
PL-SLAM: Real-Time Monocular Visual SLAM with Points and Lines

Albert Pumarola1 Alexander Vakhitov2 Antonio Agudo1 Alberto Sanfeliu1 Francesc Moreno-Noguer1

Abstract— Low textured scenes are well known to be one of
the main Achilles heels of geometric computer vision algorithms
relying on point correspondences, and in particular for visual
SLAM. Yet, there are many environments in which, despite
being low textured, one can still reliably estimate line-based
geometric primitives, for instance in city and indoor scenes,
or in the so-called “Manhattan worlds”, where structured
edges are predominant. In this paper we propose a solution
to handle these situations. Specifically, we build upon ORB-
SLAM, presumably the current state-of-the-art solution both
in terms of accuracy as efficiency, and extend its formulation
to simultaneously handle both point and line correspondences.
We propose a solution that can even work when most of
the points are vanished out from the input images, and,
interestingly it can be initialized from solely the detection of line
correspondences in three consecutive frames. We thoroughly
evaluate our approach and the new initialization strategy
on the TUM RGB-D benchmark and demonstrate that the
use of lines does not only improve the performance of the
original ORB-SLAM solution in poorly textured frames, but
also systematically improves it in sequence frames combining
points and lines, without compromising the efficiency.

I. INTRODUCTION

The last years have witnessed a surge in autonomous

cars and aerial vehicles able to navigate for hundreds of

miles without human intervention [10], [16], [32]. Among

other technologies, at the core of these systems lie sophisti-

cated Simultaneous Localization And Mapping (SLAM) al-

gorithms, which have proven effective to accurately estimate

trajectories while geometrically reconstructing the unknown

environment.

Since the groundbreaking Parallel Tracking And Mapping

(PTAM) [13] algorithm was introduced by Klein and Murray

in 2007, many other real-time visual SLAM approaches

have been proposed, including the feature point-based ORB-

SLAM [18], and the direct-based methods LSD-SLAM [7]

and RGBD-SLAM [6] that optimize directly over image

pixels. Among them, the ORB-SLAM [18] seems to be

the current state-of-the-art, yielding better accuracy than the

direct methods counterparts.

While the performance of ORB-SLAM [18] in well tex-

tured sequences is impressive, it is prone to fail when dealing

with poorly textured videos or when feature points are

temporary vanished out due to, e.g., motion blur. This kind

of situations are often encountered in man-made scenarios.

However, despite the lack of reliable feature points, these

environments may still contain a number of lines that can be

used in a similar way.

1A.Pumarola, A.Agudo, A.Sanfeliu and F.Moreno-Noguer are with the
Institut de Robòtica i Informàtica Industrial (UPC-CSIC), Barcelona, Spain

2A.Vakhitov is with Skolkovo Institute of Science and Technology,
Moscow, Russia.

− 2 − 1 0 1 2 3 4

x [m ]

− 3

− 2

− 1

0

1

2

y
 [

m
]

Ground Truth

Point  based ORB-SLAM

Point  and Line based PL-SLAM

8 0

Error

−
−

− − −

0

y [m ]

−

−

−

− −
−

−

−

− −
−

−

−

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

E
rr

o
r

− −
−

−

−

Ground Truth

Point  based ORB-SLAM

Point  and Line based PL-SLAM

Fig. 1. ORB-SLAM [18] vs PL-SLAM. Top: The proposed PL-SLAM
allows to simultaneously handle point and line features. This is specially
advantageous in situations with small number of points such as that shown
in the second image. Bottom-Left: Comparison of the trajectories obtained
using the state-of-the-art point-based method ORB-SLAM [18] and our PL-
SLAM, in a TUM RGB-D sequence. The black dotted line shows the ground
truth, the blue dashed line is the trajectory obtained with ORB-SLAM [18],
and the green solid line is the trajectory obtained with PL-SLAM. Bottom-

Right: Close-up of part of the map color-coded with the amount of error.
Red corresponds to higher error levels, and green to lower ones. Note
how the use of lines consistently improves the accuracy of the estimated
trajectory.

Exploiting lines, though, is not a trivial task. First, ex-

isting line detectors and parameterizations are not as well-

established in the literature as feature point ones. And

secondly, the algorithms to compute pose from line corre-

spondences are less reliable than those based on points and

are very sensitive to the partial occlusions that lines may

undergo. These reasons made that current SLAM approaches

making use of lines rely on range cameras or laser scan-

ners [2], [12], [20], [25].

In this work, we tackle all these issues using a purely

visual-based approach. Building upon the ORB-SLAM [18]

framework, we propose PL-SLAM (Point and Line SLAM),

a solution that can simultaneously leverage points and lines

information. As recently suggested by [30], lines are parame-

terized by their endpoints, whose exact location in the image

plane is estimated following a two-step optimization process.

This representation, besides yielding robustness to occlusions

and mis-detections, allows integrating the line representation

within the SLAM machinery as if they were points and

hence re-use most of the ORB-SLAM [18] architecture. The

resulting approach is shown to be very accurate in poorly

textured environments, and also, improves the performance

of the original ORB-SLAM [18] in highly textured sequences

(see Fig. 1).



An additional contribution of this paper is that we also

propose a new initialization approach that allows estimating

an approximate initial maps from only line correspondences

between three consecutive images. Previous solutions were

based on homography [8] or essential matrix estimation [29],

and required point correspondences. To the best of our

knowledge, there are no equivalent techniques based on lines.

The solution we propose holds on the assumption of constant

rotation between three consecutive frames and that these

rotations are relatively small. In the experimental section,

we will show that despite these approximations, the initial

map we estimate highly resembles those obtained by point-

based solutions, and therefore, are a very good alternative to

use when feature points are not available.

II. RELATED WORK

Building the 3D rigid structure of unknown environment

while recovering the camera trajectory from a monocular

image sequence has been an extremely important research

area in robotics and computer vision for decades, with

many real applications in autonomous robot navigation and

augmented reality. This problem is known as SLAM, and its

core is roughly the same compared to structure-from-motion

algorithms.

Early filtering approaches applied the Extended Kalman

Filter (EKF) [5] to process every frame in the video for

small maps, providing the first real-time solutions. Subse-

quent works based on Bundle Adjustment (BA) handled

denser maps just using key-frames to estimate the map [13],

[17], obtaining more accurate solutions [27] than filtering

techniques. Most approaches rely on PTAM algorithm [13],

that represented a breakthrough in visual-based SLAM. This

method approximately decouples localization and mapping

in two threads that run in parallel, relying on FAST corners

points [23]. In [14] the accuracy was improved with edge

features together with a rotation estimation step during

tracking that provided better relocalization results, and even

reducing the computational cost [24]. More recently, the

ORB-SLAM system has been proposed in [18], providing a

more robust camera tracking and mapping estimator. A multi-

threaded CPU approach was presented in [7] to estimate real-

time dense structure estimation.

However, all previous feature-based methods fail in en-

vironments with poor texture or situations with defocus

and motion blur. To solve this, dense and direct meth-

ods can be applied, even though they are likely to be

computationally expensive [19], [21], and require dedicated

GPU-implementations to achieve real-time performance.

Other semi-direct methods such as [9] overcome the high-

computation requirement of dense methods by exploiting

only pixels with strong gradients, providing an intermedi-

ate level of accuracy, density and complexity. Scene prior

information have been also exploited to provide a significant

boost to SLAM systems [3], [4].

Motivated by the need for efficient and accurate scene

representations even for poorly textured environments, in

Fig. 2. PL-SLAM pipeline, an extension of the ORB-SLAM [18] pipeline.
The system is composed by three main threads: Tracking, Local Mapping

and Loop Closing. The Tracking thread estimates the camera position and
decides when to add new keyframes. Then, Local Mapping adds the new
keyframe information into the map and optimizes it with BA. The Loop

Closing thread is constantly checking for loops and correcting them.

tasks such as visual inspection from aerial vehicles or hand-

held devices (i.e., with limited computational resources), we

here propose a novel visual-based SLAM system that can

combine points and lines information in a unified framework

while keeping the computational cost. Note that several

parametrizations to combine points and lines were used

in EKF-SLAM [26]. However, as we said above, filtering-

based approaches have been outperformed by optimization-

based approaches in rigid SLAM, as we do in this work.

We validate our method on a wide variety of scenarios,

outperforming state-of-the-art solutions for highly textured

sequences and showing very accurate solutions in low-

textured scenarios where standard feature-based methods fail.

III. SYSTEM OVERVIEW

The pipeline of our approach highly resembles that of the

ORB-SLAM [18], in which we have integrated the informa-

tion provided by line features (see Fig. 2). We next briefly

review the main building blocks in which line operations

are performed. For a description of the operations involving

point features, the reader is referred to [18].

One of the main issues to address in SLAM algorithms is

the computational complexity. In order to preserve the real-

time characteristics of ORB-SLAM [18], we have carefully

chosen, used and implemented fast methods for operating

with lines in all stages of the pipeline: detection, trian-

gulation, matching, culling, relocalization and optimization.

Line segments in an input frame are detected by mean of

LSD [31], an O(n) line segment detector, where n is the

number of pixels in the image. Then, lines are pairwise

matched with lines already present in the map using a

relational graph strategy [33]. This approach relies on lines’

local appearance (Line Band Descriptors) and geometric



constraints and is shown to be quite robust against image

artifacts while preserving the computational efficiency.

As it is done with point features, after having obtained

an initial set of map-to-image line feature pairs, all lines

of the local map are projected onto the image to find

further correspondences. Then, if the image contains suf-

ficient new information about the environment, it is flagged

as a keyframe and its corresponding lines are triangulated

and added to the map. To discard possible outliers, lines

seen from less than three viewpoints or in less than 25%

of the frames from which they were expected to be seen

are discarded too (culling). Line positions in the map are

optimized with a local BA. Note in Fig. 2 that we do not use

lines for loop closing. Matching lines across the whole map

is too computationally expensive. Hence, only point features

are used for loop detection.

IV. LINE-BASED SLAM

We next describe the line parameterization and error

function we use and how this is integrated within the

main building blocks of the SLAM pipeline, namely bundle

adjustment, global relocalization and feature matching.

A. Line-based Reprojection Error

In order to extend the ORB-SLAM [18] to lines, we

need a proper definition of the reprojection error and line

parameterization.

Following [30], let P,Q ∈ R
3 be the 3D endpoints of a

line, pd,qd ∈R
2 their 2D detections in the image plane, and

ph
d,q

h
d ∈ R

3 theirs corresponding homogeneous coordinates.

From the latter we can obtain the normalized line coefficients

as:

l =
ph

d ×qh
d∣∣ph

d ×qh
d

∣∣ . (1)

The line reprojection error Eline is then defined as the

sum of point-to-line distances Epl between the projected line

segment endpoints, and the detected line in the image plane

(see Fig. 3-right). That is:

Eline(P,Q, l,θ ,K) = E2
pl(P, l,θ ,K)+E2

pl(Q, l,θ ,K), (2)

with:

Epl(P, l,θ ,K) = l⊤π(P,θ ,K), (3)

where l are the detected line coefficients, π(P,θ ,K) rep-

resents the projection of the endpoint P onto the image

plane, given the internal camera calibration matrix K, and

the camera parameters θ = {R, t} that includes the rotation

and translation parameters, respectively.

Note that in practice, due to real conditions such as line

occlusions or mis-detections, the image detected endpoints

pd and qd will not match the projections of the endpoints

P and Q (see Fig. 3-left). Therefore, we define the detected

line reprojection error as:

Eline,d(pd,qd, l) = E2
pl,d(pd, l)+E2

pl,d(qd, l), (4)

where l is the projected 3D line coefficients and the detected

point-to-line error is Epl,d(pd, l) = l⊤pd.

Fig. 3. Left: Notation. Let P,Q ∈ R
3 be the 3D endpoints of a 3D line,

p̃, q̃∈R
2 their projected 2D endpoints to the image plane and l̃ the projected

line coefficients. pd,qd ∈R
2 the 2D endpoints of a detected line, Pd,Qd ∈R

3

their real 3D endpoints, and l the detected line coefficients. X ∈ R
3 is a

3D point and x̃ ∈ R
2 its corresponding 2D projection. Right: Line-based

reprojection error. d1 and d2 represent the line reprojection error, and d′
1

and d′
2 the detected line reprojection error between a detected 2D line (blue

solid) and the corresponding projected 3D line (green dashed).

Based on the methodology proposed in [30], a recursion

over the detected reprojection line error will be applied in

order to optimize the pose parameters θ while approximating

Eline,d to the line error Eline defined on Eq. (2).

B. Bundle Adjustment with Points and Lines

The camera pose parameters θ = {R, t} are optimized at

each frame with a BA strategy that constrains θ to lie in the

SE(3) group. For doing this, we build upon the framework of

the ORB-SLAM [18] but besides feature point observations,

we include the lines as defined in the previous subsection.

We next define the specific cost function we propose to

be optimized by the BA that combines the two types of

geometric entities.

Let X j ∈ R
3 be the generic j-th point of the map. For

the i-th keyframe, this point can be projected onto the image

plane as:

x̃i, j = π(X j,θ i,K), (5)

where θ i = {Ri, ti} denotes the specific pose of the i-th

keyframe. Given an observation xi, j of this point, we define

following 3D error:

ei, j = xi, j − x̃i, j . (6)

Similarly, let us denote by P j and Q j the endpoints

of the j-th map line segment. The corresponding image

projections (expressed in homogeneous coordinates) onto the

same keyframe can be written as:

p̃h
i, j = π(P j,θ i,K), (7)

q̃h
i, j = π(Q j,θ i,K) . (8)

Then, given the image observations pi, j and qi, j of the j-th

line endpoints, we use Eq. (1) to estimate the coefficients of

the observed line l̃i, j. We define the following error vectors

for the line:

e′i, j = (l̃i, j)
⊤(K−1ph

i, j), (9)

e′′i, j = (l̃i, j)
⊤(K−1qh

i, j). (10)



Fig. 4. Estimating camera rotation from line correspondences. P,Q ∈ R
3

are the 3D line endpoints, li, i = {1,2,3} its detections in three consecutive
frames with endpoints pi,qi, and coefficients li.

The errors (9, 10) are in fact instances of the point-to-line

error (3). As explained in [30] they are not constant w.r.t.

shift of the endpoints P j, Q j along the corresponding 3D line,

which serves as implicit regularization allowing us to use

such a non-minimal line parametrization in the BA.

Observe that representing lines using their endpoints we

obtain comparable error representations for points and lines.

We can therefore build a unified cost function that integrates

each of the error terms as:

C = ∑
i, j

ρ
(

e⊤i, jΩ
−1
i, j ei, j + e

′

i, j

⊤
Ω′

i, j
−1

e′i, j + e
′′

i, j

⊤
Ω′′

i, j
−1

e′′i, j

)

where ρ is the Huber robust cost function and Ωi, j, Ω′
i, j, Ω′′

i, j

are the covariance matrices associated to the scale at which

the keypoints and line endpoints were detected, respectively.

C. Global Relocalization

An important component of any SLAM method, is an

approach to relocalize the camera when the tracker is lost.

This is typically achieved by means of a PnP algorithm,

that estimates the pose of the current (lost) frame given

correspondences with 3D map points appearing in previous

keyframes. On top of the PnP method, a RANSAC strategy

is used to reject outliers correspondences.

In the ORB-SLAM [18], the specific PnP method that is

used is the EPnP [1], which however, only accepts point

correspondences as inputs. In order to make our approach ap-

propriate to handle lines for relocalization, we have replaced

the EPnP by the recently published EPnPL [30], which

minimizes the detected line reprojection error of Eq. (4).

Furthermore, EPnPL [30] is robust to partial line occlusion

and mis-detections. This is achieved by means of a two-step

procedure in which first minimizes the reprojection error of

the detected lines and estimates the line endpoints pd,qd.

These points, are then shifted along the line in order to match

the projections p̃d, q̃d of the 3D model endpoints P,Q (see

Fig. 3). Once these matches are established, the camera pose

can be reliably estimated.

V. MAP INITIALIZATION WITH LINES

Another contribution of this paper is an algorithm to esti-

mate an initial map using only line correspondences. Current

optimization-based SLAM approaches are initialized with

maps built from point correspondences between at least two

frames. Homography [8] or essential matrix [29] estimation

algorithms are then used to compute the initial map and pose

parameters. We next describe our line-based solution for map

initialization, which can be a good alternative in low textured

scenes with lack of feature points.

Let us consider the setup of Fig. 4, where a line defined

by endpoints P,Q is projected onto three camera views. Let

{p1,q1}, {p2,q2} and {p3,q3} be the endpoint projections

in each of the views and l1, l2, l3 ∈R
3 the corresponding line

coefficients computed from the projected endpoints.

We will make the assumption of small and continuous

rotation between consecutive camera poses, such that the

rotation from the first to the second camera views is the

same than the rotation from the second to the third one1.

Under this assumption we can represent the three camera

rotations by R1 = R⊤, R2 = I, and R3 = R, with I being the

3×3 identity matrix.

Note that the line coefficients li, i= {1,2,3} also represent

the parameters of a vector which is normal to the plane

formed by the center of projection Oi and the projections

pi,qi. The cross product of two such vectors li will be parallel

to the line P,Q and at the same time orthogonal to the third

vector, all of them appropriately rotated and put in a common

reference. This constraint can be written as:

l⊤2

(
(R⊤l1)× (Rl3)

)
= 0. (11)

Additionally, for small rotations we can approximate R as:

R =




1 −r3 r2

r3 1 −r1

−r2 r1 1



. (12)

For this parametrization, having three matched lines, we

will have three quadratic equations like Eq. (11) with three

unknowns, r1, r2 and r3. We adapt the polynomial solver

of [15], which yields up to eight solutions. For each possible

rotation matrix we can get t1, t3 by using the trifocal tensor

equations [11] which will be linear in t1, t3. We assume t2 =
0. We evaluate the eight possible solutions and keep the one

that minimizes Eq. (11).

It is worth to point that in order to get enough independent

constraints when solving for the translation components

using the trifocal tensor equations, we need two additional

line correspondences, and hence, the total number of line

matches required by our algorithm is five.

VI. EXPERIMENTAL RESULTS

We have compared our system with the current state-

of-the-art Visual SLAM methods using the TUM RGB-D

benchmark [28]. Also, we evaluate the proposed initialization

approach with synthetic and real data and compare the

computation time of our PL-SLAM algorithm and the ORB-

SLAM [18]. All experiments were carried out with an Intel

1In the experimental section we will evaluate the consequences of this
assumption, and show that in practice is a good approximation.



TABLE I

LOCALIZATION ACCURACY IN THE TUM RGB-D BENCHMARK [28]

Absolute KeyFrame Trajectory RMSE [cm]

TUM RGB-D
Sequence

PL-SLAM
Classic Init

PL-SLAM
Line Init

ORB-SLAM PTAM† LSD-SLAM† RGBD-SLAM†

f1 xyz 1.21 1.46 1.38 1.15 9.00 1.34

f2 xyz 0.43 1.49 0.54 0.2 2.15 2.61

f1 floor 7.59 9.42 8.71 - 38.07 3.51

f2 360 kidnap 3.92 60.11 4.99 2.63 - 393.3

f3 long office 1.97 5.33 4.05 - 38.53 -

f3 nstr tex far
ambiguity
detected

37.60
ambiguity
detected

34.74 18.31 -

f3 nstr tex near 2.06 1.58 2.88 2.74 7.54 -

f3 str tex far 0.89 1.25 0.98 0.93 7.95 -

f3 str tex near 1.25 7.47 1.5451 1.04 - -

f2 desk person 1.99 6.34 5.95 - 31.73 6.97

f3 sit xyz 0.066 9.03 0.08 0.83 7.73 -

f3 sit halfsph 1.31 9.05 1.48 - 5.87 -

f3 walk xyz 1.54
ambiguity
detected

1.64 - 12.44 -

f3 walk halfsph 1.60
ambiguity
detected

2.09 - - -

Median over 5 executions for each sequence. All trajectories were aligned with
7DoF with the ground truth before computing the ATE error with the script provided
by the benchmark [28]. Both ORB-SLAM and PL-SLAM were executed with the
parametrization of the on-line open source ORB-SLAM package. †Result of PTAM,
LSD-SLAM and RGBD-SLAM were extracted from [18].

TABLE II

TRACKING AND MAPPING TIMES

Mean execution time [ms]

Thread Operation PL-SLAM ORB-SLAM

KeyFrame
Insertion

17.08 9.86

Local

Map Feature
Culling

1.18 1

Mapping

Map Features
Creation

74.64 8.39

Local BA 218.25 118.5
KeyFrame

Culling
12.7 2.86

Total 3Hz 7Hz

Tracking

Features
Extraction

31.32 10.76

Initial Pose
Estimation

7.16 7.16

Track
Local Map

12.58 3.18

Total 20Hz 50Hz

Mean execution time of 5 different se-
quences of the TUM RGB-D bench-
mark [28].

Core i7-4790 (4 cores @3.6 GHz), 8Gb RAM and ROS

Hydro [22]. Due to the randomness of the some stages

of the pipeline, e.g., initialization, position optimization or

global relocalization, all experiments were run five times

and we report the median of all executions. Supplemen-

tary material can be found on website http://www.

albertpumarola.com/research/pl-slam/.

A. Localization Accuracy in the TUM RGB-D Benchmark

To evaluate the localization accuracy we compare our PL-

SLAM method against current state-of-the-art Visual SLAM

methods, including ORB-SLAM [18], PTAM [13], LSD-

SLAM [7] and RGBD-SLAM [6]. The metric used for the

comparison is the Absolute Trajectory Error (ATE), provided

by the evaluation script of the benchmark. Before computing

the error, all trajectories are aligned using a similarity warp

except for the RGBD-SLAM [6] which is aligned by a rigid

body transformation. The results are summarized in Table I.

Note that our PL-SLAM consistently improves the tra-

jectory accuracy of ORB-SLAM [18] in all sequences.

Indeed, it yields the best result in all but two sequences,

for which PTAM [13] performs slightly better. Nevertheless,

PTAM [13] turned not to be so reliable, as in 5 out of

all 12 sequences it lost track. LSD-SLAM [7] and RGBD-

SLAM [6] also lost track in 3 and 7 sequences, respectively.

B. Map Initialization - Synthetic Experiments

In order to evaluate the map initialization algorithm we

describe in Sect. V we perform several synthetic and real

experiments.

In the synthetic tests we first evaluate the stability of

the polynomial solver we built, modifying the toolbox of

Kukelova et al. [15]. Fig. 5-left shows the distribution of

M
e

d
ia

n
 R

e
la

tiv
e

 T
ra

n
sla

tio
n

 E
rro

r

0,8

0,9

1

M
e

d
ia

n
 R

o
ta

ti
o

n
 A

n
g

le
 [

d
e

g
]

2

4

6

8

10

Rotation Angle [deg]
0 5 10 15 20 25 30

%
 e

xp
e

ri
m

e
n

ts

0

10

20

30

40

log error
−16 −14 −12 −10 −8 −6

Fig. 5. Map Initialization - Synthetic experiments. Left: Numerical stability
of the polynomial system solver. Right: Rotation and translation error w.r.t
frames rotation.

errors in the parameter estimation for ideal solutions. Note

that the average error is around 1e-15, indicating that our

modified solver is very stable.

Additionally, we have assessed the consequences of as-

suming small and constant rotations between three consecu-

tive frames. Fig. 5-right displays the rotation and translation

errors produced for increasing inter-frame rotations. While

the estimated rotation error remains within relatively small

bounds, the translation error is more severely affected by

the small rotation assumption. In any event, when this initial

map is fed into the BA optimizer, the translation error is

drastically reduced.

C. Map Initialization - Real Experiments

We also evaluate our PL-SLAM method using the clas-

sic initialization (based on homography or essential matrix

computation), and with the proposed map initialization based

only on lines (see again Table I). As expected, the accuracy

with the line map initialization drops due to the small rotation

http://www.albertpumarola.com/research/pl-slam/
http://www.albertpumarola.com/research/pl-slam/


assumptions it does. However, in the low textured sequence

f3 nstr tex far, the classic initialization detects an ambiguity

which disables it of initializing the map. In contrast, the

proposed line initialization is able to estimate an initial

map. In the sequences f3 walk xyz and f3 walk halfsph the

proposed initialization does not work due lo large inter-frame

rotations produced in the initial frames.

D. Computation Time

While adding line primitives to the visual SLAM improves

accuracy and robustness, it also increases the computational

complexity. Table II summarizes the time required for each

subtask within the “Tracking” and “Local Mapping” blocks,

for PL-SLAM and ORB-SLAM [18]. Note that in the

subtasks with larger penalties are the map features creation

and the local BA. In any event the final frame rate of the

PL-SLAM is near real time (20 fps) in a standard and not

optimized PC.

VII. CONCLUSIONS

In this work we have proposed PL-SLAM, an approach to

visual SLAM that allows to simultaneously process points

and lines and tackle situations where point-only based

methods are prone to fail, like poorly textured scenes or

motion blurred images where feature points are vanished out.

We built upon the architecture of the state-of-the-art ORB-

SLAM and modify its original pipeline to operate with line

features without significantly compromising its efficiency.

We have also presented a novel line-based map initialization

approach, which estimates camera pose and 3D map from

5 line correspondences in three consecutive images. This

approach holds on the assumption of constant and small

inter-frame rotation in these three images. In the results

section we show that this indeed is a good approximation for

many situations. Additionally, we evaluated the full pipeline

on the TUM RGB-D benchmark and showed consistent

improvement w.r.t. current competing methods.

In future work, we plan to further exploit line features and

incorporate other geometric primitives like planes, which can

be built from lines in a similar manner as we have built lines

from point features.

ACKNOWLEDGMENTS

This work has been partially supported by the EU project

AEROARMS H2020-ICT-2014-1-644271, by the MINECO

projects RobInstruct TIN2014-58178-R and Rob-Int-Coop

DPI2013-42458-P, by the ERA-Net Chistera project I-

DRESS PCIN-2015-147 and by the Russian MES grant

RFMEFI61516X0003.

REFERENCES

[1] accurate non-iterative o(n) solution to the pnp problem.
[2] N. Ayache and O. D. Faugeras. Building, registrating, and fusing noisy

visual maps. IJRR, 7(6):45–65, 1988.
[3] S. Bao, M. Bagra, Y. Chao, and S. Savarese. Semantic structure from

motion with points, regions, and objects. In CVPR, pages 2703–2710,
2012.

[4] A. Concha, W. Hussain, L. Montano, and J. Civera. Incorporating
scene priors to dense monocular mapping. AURO, 39(3):279–292,
2015.

[5] A. Davison, I. Reid, N. Molton, and O. Stasse. MonoSLAM: Real-time
single camera SLAM. TPAMI, 29(6):1052–1067, 2007.

[6] F. Endres, J. Hess, J. Sturm, D. Cremers, and W. Burgard. 3-D
mapping with an RGB-D camera. TRO, 30(1):177–187, 2014.

[7] J. Engel, T. Schöps, and D. Cremers. LSD-SLAM: Large-scale direct
monocular SLAM. In ECCV, pages 834–849. Springer, 2014.

[8] O. D. Faugeras and F. Lustman. Motion and structure from motion in
a piecewise planar environment. IJPRAI, 2(03):485–508, 1988.

[9] C. Forster, Z. Zhang, M. Gassner, M. Werlberger, and D. Scaramuzza.
SVO 2.0: Semi-direct visual odometry for monocular and multicamera
systems. TRO, 2016.

[10] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous
driving? the kitti vision benchmark suite. In CVPR, pages 3354–3361,
2012.

[11] R. Hartley and A. Zisserman. Multiple View Geometry in Computer

Vision. Cambridge University Press, ISBN: 0521540518, second
edition, 2004.

[12] W. Y. Jeong and K. M. Lee. Visual SLAM with line and corner
features. In IROS, pages 2570–2575. IEEE, 2006.

[13] G. Klein and D. Murray. Parallel tracking and mapping for small AR
workspaces. In ISMAR, pages 225–234. IEEE, 2007.

[14] G. Klein and D. Murray. Improving the agility of keyframe-based
SLAM. In ECCV, pages 802–815, 2008.

[15] Z. Kukelova, M. Bujnak, and T. Pajdla. Polynomial eigenvalue solu-
tions to minimal problems in computer vision. TPAMI, 34(7):1381–
1393, 2012.

[16] H. Lim, J. Lim, and H. J. Kim. Real-time 6-DOF monocular vision
SLAM in a large-scale environment. In ICRA, 2014.

[17] E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, and P. Sayd.
Generic and real-time structure from motion using local bundle
adjustment. IMAVIS, 27(8):1178–1193, 2009.

[18] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós. ORB-SLAM: a
versatile and accurate monocular slam system. TRO, 31(5):1147–1163,
2015.

[19] R. Newcome and A. J. Davison. Live dense reconstruction with a
single moving camera. In CVPR, pages 1498–1505, 2010.

[20] P. Newman, J. Leonard, J. D. Tardós, and J. Neira. Explore and
return: Experimental validation of real-time concurrent mapping and
localization. In ICRA, volume 2, pages 1802–1809. IEEE, 2002.

[21] M. Pizzoli, C. Forster, and D. Scaramuzza. REMODE: Probabilistic,
monocular dense reconstruction in real time. In ICRA, pages 2609–
2616, 2014.

[22] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng. ROS: an open-source robot operating
system. In ICRAW, volume 3, page 5. Kobe, Japan, 2009.

[23] E. Rosten and T. Drummond. Machine learning for high-speed corner
detection. In ECCV, pages 430–443, 2006.

[24] G. Sibley, C. Mei, I. Reid, and P. Newman. Adaptive relative bundle
adjustment. In RSS, 2009.

[25] P. Smith and I. D. Reid A. J. Davison. Real-time monocular SLAM
with straight lines. In BMVC, volume 6, pages 17–26, 2006.

[26] J. Sola, T. Vidal-Calleja, J. Civera, and J.M.M. Montiel. Impact of
landmark parametrization on monocular EKF-SLAM with points and
lines. IJCV, 97(3):339–368, 2012.

[27] H. Strasdat, J.M.M. Montiel, and A. Davison. Visual SLAM: Why
Filter? IMAVIS, 30(2):65–77, 2012.

[28] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A
benchmark for the evaluation of RGB-D SLAM systems. In IROS,
Oct. 2012.

[29] W. Tan, H. Liu, Z. Dong, G. Zhang, and H. Bao. Robust monocular
SLAM in dynamic environments. In ISMAR, pages 209–218. IEEE,
2013.

[30] A. Vakhitov, J. Funke, and F. Moreno-Noguer. Accurate and linear
time pose estimation from points and lines. In ECCV, 2016.

[31] R. G. von Gioi, J. Jakubowicz, J. M. Morel, and G. Randall. LSD: a
line segment detector. IPOL, 2:35–55, 2012.

[32] A. Wendel, M. Maurer, G. Graber, T. Pock, and H. Bischof. Dense
reconstruction on-the-fly. In CVPR, pages 1450–1457, 2012.

[33] L. Zhang and R. Koch. An efficient and robust line segment
matching approach based on LBD descriptor and pairwise geometric
consistency. JVCIR, 24(7):794–805, 2013.


	INTRODUCTION
	RELATED WORK
	SYSTEM OVERVIEW
	LINE-BASED SLAM
	Line-based Reprojection Error
	Bundle Adjustment with Points and Lines
	Global Relocalization

	MAP INITIALIZATION WITH LINES
	EXPERIMENTAL RESULTS
	Localization Accuracy in the TUM RGB-D Benchmark
	Map Initialization - Synthetic Experiments
	Map Initialization - Real Experiments
	Computation Time

	CONCLUSIONS
	References

