}

$$
\Psi_{g}: \pi_{1}\left(\Sigma_{g}\right) \rightarrow P S L(2, \mathbb{R})
$$

is defined as follows :

$$
\Psi_{g}\left(a_{i}\right)=T\left(-\frac{i-1}{2(g+1)}\right) \circ h_{g} \circ T\left(\frac{i-1}{2(g+1)}\right)(i=1,2,3, \ldots, 2 g+2) .
$$

Moreover, $h_{g}=h \circ f_{g} \circ h^{-1}$, where f_{g} and h are homeomorphism of S^{1} obtained in §1.

In the rest of this section, we will show that Φ_{g} factors through

$$
\phi_{g}: \Gamma_{g} \rightarrow P L_{+}\left(S^{1}\right)
$$

where Γ_{g} is the triangle group (see [Mi])

$$
\begin{aligned}
& \Gamma(g+1,2 g+2,2 g+2)=\left\langle\tau_{1}, \tau_{2}, \tau_{3} ;\right. \\
& \\
& \left.\quad\left(\tau_{1}\right)^{g+1}=\left(\tau_{2}\right)^{2 g+2}=\left(\tau_{3}\right)^{2 g+2}=\tau_{1} \tau_{2} \tau_{3}=1\right\rangle
\end{aligned}
$$

Proposition 4.

(1) A quadrangle $o v_{1} u_{1} v_{2}$ is the fundamental domain for some action of the group Γ_{g} on D. The quotient space D / Γ_{g} is the 2-dimensional sphere $\Sigma(g+1,2 g+2,2 g+2)$ with three elliptic points of order $g+1,2 g+2,2 g+2$. Γ_{g} also acts on the unit tangent bundle $T_{1} D$ of D and the quotient space $T_{1} D / \Gamma_{g}$ is the Brieskorn manifold $M(g+1,2 g+2,2 g+2)=\left\{\left(z_{1}, z_{2}, z_{3}\right) \in\right.$ $\left.\mathbb{C}^{3} ; z_{1}^{g+1}+z_{2}^{2 g+2}+z_{3}^{2 g+2}=0,\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\left|s_{3}\right|^{2}=1\right\}$.
(2) $\bar{\pi}: M(g+1,2 g+2,2 g+2) \rightarrow \Sigma(g+1,2 g+2,2 g+2)$ is a Seifert fibration with a transverse foliation $\mathcal{F}^{\prime} . \mathcal{F}^{\prime}$ is induced from the bundle foliation of $e: T_{1} D \rightarrow \partial D$ where $e(v) \in \partial D\left(v \in T_{1} D\right)$ is the end point of the geodesic starting at the base point of v in the direction of $-v$.
(3) The commutative diagram

is held where p_{0} is a ($2 g+2$)-fold covering and p_{1} is a $(2 g+2)$-fold ramified covering. Moreover, $\mathcal{F}=p_{0}^{*}\left(\mathcal{F}^{\prime}\right)$ is the unstable foliation of the geodesic flow F_{t}.

The fundamental group $\pi_{1}(M(g+1,2 g+2,2 g+2))\left(\operatorname{resp} . \pi_{1}\left(T_{1} \Sigma_{g}\right)\right)$ is the central extension of $\Gamma_{g}\left(\right.$ resp. $\left.\pi_{1}\left(\Sigma_{g}\right)\right)$ by the infinite cyclic group, i.e.,

$$
\begin{array}{r}
\pi_{1}(M(g+1,2 g+2,2 g+2))=\bar{\Gamma}_{g}=\left\langle\tau_{1}, \tau_{2}, \tau_{3}, z ; \tau_{i} z=z \tau_{i}(i=1,2,3),\left(\tau_{1}\right)^{g+1}\right. \\
\left.=\left(\tau_{2}\right)^{2 g+2}=\left(\tau_{3}\right)^{2 g+2}=\tau_{1} \tau_{2} \tau_{3}=z\right\rangle \\
\left(\operatorname{resp} . \pi_{1}\left(T_{1} \Sigma_{g}\right)=\left\langle a_{1}, a_{2}, a_{3}, \ldots, a_{2 g+2}, z ; a_{i} z=z a_{i}(i=1,2, \ldots, 2 g+2)\right.\right. \\
\left.\left.a_{1} a_{2} a_{3} \ldots a_{2 g+2}=z^{2 g+2}, a_{1} a_{3} \ldots a_{2 g+1}=z^{2}, a_{2} a_{4} \ldots a_{2 g+2}=z^{2}\right\rangle\right)
\end{array}
$$

where z is the class of a general fibre.
Let

$$
p_{0 *}: \pi_{1}\left(T_{1} \Sigma_{g}\right) \rightarrow \bar{\Gamma}_{g}
$$

denote the homomorphism induced by p_{0}.
Lemma 6.

$$
p_{0 *}\left(a_{i}\right)=\left(\tau_{2}\right)^{1-i} \tau_{1}\left(\tau_{2}\right)^{i+1}(i=1,2,3, \ldots, 2 g+2) \text { and } p_{0 *}(z)=z
$$

By Theorem 3.5 in [EHN], there exist homomorphisms

$$
\widetilde{\Phi}_{g}: \pi_{1}\left(T_{1} \Sigma_{g}\right) \rightarrow P L_{+}^{\sim}\left(S^{1}\right)
$$

and

$$
\widetilde{\phi}_{g}: \bar{\Gamma}_{g} \rightarrow P L_{+}^{\sim}\left(S^{1}\right)
$$

corresponding to transverse foliations \mathcal{F} and \mathcal{F}^{\prime}, respectively, where $P L_{+}^{\sim}\left(S^{1}\right) \subset$ Homeo $_{+}^{\sim}\left(S^{1}\right)$ is the universal covering group of $P L_{+}\left(S^{1}\right)$. In Proposition 5, we see that \mathcal{F} is induced from \mathcal{F}^{\prime}. In fact, there exists a lift $\tilde{f}_{g} \in P L_{+}^{\sim}\left(S^{1}\right)$ of $f_{g} \in P L_{+}\left(S^{1}\right)$ satisfying that

$$
\begin{aligned}
\widetilde{\Phi}_{g}\left(a_{i}\right)=T\left(-\frac{i-1}{2(g+1)}\right) \circ \tilde{f}_{g} \circ T(& \left.\frac{i-1}{2(g+1)}\right) \\
& (i=1,2,3, \ldots, 2 g+2), \widetilde{\Phi}_{g}(z)=T(1)
\end{aligned}
$$

and

$$
\tilde{\phi}_{g}\left(\tau_{1}\right)=\tilde{f}_{g} \circ T\left(-\frac{1}{g+1}\right), \tilde{\phi}_{g}\left(\tau_{2}\right)=T\left(\frac{1}{2(g+1)}\right), \tilde{\phi}_{g}(z)=T(1)
$$

Consequently,
Lemma 7.

$$
\widetilde{\Phi}_{g}=\widetilde{\phi}_{g} \circ p_{0 *}
$$

We can consider a homomorphism ϕ_{g} satisfying the next commutative diagram,

$$
\begin{array}{ccc}
\bar{\Gamma}_{g} \xrightarrow{\widetilde{\phi}_{g}} & P L_{+}^{\sim}\left(S^{1}\right) \\
\downarrow & & \downarrow \\
\Gamma_{g} \xrightarrow{\phi_{g}} & P L_{+}\left(S^{1}\right)
\end{array}
$$

i.e., defined by

$$
\phi_{g}\left(\tau_{1}\right)=f_{g} \circ T\left(-\frac{1}{g+1}\right), \phi_{g}\left(\tau_{2}\right)=T\left(\frac{1}{2(g+1)}\right)
$$

$p_{0 *}$ induces the homomorphism

$$
\underline{p_{0 *}}: \pi_{1}\left(\Sigma_{g}\right)=\pi_{1}\left(T_{1} \Sigma_{g}\right) /\langle z\rangle \rightarrow \Gamma_{g}=\bar{\Gamma}_{g} /\langle z\rangle .
$$

From Lemma 7, we have the next proposition which says that Φ_{g} factors through ϕ_{g}.

Proposition 7.

$$
\Phi_{g}=\phi_{g} \circ \underline{p_{0 *}}
$$

BIBLIOGRAPHIE

[CN] C. CAMACHO and A.L. NETO, Geometric Theory of Foliations, Birkhäuser, Boston, 1985.
[DS] G. DUMINY and V. SERGIESCU, Sur la nullité de l'invariant de GodbillonVey, C. R. Acad. Sci. Paris, 292 (1981), 821-824
[EM] S. Eilenberg and S. Maclane, Relations between Homology and Homotopy Groups of Spaces, Ann. of Math., 46 (1945), 480-509.
[EHN] D. Eisenbud, U. Hirsch and W. NEUMANn, Transverse foliations of Seifert bundles and self homeomorphism of the circle, Comment. Math. Helvetici, 56 (1981), 638-660.
[F] D. Fried, Transitive Anosov Flows and Pseudo-Anosov Maps, Topology, 22 (1983), 299-303.
[Gh] E. GHYS, Sur l'invariance topologique de la classe de Godbillon-Vey, Ann. Inst. Fourier, 37, 4 (1987), 59-76.
[GS] E. GHYS and V. SERGIESCU, Sur un groupe remarquable de difféomorphismes du cercle, Comment. Math. Helvetici, 62 (1987), 185-239.
[Gr] P. GREENBERG, Classifying spaces for foliations with isolated singularities, Trans. Amer. Math. Soc., 304 (1987), 417-429.
[Ha1] N. HASHIGUCHI, On the Anosov diffeomorphisms corresponding to geodesic flows on negatively curved closed surfaces, J. Fac. Sci. Univ. Tokyo, 37 (1990), 485-494.
[Ha2] N. HASHIGUCHI, On the rigidity of PL representations of a surface group, preprint.
[He] M. HERMAN, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Inst. Hautes Études Sci. Pub. Math., 49 (1978), 5-234.
[Ma] B. MASKIT, On Poincaré's theorem for fundamental polygons, Adv. in Math., 7 (1971), 219-230.
[Mi] J. MILNOR, On the 3-dimensional Brieskorn manifold $M(p, q, r)$, in Knots, Groups and 3-Manifolds, Ann. of Math. Studies, 84 (1975), 175-225, Princeton.
[T] T. TsUbOI, Area functionals and Godbillon-Vey cocycles, Ann. Inst. Fourier, 42, 1-2 (1992), 421-447.

Manuscrit reçu le 10 avril 1991, révisé le 25 février 1992.

Norikazu HASHIGUCHI,
Department of Mathematics University of Tokyo Hongo
Tokyo, 113 (Japan).
Present address :
Department of Mathematics
College of Science and Technology
Nihon University
Kanda-Surugadai
Tokyo, 101 (Japan).

[^0]: Key words : Anosov foliation - Total holonomy homomorphism - Godbillon-Vey invariant.
 A.M.S. Classification : 57R30-57R32.

