
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

2006

PLACE*: A Distributed Spatio-temporal Data Stream Management PLACE*: A Distributed Spatio-temporal Data Stream Management

System for Moving Objects System for Moving Objects

Xiaopeng Xiong

Hicham G. Elmongui

Xiaoyong Chai

Walid G. Aref
Purdue University, aref@cs.purdue.edu

Report Number:
06-020

Xiong, Xiaopeng; Elmongui, Hicham G.; Chai, Xiaoyong; and Aref, Walid G., "PLACE*: A Distributed Spatio-
temporal Data Stream Management System for Moving Objects" (2006). Department of Computer
Science Technical Reports. Paper 1663.
https://docs.lib.purdue.edu/cstech/1663

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

PLACE: A DISTRIBTED SPATIO-TEMPORAL DATA
STREAM MANAGEMENT SYSTEM FOR MOVING OBJECTS

Xiaopeng Xiong
Hicham G. Elmongui

Xiaoyong Chai
Walid G. Aref

Department of Computer Science
Purdue University

West Lafayette, IN 47907

CSD TR #06-020
November 2006

PLACE: A DISTRmTED SPATIO-TEMPORAL DATA
STREAM MANAGEMENT SYSTEM FOR MOVING OBJECTS

Xiaopeng Xiong
Hicham G. Elmongui

Xiaoyong Chai
Walid G. Aref

Department of Computer Science
Purdue University

West Lafayette, IN 47907

CSD TR #06-020
November 2006

PLACE*: A Distributed Spatio-temporal Data Stream Management System for
Moving Objects

Xiaopeng Xiong Hicham G. Elmongui Xiaoyong Chai Walid G. Aref

Department of Computer Sciences, Purdue University, West Lafayette, IN 47907-1398

{xxiong, elmongui, chai, aref}@cs.purdue.edu

Abstract

Moving objects equipped with locating devices can re-
port their locations periodically to data stream sewers.
With the pervasiveness of moving objects, one single sewer
cannot support all objects and queries in a wide area. As
a result, multiple spatio-temporal data stream management
systems must be deployed and thus result in a sewer net-
work. It is vital for sewers in the network to collaborate
in query evaluation. In this paper; we introduce PLACE*,
a distributed spatio-temporal data stream management sys-
tem for moving objects. PLACE* supports continuous mov-
ing queries that hop among multiple regional sewers. To
minimize the execution cost, a new Query-Track-Participate
(QTP) query processing model is proposed inside PLACE*.
In the QTP model, a query is continuously answered by a
querying sewer; a tracking sewer; and a set of participat-
ing sewers. In this paper; we focus on distributed query
plan generation, query execution and update algorithms
for answering continuous range queries and continuous k-
Nearest-Neighbor queries in PLACE* using QTI? An exten-
sive experimental study is presented to demonstrate the ef-
fectiveness of the proposed algorithms on the scalability of
PLACE *.

1. Introduction

With the advances of locating technologies and mobile
devices, moving objects are able to report their locations pe-
riodically to data stream servers while they move in space.
Based on collected location information, spatio-temporal
data stream management systems are deployed to answer
continuous queries over moving objects.

Due to the pervasiveness of moving objects, a single data
stream server can not sustain excessive numbers of mov-
ing objects and continuous queries for a wide area. As a re-
sult, a wide area is usually divided into smaller geograph-
ical regions each of which is covered by a regional data

(a) Spatial Partitions (b) Regional Servers

Fig. 1. Distributed Regional Servers

stream server. Each regional server communicates with only
local objects and processes only local queries within the
server's coverage region. Consequently, the regional data
stream servers form a server network. Figure l(a) gives an
example where the entire space is divided to six regions A to
F. Figure l(b) shows a network of six regional data stream
servers each of which covers a corresponding region given
in Figure l(a). An object reports its location periodically to
the server covering its current location. Note that an object
may switch the server to which it reports based on the ob-
ject's location as it moves.

Spatio-temporal server networks bring new challenges
for continuous query processing. To illustrate the challenges
and thus motivate our work, we consider the following il-
lustrative query example. The first query is a continuous
range query over a data stream server network while the sec-
ond query is a continuous k-Nearest-Neighbor (kNN) query
over the network.

Query I. Refer to Figure 2(a). Assume that in a bat-
tlefield, a commander may issue the following query q l :
"Continuously, inform Commander i with all friendly units
that are within ten miles from Soldier f ". In Figure 2(a),
the circles represent the query region at different times as f
moves. ql has the following characteristics: (1) ql must be

PLACE*: A Distributed Spatio-temporal Data Stream Management System for
Moving Objects

Xiaopeng Xiong Hicham G. Elmongui Xiaoyong Chai Walid G. Aref

Department of Computer Sciences, Purdue University, West Lafayette, IN 47907-1398

{xxiong, elmongui, chai, aref}@cs.purdue.edu

Abstract

Fig. 1. Distributed Regional Servers

stream server. Each regional server communicates with only
local objects and processes only local queries within the
server's coverage region. Consequently, the regional data
stream servers fonn a server network. Figure l(a) gives an
example where the entire space is divided to six regions A to
F. Figure l(b) shows a network of six regional data stream
servers each of which covers a corresponding region given
in Figure l(a). An object reports its location periodically to
the server covering its current location. Note that an object
may switch the server to which it reports based on the ob­
ject's location as it moves.

Spatio-temporal server networks bring new challenges
for continuous query processing. To illustrate the challenges
and thus motivate our work, we consider the following il­
lustrative query example. The first query is a continuous
range query over a data stream server network while the sec­
ond query is a continuous k-Nearest-Neighbor (kNN) query
over the network.

Query I. Refer to Figure 2(a). Assume that in a bat­
tlefield, a commander may issue the following query ql:
"Continuously, inform Commander i with allfriendly units
that are within ten miles from Soldier f". In Figure 2(a),
the circles represent the query region at different times as f
moves. ql has the following characteristics: (I) ql must be

Moving objects equipped with locating devices can re­
port their locations periodically to data stream servers.
With the pervasiveness ofmoving objects, one single server
cannot support all objects and queries in a wide area. As
a result, multiple spatio-temporal data stream management
systems must be deployed and thus result in a server net­
work. It is vital for servers in the network to collaborate
in query evaluation. In this paper, we introduce PLACE*,
a distributed spatio-temporal data stream management sys­
temfor moving objects. PLACE* supports continuous mov­
ing queries that hop among multiple regional servers. To
minimize the execution cost, a new Query-Track-Participate
(QTP) query processing model is proposed inside PLACE*.
In the QTP model, a query is continuously answered by a
querying server, a tracking server, and a set ofparticipat­
ing servers. In this paper, we focus on distributed query
plan generation, query execution and update algorithms
for answering continuous range queries and continuous k­
Nearest-Neighbor queries in PLACE* using QTP. An exten­
sive experimental study is presented to demonstrate the ef­
fectiveness of the proposed algorithms on the scalability of
PLACE*.

1. Introduction

With the advances of locating technologies and mobile
devices, moving objects are able to report their locations pe­
riodically to data stream servers while they move in space.
Based on collected location infonnation, spatio-temporal
data stream management systems are deployed to answer
continuous queries over moving objects.

Due to the pervasiveness of moving objects, a single data
stream server can not sustain excessive numbers of mov­
ing objects and continuous queries for a wide area. As a re­
sult, a wide area is usually divided into smaller geograph­
ical regions each of which is covered by a regional data

(a) Spatial Partitions (b) Regional Servers

(a) q~ : Range Query (b) q2: lcNN Query

Fig. 2. Example: Continuous Queries

answered collectively and continuously by regional servers
whose coverage regions overlap with ql's query region.
(2) During f's move, the overlapping regions between ql
and regional servers continuously change. Further, the set of
regional servers that ql hops among dynamically changes as
some servers become overlapped and some other servers no
long overlap with ql . (3) Possibly, the focal object f resides
in a regional server that is different from the server of the
query issuer i. To enable query updating, effective mech-
anisms must be established between the server of f and
the server of i. (4) Moving objects including i and f may
change their regional servers as they move. Proper handoff
procedures must be designed to ensure the continuity and
correctness of query processing as objects and/or query is-
suers move from one regional server to another.

Query 11. Refer to Figure 2(b). Assume that Sheriff i
wants to track the three nearest police cars during her travel
in region A, E and D. She submits the following query:
"Continuously, send Sheriff i the position of the three near-
est police cars". All the characteristics of ql apply to 92.
However, for qa, the query size depends on the answer re-
gion (the minimal circular region containing the Ic nearest
objects of the focal object) that changes dynamically dur-
ing query execution. In Figure 2(b), the circles represent the
changing answer region at different time points. The answer
region changes whenever the focal object i moves. More-
over, even when i remains stationary, the answer region
keeps changing due to movements of data objects. Conse-
quently, the set of servers that collaborate in answering the
query dynamically changes.

Motivated by the above challenges, we develop the
PLACE* system, a distributed spatio-temporal data stream
management system over moving objects. PLACE* sup-
ports distributed continuous spatio-temporal queries over
a network of regional spatio-temporal data stream servers
(PLACE servers). Query processing in PLACE* is based on
a unique Query-Track-Participate (QTP) model. In QTP, a
regional server collaborates in answering a query q based on

the server's role(s) with respect to q, i.e., a querying server,
a tracking server, or a participating server to q. The QTP
model is scalable and is designed to minimize communi-
cation cost while avoid computation bottlenecks. Based on
the QTP model, efficient distributed query processing and
query updating algorithms are proposed. PLACE* supports
objects moving among regional servers while keeping con-
tinuity and correctness of query processing. This is achieved
by providing query handoffprocedures to ship partial query
plans from old regional servers to new ones. To the best
of the authors' knowledge, PLACE* is the first system that
supports continuous spatio-temporal queries over moving
objects in distributed data stream management systems.

In this paper, we focus on the distributed continuous
query processing algorithms in PLACE*. The contributions
of this paper can be summarized as follows.

a We introduce the Query-Track-Participate (QTP)
model for distributed continuous query processing in-
side the PLACE* system.

a We propose efficient algorithms for continuous range
query and continuous kNN query processing in
PLACE*. Specifically, the algorithms cover initializ-
ing, executing and updating distributed query plans.
Efficient handoff algorithms are also proposed to sup-
port queries and/or objects that switch servers.

a We present a comprehensive set of experiments that
demonstrate the scalability and effectiveness of the
PLACE* system.

The remainder of this paper is organized as follows.
Section 2 highlights the related work. Section 3 gives an
overview to the PLACE* system. In Section 4, we present
the algorithms for processing distributed continuous range
queries in PLACE*. In Section 5, we present the algorithms
to process distributed continuous kNN queries. Experimen-
tal evaluations of the PLACE* system are given in Sec-
tion 6. Finally, Section 7 concludes the paper.

2. Related Work

There are several research prototypes of data stream
management systems. Examples of the prototypes in-
clude TelegraphCQ [8], NiagaraCQ [101, PSoup [9] ,
STREAM [4, 211, Aurora [I], NILE [13], PIPES [7], and
CAPE [24]. One common characteristic of the above sys-
tems is that moving objects and continuous queries are pro-
cessed in a centralized fashion.

Distributed continuous query processing over data
streams has been addressed in the literature. Distributed Ed-
dies [30] has policies for routing tuples between operators
of an adaptive distributed stream query plan. Aurora* [l 11

Fig. 2. Example: Continuous Queries

answered collectively and continuously by regional servers
whose coverage regions overlap with ql'S query region.
(2) During !,s move, the overlapping regions between ql
and regional servers continuously change. Further, the set of
regional servers that ql hops among dynamically changes as
some servers become overlapped and some other servers no
long overlap with ql. (3) Possibly, the focal object f resides
in a regional server that is different from the server of the
query issuer i. To enable query updating, effective mech­
anisms must be established between the server of f and
the server of i. (4) Moving objects including i and f may
change their regional servers as they move. Proper handoff
procedures must be designed to ensure the continuity and
correctness of query processing as objects and/or query is­
suers move from one regional server to another.

Query II. Refer to Figure 2(b). Assume that Sheriff i
wants to track the three nearest police cars during her travel
in region A, E and D. She submits the following query:
"Continuously, send Sheriffi the position ofthe three near­
est police cars". All the characteristics of ql apply to q2.
However, for q2, the query size depends on the answer re­
gion (the minimal circular region containing the k nearest
objects of the focal object) that changes dynamically dur­
ing query execution. In Figure 2(b), the circles represent the
changing answer region at different time points. The answer
region changes whenever the focal object i moves. More­
over, even when i remains stationary, the answer region
keeps changing due to movements of data objects. Conse­
quently, the set of servers that collaborate in answering the
query dynamically changes.

Motivated by the above challenges, we develop the
PLACE* system, a distributed spatio-temporal data stream
management system over moving objects. PLACE* sup­
ports distributed continuous spatio-temporal queries over
a network of regional spatio-temporal data stream servers
(PLACE servers). Query processing in PLACE* is based on
a unique Query-Track-Participate (QTP) model. In QTP, a
regional server collaborates in answering a query q based on

(a) ql: Range Query (b) q2: kNN Query

the server's role(s) with respect to q, i.e., a querying server,
a tracking server, or a participating server to q. The QTP
model is scalable and is designed to minimize communi­
cation cost while avoid computation bottlenecks. Based on
the QTP model, efficient distributed query processing and
query updating algorithms are proposed. PLACE* supports
objects moving among regional servers while keeping con­
tinuity and correctness of query processing. This is achieved
by providing query handoffprocedures to ship partial query
plans from old regional servers to new ones. To the best
of the authors' knowledge, PLACE* is the first system that
supports continuous spatio-temporal queries over moving
objects in distributed data stream management systems.

In this paper, we focus on the distributed continuous
query processing algorithms in PLACE*. The contributions
of this paper can be summarized as follows.

• We introduce the Query-Track-Participate (QTP)
model for distributed continuous query processing in­
side the PLACE* system.

• We propose efficient algorithms for continuous range
query and continuous kNN query processing in
PLACE*. Specifically, the algorithms cover initializ­
ing, executing and updating distributed query plans.
Efficient handoff algorithms are also proposed to sup­
port queries and/or objects that switch servers.

• We present a comprehensive set of experiments that
demonstrate the scalability and effectiveness of the
PLACE* system.

The remainder of this paper is organized as follows.
Section 2 highlights the related work. Section 3 gives an
overview to the PLACE* system. In Section 4, we present
the algorithms for processing distributed continuous range
queries in PLACE*. In Section 5, we present the algorithms
to process distributed continuous kNN queries. Experimen­
tal evaluations of the PLACE* system are given in Sec­
tion 6. Finally, Section 7 concludes the paper.

2. Related Work

There are several research prototypes of data stream
management systems. Examples of the prototypes in­
clude TelegraphCQ [8], NiagaraCQ [10], PSoup [9],
STREAM [4, 21], Aurora [1], NILE [13], PIPES [7], and
CAPE [24]. One common characteristic of the above sys­
tems is that moving objects and continuous queries are pro­
cessed in a centralized fashion.

Distributed continuous query processing over data
streams has been addressed in the literature. Distributed Ed­
dies [30] has policies for routing tuples between operators
of an adaptive distributed stream query plan. Aurora* [11]

is a distributed version of Aurora [I]. It focuses on scalabil-
ity in the communication infrastructure, adaptive load man-
agement, and high system availability. Flux [26] addresses
the challenges of detrimental imbalances as workload con-
ditions change during execution of continuous queries. Bo-
realis [2] addresses the issues of dynamically revising query
results and query specifications during query execution. D-
CAPE [16] extends CAPE [24] to work over a cluster of
query processors using a centralized controller. D-CAPE is
designed to distribute query plans and monitor the perfor-
mance of each query processor with minimal communica-
tion between the controller and query processors. However,
none of the previous work has addressed the challenges of
processing continuous spatio-temporal queries over objects
that move among distributed servers.

Recent research efforts focus on continuous query pro-
cessing in spatio-temporal database management systems,
e.g., answering stationary range queries [6, 231, continu-
ous range queries [12, 321, continuous Ic-nearest-neighbor
queries [15, 22, 27, 28, 29, 311, and generic query process-
ing [14, 181). In contrast to PLACE*, these works assume
that all object data and queries are processed by a central-
ized server.

PLACE* is part of the PLACE (Pervasive Location-
Aware Computing Environment) project [3] at Purdue Uni-
versity. PLACE* is a distributed data stream management
system built on top of a set of regional PLACE servers [17,
18,20, 191. PLACE* distinguishes itself by supporting con-
tinuous spatio-temporal queries over a set of distributed
regional (PLACE) servers where both queries and objects
constantly move.

3. Overview of The PLACE* System

3.1. PLACE* Distributed Environment

The PLACE* distributed environment consists of a set
of n regional servers. Each regional server covers some ge-
ographical region. Regions covered by two regional servers
are allowed to overlap.

Home Server Each mobile object o permanently regis-
ters with one regional server. Upon registration, o gets a life-
time globally-unique identifier with its server identifier as a
prefix. This is similar to what happens in a cellular phone
network; a subscriber in the Greater Lafayette Area (in In-
diana, USA) is assigned a phone number starting with an
area code of 765. The subscriber keeps the same number
even if she roams somewhere else. The permanently regis-
tered server of an object o is referred to as the home sewer
of o (HS(o)). HS(o) can be identified by simply check-
ing the prefix of 0's global identifier.

Visited Server A moving object o moves freely in space
and reports its location periodically to the server covering

i Focal nnal !
iupdsles Resulg

Fig. 3. The QTP Model

0's current locations. The server that o currently reports to
is referred to as the visited server of o (VS(o)). If o lies
in a common region covered by multiple servers, o selects
its visited server based on pre-defined criteria such as sig-
nal strength. When o switches its visited server (as o roams),
the home server of o (HS(o)) is notified about this switch
so that HS(o) is always aware of the current VS(o).

3.2. Regional PLACE Servers

PLACE servers [19, 201 are employed in PLACE* as
regional data stream servers. Regional PLACE servers are
connected with each other through high-speed reliable
wired networks. Regional servers are time-synchronized.
The spatial region covered by any regional server is global
information. Each server periodically advertises its pres-
ence by flooding over the wired network. Inside every re-
gional PLACE server, a Regional Server Table (RST) is
maintained to keep information including the server iden-
tifiers, the coverage regions and the network addresses of
all the servers.

A regional PLACE server processes spatio-temporal
queries based on the data stream of its local region. In a
PLACE server, a query is processed in an incremental man-
ner. Based on the updates of moving objects, a PLACE
server continuously outputs positive or negative answer tu-
ples. A positive tuple implies that the tuple is to be added
into the previous query answer set. A negative tuple implies
that the tuple is no longer valid and is to be removed from
the previous answer set. The incremental query processing
algorithms inside a single PLACE server have been exten-
sively studied in [19, 20, 18, 171. To simplify our discus-
sion, in the paper we view regional (participating) PLACE
servers as black boxes that accept query registrations and
output positivelnegative answer tuples according to local
streams.

3.3. The QTP Model

PLACE* processes distributed continuous spatio-
temporal queries through its unique Query-Track-
Participate (QTP) model. In the QTP model, a query
q is answered collaboratively by a querying server, a track-
ing server, and a set of participating servers.

is a distributed version of Aurora [1]. It focuses on scalabil­
ity in the communication infrastructure, adaptive load man­
agement, and high system availability. Flux [26] addresses
the challenges of detrimental imbalances as workload con­
ditions change during execution of continuous queries. Bo­
realis [2] addresses the issues of dynamically revising query
results and query specifications during query execution. D­
CAPE [16] extends CAPE [24] to work over a cluster of
query processors using a centralized controller. D-CAPE is
designed to distribute query plans and monitor the perfor­
mance of each query processor with minimal communica­
tion between the controller and query processors. However,
none of the previous work has addressed the challenges of
processing continuous spatio-temporal queries over objects
that move among distributed servers.

Recent research efforts focus on continuous query pro­
cessing in spatio-temporal database management systems,
e.g., answering stationary range queries [6, 23], continu­
ous range queries [12, 32], continuous k-nearest-neighbor
queries [15, 22, 27, 28, 29, 31], and generic query process­
ing [14, 18]). In contrast to PLACE*, these works assume
that all object data and queries are processed by a central­
ized server.

PLACE* is part of the PLACE (Pervasive Location­
Aware Computing Environment) project [3] at Purdue Uni­
versity. PLACE* is a distributed data stream management
system built on top of a set of regional PLACE servers [17,
18, 20, 19]. PLACE* distinguishes itself by supporting con­
tinuous spatio-temporal queries over a set of distributed
regional (PLACE) servers where both queries and objects
constantly move.

3. Overview of The PLACE* System

3.1. PLACE* Distributed Environment

The PLACE* distributed environment consists of a set
of n regional servers. Each regional server covers some ge­
ographical region. Regions covered by two regional servers
are allowed to overlap.

Home Server Each mobile object 0 permanently regis­
ters with one regional server. Upon registration, 0 gets a life­
time globally-unique identifier with its server identifier as a
prefix. This is similar to what happens in a cellular phone
network; a subscriber in the Greater Lafayette Area (in In­
diana, USA) is assigned a phone number starting with an
area code of 765. The subscriber keeps the same number
even if she roams somewhere else. The permanently regis­
tered server of an object 0 is referred to as the home server
of 0 (HS(o)). HS(o) can be identified by simply check­
ing the prefix of o's global identifier.

Visited Server A moving object 0 moves freely in space
and reports its location periodically to the server covering

FInal ~
Resul~

iq

Fig. 3. The aTP Model

o's current locations. The server that 0 currently reports to
is referred to as the visited server of 0 (VS(o)). If 0 lies
in a common region covered by multiple servers, 0 selects
its visited server based on pre-defined criteria such as sig­
nal strength. When 0 switches its visited server (as 0 roams),
the home server of 0 (HS(o)) is notified about this switch
so that HS(o) is always aware of the current VS(o).

3.2. Regional PLACE Servers

PLACE servers [19, 20] are employed in PLACE* as
regional data stream servers. Regional PLACE servers are
connected with each other through high-speed reliable
wired networks. Regional servers are time-synchronized.
The spatial region covered by any regional server is global
information. Each server periodically advertises its pres­
ence by flooding over the wired network. Inside every re­
gional PLACE server, a Regional Server Table (RST) is
maintained to keep information including the server iden­
tifiers, the coverage regions and the network addresses of
all the servers.

A regional PLACE server processes spatio-temporal
queries based on the data stream of its local region. In a
PLACE server, a query is processed in an incremental man­
ner. Based on the updates of moving objects, a PLACE
server continuously outputs positive or negative answer tu­
ples. A positive tuple implies that the tuple is to be added
into the previous query answer set. A negative tuple implies
that the tuple is no longer valid and is to be removed from
the previous answer set. The incremental query processing
algorithms inside a single PLACE server have been exten­
sively studied in [19, 20, 18, 17]. To simplify our discus­
sion, in the paper we view regional (participating) PLACE
servers as black boxes that accept query registrations and
output positive/negative answer tuples according to local
streams.

3.3. The QTP Model

PLACE* processes distributed continuous spatio­
temporal queries through its unique Query-Track­
Participate (QTP) model. In the QTP model, a query
q is answered collaboratively by a querying server, a track­
ing server, and a set of participating servers.

Table 1. Table of Notations

Notation
HS(o)
VS(o)
QS(q)
TS(q)
PS(q)
R S T

Definition 1 For a query q, the querying sewer QS(q) is
the regional sewer that q's issuer object iq currently be-
longs to, i.e., QS(q) = VS(z,).

Definition
Home server of object o
Visited server of object o
Querying server of query q
Tracking server of query q
Participating server of query q
Regional server table

Definition 2 For a query q, the tracking sewer TS(q) is the
regional sewer that q's focal object f q currently belongs to,
i.e., TS(q) = VS(f,).

Definition 3 For a query q, a participating sewer PS(q) is
a regional sewer that currently participates in answering q.

The QTP model is depicted in Figure 3. In this figure,
PSl (q), PSz(q), . . . PS,(q) stand for m different partici-
pating servers for query q. PS(q)s are responsible for pro-
cessing q locally within PS(q)sY local coverage regions.
PS(q)s provide local query result fragments to QS(q).
QS(q) is responsible for assembling result fragments from
PS(q)s and transmits final assembled query result to i,.
QS(q) is also responsible for updating the set of PS(q)s
and coordinating query updates with PS(q)s. TS(q) is re-
sponsible for tracking updates of f, and forwarding the up-
dates to QS(q). It is worthy to mention that for a query q, a
regional server may act as a combination of the above roles.

Example. Consider ql in Figure 2(a). When ql starts (re-
fer to the shaded circle), QS(ql) is server A since ql's is-
suer object i belongs to A at that time. TS(ql) is server C
as ql's focal object f belongs to C. PS(ql)s include servers
C and F as ql overlaps the coverage space of these two
servers. At the last timestamp (refer to the last dashed cir-
cle), QS(q1) changes to server D as i belongs to D. Then,
TS(q1) changes to server A as f belongs to A. The PS(q1)s
consist of server A and B as ql overlaps the coverage space
of these two servers.

The QTP model has the following desirable proper-
ties: (1) It classifies the responsibilities of regional servers
clearly. (2) It supports flexible query types by allowing
the query issuer object to be different from the query fo-
cal object. (3) It avoids bottlenecks by pushing local pro-
cessing down to participating regional servers. (4) It min-
imizes the communication cost. Users issue queries to and
obtain query answers from the currently visited server with-
out message forwarding through other servers.

The notations used throughout the paper are summarized
in Table 1.

(a) Snapshot Series (b) Between t o and tl

Fig. 4. Snapshots of Range Query Example

4. Distributed Continuous Range Query

In this section, we focus on distributed continuous range
query processing inside PLACE*. To make the proposed al-
gorithms generic, we assume that the query issuer of a query
q is different from the query focal object of q. The pro-
posed algorithms apply directly to the case that the query
issuer object and the query focal object are identical. Fur-
ther, it is straightforward to apply the algorithms to static
range queries that do not move during query execution.

Throughout this section, ql in Figure 2(a) is used as an
illustrative example. Figure 4(a) re-plots ql using discrete
time points (to, tl, etc.). Every time point represents a time
when focal object f reports a new location and thus causes
query updating. Without loss of generality, we assume that
ql is issued at time to.

4.1. Initial Plan Generation

In PLACE*, an issuer i submits a query q to i's visited
server VS(i). VS(i) assigns q a global query identifier with
VS(i)'s server identifier as a prefix. Then, VS(i) starts the
process of generating an initial execution plan for q. This
process consists of three phases, namely, focal localization,
assembler operator generation, and local plan generation.
Phase I: Focal Localization. q's query range can be deter-
mined only after the location of the focal object f is ob-
tained. Focal localization obtains the current location of f
from f 's visited server VS(f). VS(i) requests VS(f) to
send updates of f to VS(i). Focal localization takes place
in two round-trip steps.

1. VS(i)++HS(f) : VS(i) requests the server identi-
fier of VS(f) from f 's home server H S (f). Notice
that VS(i) is aware of H S (f) by checking the pre-
fix off ' s life-time identifier. H S (f) acknowledges by
returning the server identifier of VS(f) to VS(i).

Notation Definition
HS(o) Home server of object 0

VS(o) Visited server of object 0

QS(q) Querying server of query q
TS(q) Tracking server of query q
PS(q) Participating server of query q
RST Regional server table

Table 1. Table of Notations

B

4.1. Initial Plan Generation

Fig. 4. Snapshots of Range Query Example

4. Distributed Continuous Range Query

1. VS(i){=:=:?HS(f): VS(i) requests the server identi­
fier of VS(f) from f's home server HS(f). Notice
that VS(i) is aware of HS(f) by checking the pre­
fix of f's life-time identifier. HS(f) acknowledges by
returning the server identifier of V S(f) to V S(i).

(b) Between to and h(a) Snapshot Series

In this section, we focus on distributed continuous range
query processing inside PLACE*. To make the proposed al­
gorithms generic, we assume that the query issuer of a query
q is different from the query focal object of q. The pro­
posed algorithms apply directly to the case that the query
issuer object and the query focal object are identical. Fur­
ther, it is straightforward to apply the algorithms to static
range queries that do not move during query execution.

Throughout this section, ql in Figure 2(a) is used as an
illustrative example. Figure 4(a) re-plots ql using discrete
time points (to, h, etc.). Every time point represents a time
when focal object f reports a new location and thus causes
query updating. Without loss of generality, we assume that
ql is issued at time to.

In PLACE*, an issuer i submits a query q to i's visited
server VS(i). V S(i) assigns q a global query identifier with
VS(i)'s server identifier as a prefix. Then, VS(i) starts the
process of generating an initial execution plan for q. This
process consists of three phases, namely,focallocalization,
assembler operator generation, and local plan generation.
Phase I: Focal Localization. q's query range can be deter­
mined only after the location of the focal object f is ob­
tained. Focal localization obtains the current location of f
from f's visited server VS(f). VS(i) requests VS(f) to
send updates of f to VS(i). Focal localization takes place
in two round-trip steps.

Definition 1 For a query q, the querying server QS(q) is
the regional server that q's issuer object i q currently be­
longs to, i.e., QS(q) = VS(iq).

Definition 2 For a query q, the tracking server TS(q) is the
regional server that q'sfocal object fq currently belongs to,
i.e., TS(q) = VS(fq).

Definition 3 Fora query q, a participating server PS(q) is
a regional server that currently participates in answering q.

The QTP model is depicted in Figure 3. In this figure,
PSI(q), PS2 (q), ... PSm (q) stand for m different partici­
pating servers for query q. PS(q)s are responsible for pro­
cessing q locally within P S (q) s' local coverage regions.
PS(q)s provide local query result fragments to QS(q).
QS(q) is responsible for assembling result fragments from
P S(q)s and transmits final assembled query result to i q .

QS(q) is also responsible for updating the set of PS(q)s
and coordinating query updates with PS(q)s. TS(q) is re­
sponsible for tracking updates of f q and forwarding the up­
dates to QS(q). It is worthy to mention that for a query q, a
regional server may act as a combination of the above roles.

Example. Consider ql in Figure 2(a). When ql starts (re­
fer to the shaded circle), QS(ql) is server A since ql'S is­
suer object i belongs to A at that time. T S(ql) is server C
as ql 's focal object f belongs to C. P S(ql)S include servers
C and F as ql overlaps the coverage space of these two
servers. At the last timestamp (refer to the last dashed cir­
cle), QS(qI) changes to server D as i belongs to D. Then,
T S(qI) changes to server A as f belongs to A. The PS(ql)S
consist of server A and B as ql overlaps the coverage space
of these two servers.

The QTP model has the following desirable proper­
ties: (1) It classifies the responsibilities of regional servers
clearly. (2) It supports flexible query types by allowing
the query issuer object to be different from the query fo­
cal object. (3) It avoids bottlenecks by pushing local pro­
cessing down to participating regional servers. (4) It min­
imizes the communication cost. Users issue queries to and
obtain query answers from the currently visited server with­
out message forwarding through other servers.

The notations used throughout the paper are summarized
in Table 1.

~ocd'ptream / L O ~ I ptream
from Server C i lrom Server F

PS(q): Sewer C / PS(q): Sewer F PS(q): Sewer B / PS(q): Server C[PS(q): Sewer F

(a) Query plan at time to (b) Query plan at time t,

Fig. 5. Example: Query Plan Initializa-
tionlupdating

2. V S (i) e V S (f) : VS(i) subscribes f's current loca-
tion from VS(f) . In the subscription, VS(i) sends
f's object identifer (oidf) along with q's query iden-
tifier (qid,) to VS(f). Upon receiving the subscrip-
tion, VS(f) stores the pair of (oidf, qid,) in a for-
warding request table so that future updates of f can
be forwarded to VS(i). VS(f) acknowledges by send-
ing f's current location back to VS(i).

After focal localization, VS(i) is referred to as QS(q)
and VS(f) is referred to as TS(q).
Phase 11: Assembler Operator Generation. After q's
query range is determined, QS(q) continues to determine
PSet(q), i.e., the set of PS(q)s. QS(q) searches the Re-
gional Server Table (RST) using g's range. Recall that the
RST stores all servers' information including coverage re-
gions. For range queries, all regional servers whose cover-
age regions overlap q are included in PSet(q).

QS(q) generates an assembler operator based on
PSet(q). An assembler operator stores query result frag-
ments from all participating servers PS(q)s and gener-
ates the final query result. The assembler operator main-
tains a participating server table (PST). For every PS(q),
there is one PST entry containing the local result from
the corresponding PS(q) . A PST entry is of the form
(PSid, Result), where P S i d is the identifier of a PS(q)
and Result is the local result set sent from a PS(q).
Phase 111: Local Plan Generation. After generating the as-
sembler operator, QS(q) sends q along with f 's location to
all the servers in PSet(q). Upon receiving the request, a
PS(q) generates a local query plan based on the query pro-
cessing engine of the regional PLACE server.
Example. Figure 5(a) gives the initialized distributed query
plan for the query shown in Figure 4(a) with respect to time
to. The plan consists of four parts at different servers. Part 1
lies in server C (serving as TS(q)) which forwards f's up-
date to QS(q). Part 2 lies in server A (serving as QS(q))
which contains the assembler operator. Notice that the PST

includes one entry per PS(q). Part 3 and 4 contain q's lo-
cal plans in server C and F (serving as PS(q)s), respec-
tively. R(ft,, 10mi) represents the query region centered at
f 's location (at time to) with a radius of 10 miles.

4.2. Distributed Query Execution

In this section, we present the execution algorithms for
distributed range queries after the query plan has been es-
tablished. We assume that the query range does not move
during execution. Handling query movement is addressed
in Sections 4.3 and 4.4.

After the plan for a continuous range query q is gener-
ated, PS(q)s treat q as a local query and process q indepen-
dently based on local object streams. Then, the PS(q)s send
incremental local results to QS(q). PLACE* distinguishes
two different types of range queries, namely, non-aggregate
queries and aggregate queries.
Non-aggregate Range Query. This type of range query
asks for moving objects within the query range without
aggregations. ql in Figure 2(a) is an example of a non-
aggregate range query. For non-aggregate range queries, the
PS(q)s send positive and negative object tuples to QS(q)
directly without performing aggregations. Upon receiving
an object tuple t from a PS(q), the assembler operator of
QS(q) inserts t (positive tuple t) into or removes t (nega-
tive tuple t) from the previous result set of PS(q)'s PST en-
try, according to t's positive or negative property.
Aggregate Range Query. The second type of range query
asks for aggregated result within the query range. Cur-
rently, the aggregate queries supported in PLACE* are
COUNT(), MIN() and MAX(). COUNT() reports the total
number of objects within the query range. MIN()/MAX()
reports the object whose coordinate is the smallesdlargest
along the x- or y-axis within the query range. An ex-
ample of a MIN()/MAX() query is to return the object
whose location is west-mosdeast-most among all the ob-
jects within the query range. For aggregate range queries,
the PS(q)s perform the aggregations (COUNT(), MINO,
MAX()) over local results before sending the aggregated re-
sult to QS(q). Pushing aggregations down to the PS(q)s
minimizes the communication costs between the PS(q)s
and QS(q). When the assembler operator of QS(q) receives
a new aggregated answer tuple t from a PS(q), the assem-
bler operator stores t in PST as the latest result from the
PS(q). QS(q) calculates the final query result by aggregat-
ing among the local results from PS(q)s. For COUNT(),
the final result is the sum of the local COUNT() numbers
from the PS(q)s. For MIN()/MAX(), the final result is the
object with the smallesdlargest coordinate along the given
axis among all the local MIN()/MAX() objects from the
PS(9)s.

Fig. 5. Example: Query Plan Initializa­
tion/Updating

2. VS(i)~VS(f): VS(i) subscribes 1's current loca­
tion from VS(f). In the subscription, VS(i) sends
1's object identifer (aidj) along with q's query iden­
tifier (qidq) to VS(f). Upon receiving the subscrip­
tion, VS(f) stores the pair of (aidj, qidq) in a far­
warding request table so that future updates of f can
be forwarded to V S(i). V S(f) acknowledges by send­
ing 1's current location back to VS(i).

After focal localization, VS(i) is referred to as QS(q)
and VS(f) is referred to as TS(q).
Phase II: Assembler Operator Generation. After q's
query range is determined, QS(q) continues to determine
PSet(q), i.e., the set of PS(q)s. QS(q) searches the Re­
gional Server Table (RST) using q's range. Recall that the
RST stores all servers' information including coverage re­
gions. For range queries, all regional servers whose cover­
age regions overlap q are included in PSet(q).

QS(q) generates an assembler operator based on
PSet(q). An assembler operator stores query result frag­
ments from all participating servers PS(q)s and gener­
ates the final query result. The assembler operator main­
tains a participating server table (PST). For every PS(q),
there is one PST entry containing the local result from
the corresponding PS(q). A PST entry is of the form
(PSid, Result), where PSid is the identifier of a PS(q)
and Result is the local result set sent from a PS(q).
Phase III: Local Plan Generation. After generating the as­
sembler operator, QS(q) sends q along with 1's location to
all the servers in PSet(q). Upon receiving the request, a
PS(q) generates a local query plan based on the query pro­
cessing engine of the regional PLACE server.
Example. Figure 5(a) gives the initialized distributed query
plan for the query shown in Figure 4(a) with respect to time
to. The plan consists of four parts at different servers. Part 1
lies in server C (serving as TS(q)) which forwards 1's up­
date to QS(q). Part 2 lies in server A (serving as QS(q))
which contains the assembler operator. Notice that the PST

TS(q):! output QS(q): Server A

ServerC iB PST

Updale~ ! 2 PSld Result

01 focal f! Assembler ; ::::::

................1 l r ~ _ .

R(IIO. 10mi) ~ 1'-'.". _~I
~L-+-_ ! L-+--J

Local stream 5 Local stream
from Server C ~ from Server F

PS(q): server C! PS(q): Server F

(a) Query plan at time to

TS(q): i~outPUIQS(q):Server A.
Server C ! PST

! PSld Resull

~f~~~~ -j Assembler ; ::::::
! ~;:'8~~' .,:"1:<'.\:;'

....................':.»'1;:.~ t :.~!="IC; .
i i_
: 'TI Local stroom I Lac" stroom
; from SelVer C: from SalVer F

PS(q): server B ~ PS(q): Server c1 PS(q): server F

(b) Query plan at time I,

includes one entry per PS(q). Part 3 and 4 contain q's lo­
cal plans in server C and F (serving as PS(q)s), respec­
tively. R(fto' lOmi) represents the query region centered at
1's location (at time to) with a radius of 10 miles.

4.2. Distributed Query Execution

In this section, we present the execution algorithms for
distributed range queries after the query plan has been es­
tablished. We assume that the query range does not move
during execution. Handling query movement is addressed
in Sections 4.3 and 4.4.

After the plan for a continuous range query q is gener­
ated, P S (q) s treat q as a local query and process q indepen­
dently based on local object streams. Then, the PS(q)s send
incremental local results to QS(q). PLACE* distinguishes
two different types of range queries, namely, non-aggregate
queries and aggregate queries.

Non-aggregate Range Query. This type of range query
asks for moving objects within the query range without
aggregations. ql in Figure 2(a) is an example of a non­
aggregate range query. For non-aggregate range queries, the
PS(q)s send positive and negative object tuples to QS(q)
directly without performing aggregations. Upon receiving
an object tuple t from a PS(q), the assembler operator of
QS(q) inserts t (positive tuple t) into or removes t (nega­
tive tuple t) from the previous result set of PS(q)'s PST en­
try, according to t's positive or negative property.

Aggregate Range Query. The second type of range query
asks for aggregated result within the query range. Cur­
rently, the aggregate queries supported in PLACE* are
COUNTO, MINO and MAXO. COUNTO reports the total
number of objects within the query range. MINOIMAXO
reports the object whose coordinate is the smallest/largest
along the x- or y-axis within the query range. An ex­
ample of a MINOIMAXO query is to return the object
whose location is west-most/east-most among all the ob­
jects within the query range. For aggregate range queries,
the PS(q)s perform the aggregations (COUNTO, MINO,
MAXO) over local results before sending the aggregated re­
sult to QS(q). Pushing aggregations down to the PS(q)s
minimizes the communication costs between the PS(q)s
and QS(q). When the assembler operator of QS(q) receives
a new aggregated answer tuple t from a PS(q), the assem­
bler operator stores t in PST as the latest result from the
P S(q). QS(q) calculates the final query result by aggregat­
ing among the local results from PS(q)s. For COUNTO,
the final result is the sum of the local COUNTO numbers
from the PS(q)s. For MINOIMAXO, the final result is the
object with the smallest/largest coordinate along the given
axis among all the local MINOIMAXO objects from the
PS(q)s.

ject. By comparing oi with 04, server A updates the final
result to 0;.

. . . .
Local stream i ~ o c i t stream Locel stream j ~ o c i l rtrsam
hom Sewer C i from sewer F from Sewer C 1 from S w e r F

PSIq): Server C PS(q): Server F PS(q): Sewer C PSIq): Sewer F

(a) Non-aggregate (b) Aggregate MAX0

Fig. 6. Example: Range Query Execution

Example. Figure 4(b) gives a snapshot for the query shown
in Figure 4(a). The grey points represent the locations of
four objects ol to 04 at time to, while the black points rep-
resent the locations of the four objects at some time between
to and tl.

Assume that the query given in Figure 4(b) is a non-
aggregate query asking for the identifers of all objects in-
side the query range. Figure 6(a) illustrates the query exe-
cution process. At time to, the query result consists of 01,
03 from server C and 0 2 from server F. After some time, the
objects move as illustrated in Figure 4(b). When 01 leaves
server C and enters server F, server C reports a negative tu-
ple for 01 while server F reports a positive tuple for 0:. Sim-
ilarly, server F reports a negative tuple for 0 2 when 02 moves
out of the query range. Notice that server C does not report
03 when 03 remains in the query range after 03 moves. o;
is reported by server C as a positive tuple when 0 4 moves
to inside the query range. Server A receives these result tu-
ples and update its PST incrementally. At the end of the ex-
ecution, the final result consists of ob, ok from server C and
oi from server F.

Now assume that the query given in Figure 4(b) is a
MAX() aggregate query asking for the east-most object
within the query range. Figure 6(b) illustrates the query ex-
ecution process. At time to, the query result is 01 by com-
paring 01 (the east-most object from server C) with 0 2 (the
east-most object from server F). When 01 leaves server C
and enters server F, 03 becomes the new east-most object in
server C and oi becomes the new east-most object in server
F. Therefore, 03 and oi are sent to server A by server C and
F, respectively. Server A then calculates oi as the new re-
sult. Later, the movement of 0 2 does not affect the local
result of server F, so no update is sent to server A. When
03 moves, server C sends ob to server A to update the lo-
cal result. However, this update does not cause a change in
the final result. Finally, ok is reported by server C when 04

moves into server C and becomes the local east-most ob-

4.3. Query Plan Updating

When an object moves, queries focusing on this object
change their query ranges. In this case, the former query
plans must be updated timely based on the new query range.
In this section, we concentrate on updating a query plan
when the query's focal object moves within the same vis-
ited server.

Updating an existing query plan in PLACE* follows
three phases, namely, focal update forwarding, assembler
operator updating and local plan updating.
Phase I: Focal Update Forwarding. A moving object o
in PLACE* periodically reports location updates to 0's vis-
ited server VS(o). Upon receiving 0's update, VS(o) looks
up the forwarding request table and forwards the new up-
date to all regional PLACE servers that have subscribed to
0's updates. Note that one server may have subscribed to 0's
update for multiple times, each time for a different query.
To avoid redundant forwarding, VS(o) forwards every 0's
update to a server only once even if multiple subscriptions
have been sent from this server.
Phase 11: Assembler Operator Updating. QS(q) updates
q's assembler operator after the forwarded update of q's fo-
cal object f is received. The algorithm for updating an as-
sembler operator at QS(q) is given in Table 2. The algo-
rithm starts by obtaining the old set of PS(q)s from the
PST inside the assembler operator (Step 1). Based on q's
new query range, the new set of PS(q)s is calculated by
searching the regional server table (RST) for the regional
servers overlapping q's new range (Step 2). Comparing the
old set of PS(q)s against the new set of PS(q)s, three sets
of regional servers are calculated, namely, regional servers
added as new PS(q)s, regional servers removed as expired
PS(q)s, and regional servers remaining as PS(q)s (Step 3).
For regional servers newly added as PS(q)s, the algorithm
sends to them a query registration command. The query reg-
istration command contains the query q as well as f 's loca-
tion. For regional servers that no longer serve as PS(q)s, a
command is sent to terminate q's execution in these servers.
For regional servers that remain in PSet, a query update
command along with f's new location is sent to them (Step
4).
Phase 111: Local Plan Updating. In this phase, commands
sent by QS(q) in Phase I1 are received by regional servers.
If the query registration command is received by a regional
server, the server generates a query plan locally. This pro-
cess is the same as the phase of local plan generation in
Section 4.1. If the query dropping command is received, the
server terminates the query's local plan.

Fig. 6. Example: Range Query Execution

Example. Figure 4(b) gives a snapshot for the query shown
in Figure 4(a). The grey points represent the locations of
four objects 01 to 04 at time to, while the black points rep­
resent the locations of the four objects at some time between
toandt1 .

Assume that the query given in Figure 4(b) is a non­
aggregate query asking for the identifers of all objects in­
side the query range. Figure 6(a) illustrates the query exe­
cution process. At time to, the query result consists of 01,

03 from server C and 02 from server F. After some time, the
objects move as illustrated in Figure 4(b). When 01 leaves
server C and enters server F, server C reports a negative tu­
ple for 01 while server F reports a positive tuple for oi . Sim­
ilarly, server F reports a negative tuple for 02 when 02 moves
out of the query range. Notice that server C does not report
03 when 03 remains in the query range after 03 moves. o~

is reported by server C as a positive tuple when 04 moves
to inside the query range. Server A receives these result tu­
ples and update its PST incrementally. At the end of the ex­
ecution, the final result consists of o~, o~ from server C and
oi from server F.

Now assume that the query given in Figure 4(b) is a
MAXO aggregate query asking for the east-most object
within the query range. Figure 6(b) illustrates the query ex­
ecution process. At time to, the query result is 01 by com­
paring 01 (the east-most object from server C) with 02 (the
east-most object from server F). When 01 leaves server C
and enters server F, 03 becomes the new east-most object in
server C and oi becomes the new east-most object in server
F. Therefore, 03 and oi are sent to server A by server C and
F, respectively. Server A then calculates oi as the new re­
sult. Later, the movement of 02 does not affect the local
result of server F, so no update is sent to server A. When
03 moves, server C sends o~ to server A to update the lo­
cal result. However, this update does not cause a change in
the final result. Finally, o~ is reported by server C when 04

moves into server C and becomes the local east-most ob-

(0I,OZ,°3)
(01',°3',°4')

Local stream
from ServerF

PS(q): Server C PS(q): Server F

(a) Non-aggregate

Local stream
from Server F

PSlq): Server C PS(q): Server F

(b) Aggregate MAXO

ject. By comparing oi with 04, server A updates the final
result to o~.

4.3. Query Plan Updating

When an object moves, queries focusing on this object
change their query ranges. In this case, the former query
plans must be updated timely based on the new query range.
In this section, we concentrate on updating a query plan
when the query's focal object moves within the same vis­
ited server.

Updating an existing query plan in PLACE* follows
three phases, namely, focal update forwarding, assembler
operator updating and local plan updating.

Phase I: Focal Update Forwarding. A moving object 0

in PLACE* periodically reports location updates to o's vis­
ited server VS(o). Upon receiving o's update, VS(o) looks
up the forwarding request table and forwards the new up­
date to all regional PLACE servers that have subscribed to
o's updates. Note that one server may have subscribed to o's
update for multiple times, each time for a different query.
To avoid redundant forwarding, VS(o) forwards every o's
update to a server only once even if multiple subscriptions
have been sent from this server.

Phase II: Assembler Operator Updating. QS (q) updates
q's assembler operator after the forwarded update of q's fo­
cal object f is received. The algorithm for updating an as­
sembler operator at QS(q) is given in Table 2. The algo­
rithm starts by obtaining the old set of PS(q)s from the
PST inside the assembler operator (Step 1). Based on q's
new query range, the new set of PS(q)s is calculated by
searching the regional server table (RST) for the regional
servers overlapping q's new range (Step 2). Comparing the
old set of PS(q)s against the new set of PS(q)s, three sets
of regional servers are calculated, namely, regional servers
added as new PS(q)s, regional servers removed as expired
PS(q)s, and regional servers remaining as PS(q)s (Step 3).
For regional servers newly added as P S (q) s, the algorithm
sends to them a query registration command. The query reg­
istration command contains the query q as well as f's loca­
tion. For regional servers that no longer serve as PS(q)s, a
command is sent to terminate q's execution in these servers.
For regional servers that remain in PSet, a query update
command along with f's new location is sent to them (Step
4).

Phase III: Local Plan Updating. In this phase, commands
sent by QS(q) in Phase II are received by regional servers.
If the query registration command is received by a regional
server, the server generates a query plan locally. This pro­
cess is the same as the phase of local plan generation in
Section 4.1. If the query dropping command is received, the
server terminates the query's local plan.

Algorithm RangeAssemUpd(Range f, PST, RST)
INPUT: Range f: query range based on the update off

PST: the Participating Server Table
RST: the Regional Server Table

1 PSetold = the set of participating servers in PST;
2 PSet,,, = the set of regional servers overlapping

with Range (through searching RST);
3 Compare PSet,,, against PSetold;

3.1 S,,, = PSet,,, - PSetold;
3.2 Sold = PSetold - PSetnew;
3.3 SCUT = PSetold n PSet,,,;

4 For every server S in:
4.1 S,,,: send register request for q;

insert a new entry for S in P S T ;
4.2 Sold: send drop request for q;

drop the entry for S from P S T ;
4.3 S,,,: send update request for q;

Table 2. Assembler Operator Updating

If the query update command is received by a regional
server, the server updates q's local plan by re-calculating q's
query range based on f's new location. If the query range
update causes a change in the local query result, the updates
to the query result are sent to QS(q).
Example. Figure 5(b) gives the updated distributed query
plan for the query q shown in Figure 4(a). The plan is up-
dated at time t l based on f's new location. In Figure 5(b),
the updated parts are plotted in shaded colors. Following
the plan update process, server B is added as a new partic-
ipating server as its coverage space overlaps q's new query
range. Then a new entry for server B is inserted to the PST
of the assembler operator. Server B generates a local plan
(Part 5) for q once server B receives the query registration
command from server A. Server C and F remain as q's par-
ticipating servers. q's query ranges in server C and F are
updated based on f's new location when the query update
commands from server A are received by these two servers.

4.4. Query Plan Shipping

When an object o moves in space, o may switch its vis-
ited server when o leaves the coverage space of the old
visited server (VSold(o)) and enters the coverage space
of the new visited server (VS,,,(o)). Similar to cellular
phone networks [5, 251, handoff procedures are carried out
in PLACE* to transfer information of o between VSold (0)
and VS,,, (0) . However in PLACE*, handoff procedures
need to guarantee the continuity and correctness of query
processing. In PLACE*, an object o may move as a fo-
cal object of some queries andlor move as an issuer object
of some other queries. Accordingly, the handoff procedure

(a) Step 1 (b) step 2

Local plan at B,(q)

L a a l plan at PSm(q)

Assmbler
I ,

Q S . A) I QS,(q) I
(c) Step 3 (d) Step 4

Fig. 7. Assembler Operator Shipping

in PLACE* consists of two phases, namely, forwarding re-
quest shipping and assembler operator shipping.
Phase I: Forwarding Request Shipping. If o is the fo-
cal object of some queries, 0's updates are forwarded to
the corresponding querying servers by VS(o). When o
moves from VSold(o) to VS,,, (o), VS,,, (0) instead of
VSold(o) is responsible to forward 0's updates. Consider
the example given in Figure 4(a), server B is responsible
for forwarding f's updates to server A after time tz when f
moves to server B. The three-step forwarding request ship-
ping phase transfers the update forwarding requests regard-
ing object o from VSold(0) to VSnew (0).

S 1 : VSold (0) searches the forwarding request table (FRT,
for short) for the corresponding entries of o. VSold(o)
sends the found entries to VS,,, (0).

S2: VS,,, (0) inserts received entries to local FRT and ac-
knowledges.

S3: VSold(o) removes the forwarding entries of o from lo-
cal FRT.

Phase 11: Assembler Operator Shipping. If o issues a
query q, an assembler operator for q is generated in VS(o).
When o moves from VSold(o) to VS,,,(o), the assem-
bler operator of q should be transferred from VSold(o) to
VS,,, (0). Consider the example given in Figure 4(a), the
assembler operator is transferred from server A to server E
at time t3 when i moves from server A to server E.

The assembler operator shipping process is performed
for each query q issued by o. This process aims to minimize
the suspension time of query execution. More importantly,
the process guarantees that object tuples are neither dupli-
cated nor lost during the transfer while the execution order
of object tuples remains unchanged. Figure 7 illustrates the
four-step assembler operator shipping process.

S1: VSold(o) sends q to VS,,, (0). VS,,, (0) generates
an assembler operator that is the same as the assembler
operator in VSold(o).

Fig. 7. Assembler Operator Shipping

QS,.(q) Local plan al PS,(q) aSoId(q) Local plan at PS,(q)

TS(q) AsS8mbl~1 TS(q)--+~~~r.. :

q(
Local plan at PSm(q) :/1 Local plan 81 PSm{q)

II:";~:'~~~' I ~~-----_
---_A.:'~~~
QS"~(q) as_(q)

Local plan at PS1(q)

Local plan at PSm(q)

(b) Slep2

TS(q)

~ .. Local plan at PSm(q)

(a) Slep 1

in PLACE* consists of two phases, namely,forwarding re­
quest shipping and assembler operator shipping.
Phase I: Forwarding Request Shipping. If 0 is the fo­
cal object of some queries, o's updates are forwarded to
the corresponding querying servers by VS(o). When 0

moves from VSold(O) to VSnew(o), VSnew(o) instead of
VSold(O) is responsible to forward o's updates. Consider
the example given in Figure 4(a), server B is responsible
for forwarding 1's updates to server A after time t2 when f
moves to server B. The three-step forwarding request ship­
ping phase transfers the update forwarding requests regard­
ing object 0 from VSold(O) to VSnew(o).

Sl: VSold(O) searches the forwarding request table (FRT,
for short) for the corresponding entries of o. V Sold (0)
sends the found entries to V Snew (0).

S2: V Snew (0) inserts received entries to local FRT and ac­
knowledges.

S3: V Sold (0) removes the forwarding entries of 0 from lo-
cal FRT.

Phase II: Assembler Operator Shipping. If 0 issues a
query q, an assembler operator for q is generated in VS(0).
When 0 moves from VSold(O) to VSnew(o), the assem­
bler operator of q should be transferred from VSold(O) to
VSnew(o). Consider the example given in Figure 4(a), the
assembler operator is transferred from server A to server E
at time t3 when i moves from server A to server E.

The assembler operator shipping process is performed
for each query q issued by o. This process aims to minimize
the suspension time of query execution. More importantly,
the process guarantees that object tuples are neither dupli­
cated nor lost during the transfer while the execution order
of object tuples remains unchanged. Figure 7 illustrates the
four-step assembler operator shipping process.

Sl: VSold(O) sends q to VSnew(O). VSnew(O) generates
an assembler operator that is the same as the assembler
operator in V Sold (0).

1 P S etold = the set of participating servers in PST;
2 P S etnew =the set of regional servers overlapping

with Range! (through searching RST);
3 Compare PSetnew against PSetold;

3.1 Snew = PSetnew - PSetold;
3.2 Sold = PSetold - PSetnew ;
3.3 Scur = PSetold n PSetnew ;

4 For every server Sin:
4.1 Snew: send register request for q;

insert a new entry for S in PST;
4.2 Sold: send drop request for q;

drop the entry for S from PST;
4.3 Scur: send update request for q;

4.4. Query Plan Shipping

Table 2. Assembler Operator Updating

Algorithm RangeAssemUpd(Rangef> PST, RST)
INPUT: Ranger query range based on the update off

PST: the Participating Server Table
RST: the Regional Server Table

If the query update command is received by a regional
server, the server updates q's local plan by re-calculating q's
query range based on 1's new location. If the query range
update causes a change in the local query result, the updates
to the query result are sent to QS(q).
Example. Figure 5(b) gives the updated distributed query
plan for the query q shown in Figure 4(a). The plan is up­
dated at time tl based on 1's new location. In Figure 5(b),
the updated parts are plotted in shaded colors. Following
the plan update process, server B is added as a new partic­
ipating server as its coverage space overlaps q's new query
range. Then a new entry for server B is inserted to the PST
of the assembler operator. Server B generates a local plan
(Part 5) for q once server B receives the query registration
command from server A. Server C and F remain as q's par­
ticipating servers. q's query ranges in server C and Fare
updated based on 1's new location when the query update
commands from server A are received by these two servers.

When an object 0 moves in space, 0 may switch its vis­
ited server when 0 leaves the coverage space of the old
visited server (VSold(0)) and enters the coverage space
of the new visited server (VSnew(o)). Similar to cellular
phone networks [5, 25], handoff procedures are carried out
in PLACE* to transfer information of 0 between VSold(O)
and V Snew (0). However in PLACE*, handoff procedures
need to guarantee the continuity and correctness of query
processing. In PLACE*, an object 0 may move as a fo­
cal object of some queries and/or move as an issuer object
of some other queries. Accordingly, the handoff procedure

S2: VSold(o) notifies PS(q)s to send future result frag-
ments of q to VSnew(o). Also, VSold(o) notifies
TS(q) to send future updates of f to VSnew(o).
Later on, result fragments and focal updates sent to
VSnew(o) will be buffered in VSne,(o) temporarily.
Then, VSold (0) waits for the acknowledgements from
the PS(q)s and TS(q) while the assembler operator
in VSold(o) continues to execute until the acknowl-
edgements from PS(q)s and TS(q) are received. As
the underlying network provides reliable in-order de-
livery, it is guaranteed that no more local messages will
be sent to VSold(o) after all acknowledgements are re-
ceived.

S3: VSold(o) sends to VSnew(o) the whole Participat-
ing Server Table (PST) followed by unprocessed re-
sult fragments and unprocessed focal updates.

S4: The assembler operator in VSnew (0) starts to execute.
The unprocessed data forwarded from VSold(o) are
processed before the buffered data sent from PS(q)s
and TS(q). This guarantees the in-order execution of
data tuples. At this time, the assembler operator in
VSold(o) can be safely removed.

5. Distributed Continuous kNN Query

A continuous k-Nearest-Neighbor (kNN) query tracks
the k nearest objects to a given focal object continuously.
In PLACE*, the kNN query answer may consist of mov-
ing objects from multiple regional servers. In this section,
we extend the range query processing algorithms to process
distributed continuous kNN queries in PLACE*.

The main idea to process a kNN query q is to associate
a search region with q. A search region for a kNN query is
a circular region surrounding the query focal object. Then,
only the moving objects inside the search region are con-
sidered in the final answer. By having a search region, the
range query processing algorithms can be utilized for kNN
query processing.

It is essential to maintain a proper search region
(RseaTch) during the execution of the kNN query. If RseaTch
is too small, there may not be a sufficient Number of ob-
jects inside RseaTch On the other hand, if RseaTch is too
large, a wide range of objects will be unnecessarily pro-
cessed. RseaTch has to be adjusted adaptively; a fixed search
region cannot always be optimal as objects move in and out
of the search region dynamically. Further, RseaTch has to be
updated every time when the focal object f moves.

In section 5.1, we first present the process of kNN query
processing extended from the range query processing algo-
rithms. In Section 5.2, we focus on the algorithm for obtain-
ing a proper search region for a kNN query.

5.1. Overview of kNN Query Processing

Similar to range query processing, KNN query process-
ing in PLACE* consists of initial plan generation, dis-
tributed query execution, query plan updating and query
plan shipping.

5.1.1. Initial Plan Generation Similar to range queries,
focal localization is first carried out to obtain the location
of the focal object f when a kNN query q arrives the query-
ing server QS(q). Next, QS(q) calculates an initial search
region RseaTch for q. The algorithm of calculating RseaTch
will be given in Section 5.2. By taking RseaTch as query
range, the rest process of initial plan generation is similar to
the range query process in Section 4.1. In this phase, the as-
sembler operator is generated in QS(q) and local plans are
established in PS(q)s that are regional servers overlapping
with Rsearch.

5.1.2. Distributed Query Execution A PS(q) computes
up to k local objects that are within RseaTch and are near-
est to f as local answer. The local answer is updated contin-
uously and is sent to QS(q) incrementally. This is the same
as range query execution discussed in Section 4.2. QS(q)
then stores the local results in the PST of q's assembler op-
erator. Additionally, an object list objList is maintained in
the assembler operator. objList sorts all local answer ob-
jects based on their distance to the focal object. The first k
objects in objList are returned as query answer.

5.1.3. Query Plan Updating kNN query updating may
happen in three cases: (1) a new location off forces a move-
ment of RseaTch. In this case, objList is re-sorted based on
the new location of focal object and the query answer is up-
dated to the first k objects in obj l is t . Meanwhile, RseaTch
needs to move with the focal object. (2) The total number of
objects within RseaTch is less than k. In this case, RseaTch
has to expand until it contains at least k objects. (3) The to-
tal number of objects within RseaTch is significantly greater
than k. In this case, RseaTch can shrink to reduce processing
cost. In Section 5.2, the algorithm for updating RseaTch is
applicable to all the three cases. After obtain a new RseaTch,
range query updating algorithms in Section 4.3 can be ap-
plied to kNN queries directly by taking the new RseaTch as
the updated query range.

5.1.4. Query Plan Shipping The handoff procedure and
query plan shipping algorithms presented i n Section 4.4
work for kNN queries as well.

5.2. Calculating Search Region

Table 3 gives CalcSearchRegion(), the function calcu-
lating a search region for a kNN query. This function can be

S2: VSold(O) notifies PS(q)s to send future result frag­
ments of q to VSnew(O). Also, VSold(O) notifies
T S (q) to send future updates of f to V Snew (0).
Later on, result fragments and focal updates sent to
V Snew (0) will be buffered in V Snew (0) temporarily.
Then, VSold(O) waits for the acknowledgements from
the PS(q)s and TS(q) while the assembler operator
in VSold(O) continues to execute until the acknowl­
edgements from PS(q)s and TS(q) are received. As
the underlying network provides reliable in-order de­
livery, it is guaranteed that no more local messages will
be sent to V Sold(0) after all acknowledgements are re­
ceived.

S3: VSold(O) sends to VSnew(O) the whole Participat­
ing Server Table (PST) followed by unprocessed re­
sult fragments and unprocessed focal updates.

S4: The assembler operator in V Snew (0) starts to execute.
The unprocessed data forwarded from VSold(O) are
processed before the buffered data sent from PS(q)s
and TS(q). This guarantees the in-order execution of
data tuples. At this time, the assembler operator in
V Sold (0) can be safely removed.

5. Distributed Continuous kNN Query

A continuous k-Nearest-Neighbor (kNN) query tracks
the k nearest objects to a given focal object continuously.
In PLACE*, the kNN query answer may consist of mov­
ing objects from multiple regional servers. In this section,
we extend the range query processing algorithms to process
distributed continuous kNN queries in PLACE*.

The main idea to process a kNN query q is to associate
a search region with q. A search region for a kNN query is
a circular region surrounding the query focal object. Then,
only the moving objects inside the search region are con­
sidered in the final answer. By having a search region, the
range query processing algorithms can be utilized for kNN
query processing.

It is essential to maintain a proper search region
(Rsearch) during the execution of the kNN query. If Rsearch
is too small, there may not be a sufficient Number of ob­
jects inside Rsearch. On the other hand, if Rsearch is too
large, a wide range of objects will be unnecessarily pro­
cessed. Rsearch has to be adjusted adaptively; a fixed search
region cannot always be optimal as objects move in and out
of the search region dynamically. Further, Rsearch has to be
updated every time when the focal object f moves.

In section 5.1, we first present the process ofkNN query
processing extended from the range query processing algo­
rithms. In Section 5.2, we focus on the algorithm for obtain­
ing a proper search region for a kNN query.

5.1. Overview of kNN Query Processing

Similar to range query processing, KNN query process­
ing in PLACE* consists of initial plan generation, dis­
tributed query execution, query plan updating and query
plan shipping.

5.1.1. Initial Plan Generation Similar to range queries,
focal localization is first carried out to obtain the location
of the focal object f when a kNN query q arrives the query­
ing server QS(q). Next, QS(q) calculates an initial search
region Rsearch for q. The algorithm of calculating Rsearch
will be given in Section 5.2. By taking Rsearch as query
range, the rest process of initial plan generation is similar to
the range query process in Section 4.1. In this phase, the as­
sembler operator is generated in QS(q) and local plans are
established in P S (q) s that are regional servers overlapping
with Rsearch'

5.1.2. Distributed Query Execution A PS(q) computes
up to k local objects that are within Rsearch and are near­
est to f as local answer. The local answer is updated contin­
uously and is sent to QS(q) incrementally. This is the same
as range query execution discussed in Section 4.2. QS(q)
then stores the local results in the PST of q's assembler op­
erator. Additionally, an object list objList is maintained in
the assembler operator. objList sorts all local answer ob­
jects based on their distance to the focal object. The first k
objects in objList are returned as query answer.

5.1.3. Query Plan Updating kNN query updating may
happen in three cases: (1) a new location of f forces a move­
ment of Rsearch. In this case, objList is re-sorted based on
the new location of focal object and the query answer is up­
dated to the first k objects in objList. Meanwhile, Rsearch
needs to move with the focal object. (2) The total number of
objects within Rsearch is less than k. In this case, Rsearch
has to expand until it contains at least k objects. (3) The to­
tal number of objects within Rsearch is significantly greater
than k. In this case, Rsearch can shrink to reduce processing
cost. In Section 5.2, the algorithm for updating Rsearch is
applicable to all the three cases. After obtain a new Rsearch,
range query updating algorithms in Section 4.3 can be ap­
plied to kNN queries directly by taking the new Rsearch as
the updated query range.

5.1.4. Query Plan Shipping The handoff procedure and
query plan shipping algorithms presented in Section 4.4
work for kNN queries as well.

5.2. Calculating Search Region

Table 3 gives CalcSearchRegionO, the function calcu­
lating a search region for a kNN query. This function can be

called to obtain an initial search region or to update an ex-
isting search region when focal object moves. Besides, this
function is called every T seconds to adjust the search re-
gion periodically.

This function starts by getting m, the number of ob-
jects inside obj l is t , and oldRadius, the radius of previ-
ous search region (Steps 1 and 2). Then three cases can be
distinguished (Steps 3, 4 and 5). (1) m = 0. In this case,
the function asks VS(f) to process the kNN query locally
and then obtains the local kth NN from VS(f). The ra-
dius of new search region is set as the distance between
the focal object and the local kth NN from VS(f); This
radius will be adjusted to be more "tight" in later calls of
CalcSearchRegion() when m changes. (2) 0 < m < k.
In this case, the search region needs to expand. By assuming
that all objects are uniformly distributed in space, it is ex-
pected that k objects can be found in the new search region
if the radius of previous search region is expanded by a fac-

tor of fi. Note that the new radius is further expanded by
an expanding factor a . The purpose of having the expand-
ing factor is to be more confident that k objects can be found
in the new search region. Therefore, the search region is fi-

nally adjusted to (l+a).oldRadius 6. (3) m >> k.
In this case, the search region may shrink to save process-
ing cost. The radius of new search scope is set as the radius
of current answer set, that is, the distance between the fo-
cal object and the kth NN. Similar to case 2, the new radius
is further expanded by a factor of a . Finally, the new search
region is obtained based on the calculated radius (Step 6). If
the new search region is different from the old search re-
gion, a plan update procedure same as for range queries
is invoked to notifies PS(q)s about the new search region
(Step 7).

6. Performance Evaluation

PLACE* is a prototype distributed spatio-temporal data
stream management system developed at Purdue University.
In the experiments, the space in which the objects move is
a unit square that is evenly divided into nine (3 x 3) square
regions and each region is covered by a regional PLACE
server. Each regional PLACE server runs on a dedicated
Intel Pentium IV machine with dual 3.0GHz CPUs and
512MB RAM. Regional servers are connected with each
other through TCP connections.

Within each regional server, a number of 50,000 local
objects are uniformly generated. Local objects move only
inside the coverage region of the corresponding regional
server. To simulate moving objects that travel among re-
gional servers, a global object generator generates 50,000
global objects that are randomly distributed and move in the
entire data space. The global object generator sends loca-

Function CalcSearchRegion(u , ~ b j L i ~ t , k , R ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~)
INPUT: uf : current location of focal object f

objlist: object list sorted on the distance to uf
k: the number of required NNs
Rsearch-old: previous search region
a: expanding factor to search region

1 m = the number of objects in obj l is t ;
2 oldRadius = newRadius = radius of Rsearch-old;
3 If (m== 0)

3.1 Request o, the local kth NN o f f from VS(f);
3.2 newRadius = 1 1 f - 011;

4 Else if (m < k)

4.1 newRadius = (l+a).oldRadius . &;
5 E l se i f (m>>k)

5.1 AnswerRadius = 1 1 f - kth object i n obj l is t 11;
5.2 newRadius = (l+a).AnswerRadius;

6 Rsearch-new = a circle focused at uf with newRadius;
7 If Rsearch-new is different than Rsearch-old

7.1 Call RangeA~~emUpd(R,~~,~h.~~~, PST, RST);

Table 3. Calculate Search Region

tion updates of global objects to regional PLACE servers ac-
cording to the coverage regions of the servers. When send-
ing an update of a global object o, the global object gener-
ator attaches the identifier of 0's last regional server to the
update. If o moves to a new regional server, 0's new server
can directly contact 0's old server and start the handoff pro-
cedures given in Section 4.4. Object locations are updated
every 30 seconds.

We evaluate both continuous range queries and contin-
uous kNN queries in PLACE*. For range queries, 1,000
square-shaped range queries are generated at each regional
server. We test with various query sizes ranging from 1 % to
10% of the area of the entire space. For kNN queries, 1,000
kNN queries are generated on each regional server. Various
values of k ranging from 50 to 500 are evaluated in the ex-
periments. The expanding factor a of kNN queries is set as
20% and the time span to periodically adjust search region
is set as 5 seconds. Focal objects and query issuer objects
of both range queries and kNN queries are randomly se-
lected from global objects residing currently in correspond-
ing servers.

We investigate both the system response time and the
number of communication messages. To reduce communi-
cation overhead, each participating server sends local re-
sults every second. Multiple result tuples can be packed
in one message. The maximum size of a message is set to
1,024 bytes.

called to obtain an initial search region or to update an ex­
isting search region when focal object moves. Besides, this
function is called every T seconds to adjust the search re­
gion periodically.

This function starts by getting m, the number of ob­
jects inside objList, and oldRadius, the radius of previ­
ous search region (Steps 1 and 2). Then three cases can be
distinguished (Steps 3, 4 and 5). (1) m = O. In this case,
the function asks VS(f) to process the kNN query locally
and then obtains the local kth NN from VS(f). The ra­
dius of new search region is set as the distance between
the focal object and the local kth NN from VS(f); This
radius will be adjusted to be more "tight" in later calls of
CalcSearchRegionO when m changes. (2) 0 < m < k.
In this case, the search region needs to expand. By assuming
that all objects are uniformly distributed in space, it is ex­
pected that k objects can be found in the new search region
if the radius of previous search region is expanded by a fac-

tor of 1'£. Note that the new radius is further expanded by
an expanding factor a. The purpose of having the expand­
ing factor is to be more confident that k objects can be found
in the new search region. Therefore, the search region is fi-

nally adjusted to (1+a)·oldRadius . 1'£. (3) m >> k.
In this case, the search region may shrink to save process­
ing cost. The radius of new search scope is set as the radius
of current answer set, that is, the distance between the fo­
cal object and the kth NN. Similar to case 2, the new radius
is further expanded by a factor of a. Finally, the new search
region is obtained based on the calculated radius (Step 6). If
the new search region is different from the old search re­
gion, a plan update procedure same as for range queries
is invoked to notifies PS(q)s about the new search region
(Step 7).

6. Performance Evaluation

PLACE* is a prototype distributed spatio-temporal data
stream management system developed at Purdue University.
In the experiments, the space in which the objects move is
a unit square that is evenly divided into nine (3 x 3) square
regions and each region is covered by a regional PLACE
server. Each regional PLACE server runs on a dedicated
Intel Pentium IV machine with dual 3.0GHz CPUs and
512MB RAM. Regional servers are connected with each
other through TCP connections.

Within each regional server, a number of 50,000 local
objects are uniformly generated. Local objects move only
inside the coverage region of the corresponding regional
server. To simulate moving objects that travel among re­
gional servers, a global object generator generates 50,000
global objects that are randomly distributed and move in the
entire data space. The global object generator sends loca-

Function CalcSearchRegion(u f,objList,k,RseaTch_old,a)
INPUT: uf: current location offocal objectf

objList: object list sorted on the distance to u f
k: the number of required NNs
RseaTch_old: previous search region
a: expanding factor to search region

1 m = the number of objects in objList;
2 oldRadius = newRadius = radius of RseaTch_old;
3 If(m==0)

3.1 Request 0, the local k th NN of 1 from VS(f);
3.2 newRadius = 111 - 011;

4 Else if(m < k)

4.1 newRadius = (1+a)·oldRadius . 1'£;
5 Elseif(m»k)

5.1 AnswerRadius = 111 - k th object in objList II;
5.2 newRadius = (1+a)·AnswerRadius;

6 RseaTch_new = a circle focused at u f with newRadius;
7 If RseaTch_new is different than RseaTch_old

7.1 Call RangeAssemUpd(RseaTch_new, PST, RST);

Table 3. Calculate Search Region

tion updates ofglobal objects to regional PLACE servers ac­
cording to the coverage regions of the servers. When send­
ing an update of a global object 0, the global object gener­
ator attaches the identifier of o's last regional server to the
update. If 0 moves to a new regional server, o's new server
can directly contact o's old server and start the handoff pro­
cedures given in Section 4.4. Object locations are updated
every 30 seconds.

We evaluate both continuous range queries and contin­
uous kNN queries in PLACE*. For range queries, 1,000
square-shaped range queries are generated at each regional
server. We test with various query sizes ranging from 1% to
10% of the area of the entire space. For kNN queries, 1,000
kNN queries are generated on each regional server. Various
values of k ranging from 50 to 500 are evaluated in the ex­
periments. The expanding factor a of kNN queries is set as
20% and the time span to periodically adjust search region
is set as 5 seconds. Focal objects and query issuer objects
of both range queries and kNN queries are randomly se­
lected from global objects residing currently in correspond­
ing servers.

We investigate both the system response time and the
number of communication messages. To reduce communi­
cation overhead, each participating server sends local re­
sults every second. Multiple result tuples can be packed
in one message. The maximum size of a message is set to
1,024 bytes.

Query Slze (% of entlre area) Value of k

(a) Range Query (b) mN Query

Fig. 8. Plan Initialization Time

6.1. System Response Time

We first evaluate the response time of PLACE*. The fol-
lowing four aspects are evaluated: (1) Plan initialization
time, (2) Answer update response time, (3) Query update
response time, and (4) Server handoff time.

6.1.1. Plan Initialization Time evaluates the time spent
to establish a query plan distributed in regional servers since
the query was issued by a user. Figures 8(a)-8(b) give the
plan initialization time, respectively, for continuous range
queries and continuous kNN queries. For range queries,
the initialization time increases very slightly along with the
query size. A larger query is apt to overlap more regional
servers and a querying server needs to contact more par-
ticipating servers. However, since local plans at participat-
ing servers are established concurrently, having more par-
ticipating servers does not increase the plan initialization
time apparently. For kNN queries, the initialization time in-
creases with the value of k. According to the algorithms
in Section 5.1, an initial search region is calculated by the
server containing focal object. A larger k incurs higher pro-
cessing time in calculating the initial search region. In both
case, this setup time lasts for less than 1 sec.

6.1.2. Answer Update Response Time evaluates the
elapsed time between the moment when an object update u
is received at a regional server and the moment when u af-
fects final query answer at a querying server. Figures 9(a)-
9(b) give the answer update response time for range queries
and kNN queries, respectively. Note that to reduce the num-
ber of messages, participating servers update local results
every second. For range queries, the time increases with
query size. The main reason is because when query size be-
comes larger, a querying server receives more answer up-
dates per second and yields a longer processing time. Sim-
ilarly for MVN queries, a querying server processes more
answer updates when k becomes larger, and thus incurs
a longer answer update response time. However, in both

P

; a 0

2 6 8 1 0

Query Slze (%of entire area)
100 200 300 400 5W

Value of k

(a) Range Query (b) mN Query

Fig. 9. Answer Update Response Time

Query Slze (%of anUm area) Value of k

(a) Range Query (b) mN Query

Fig. 10. Query Update Response Time

query types, this response time is also less than 1 sec for
the realistic parameter ranges used, which is acceptable.

6.1.3. Query Update Response Time evaluates the
elapsed time between the moment when a query 9's fo-
cal object reports an update u and the moment when g's
plan has been updated based on u. Figures 10(a)-10(b) give
the query update response time for range queries and lcNN
queries, respectively. For range queries, the time increases
very slightly (from 75ms to 85ms) when the query size in-
creases from 1 % to 10% of the entire space. This is because
all participating servers can update local plans simultane-
ously after a querying server issues an update request. For
lcNN queries, however, a larger k results in larger query up-
date response time. The main reason is because when fo-
cal object moves, the objList must be re-sorted to find the
new k nearest objects. A larger k implies more processing
time to re-sort the whole list.

6.1.4. Server Handoff Time evaluates the time for a com-
plete handoff that occurs when an object moves from an old
regional server to a new region server. In these experiments,

-A-kNNQuery kNN Query_125 _SOlI! -6- Range Query !
• ~400~ 120 ~
c c
~ ~~

~ =-=
:!! 115

~ ~ 200

; ;
a:: 110 L-0--2 ~----:-.~--=a-~a:--""""";10 ii: 100 L-'~00~-2,-L00~-3=00=------::":=-0--=:500

Quary Siza ('Yo of anti", a",a) Valua of k

.880 .. 800
E -6- Range Query .§.

i 880 ; 780

~640 i=
: !7208. 820 0

! 800 i 880

.! 580 i 640

!.60L-2=----:-.~--=a-~8:-----:.,0 ~ 5011 "---c'O:-:C0~---:2~00:---30=:0=------::":=-0 --=:5011

Quary Siza ('Yo of anti'" llI'8lI) Value of k

(a) Range Query (b) kNN Query (a) Range Query (b) kNN Query

Fig. 8. Plan Initialization Time Fig. 9. Answer Update Response Time

6.1. System Response Time

Fig. 10. Query Update Response Time

500200 300 400

Valueofk
'00

(b) kNN Query

700..
.!OOO
~5011

~400
~300
~
~200

; 100
ii:

(a) Range Query

85
.. -6-Range Query

.!..
E 85
i"
01
C

',i;
1 75
:>
c
.!!
Do

a5 '---0--2 -----:-.~--=a-~a:--.........,;'o

Query Size ('Yo of entl",a)

6.1.4. Server HandoffTime evaluates the time for a com­
plete handoff that occurs when an object moves from an old
regional server to a new region server. In these experiments,

6.1.3. Query Update Response Time evaluates the
elapsed time between the moment when a query q's fo­
cal object reports an update u and the moment when q's
plan has been updated based on u. Figures lO(a)-lO(b) give
the query update response time for range queries and kNN
queries, respectively. For range queries, the time increases
very slightly (from 75ms to 85ms) when the query size in­
creases from I% to 10% of the entire space. This is because
all participating servers can update local plans simultane­
ously after a querying server issues an update request. For
kNN queries, however, a larger k results in larger query up­
date response time. The main reason is because when fo­
cal object moves, the objList must be re-sorted to find the
new k nearest objects. A larger k implies more processing
time to re-sort the whole list.

query types, this response time is also less than I sec for
the realistic parameter ranges used, which is acceptable.

We first evaluate the response time ofPLACE*. The fol­
lowing four aspects are evaluated: (1) Plan initialization
time, (2) Answer update response time, (3) Query update
response time, and (4) Server handoff time.

6.1.1. Plan Initialization Time evaluates the time spent
to establish a query plan distributed in regional servers since
the query was issued by a user. Figures 8(a)-8(b) give the
plan initialization time, respectively, for continuous range
queries and continuous kNN queries. For range queries,
the initialization time increases very slightly along with the
query size. A larger query is apt to overlap more regional
servers and a querying server needs to contact more par­
ticipating servers. However, since local plans at participat­
ing servers are established concurrently, having more par­
ticipating servers does not increase the plan initialization
time apparently. For kNN queries, the initialization time in­
creases with the value of k. According to the algorithms
in Section 5.1, an initial search region is calculated by the
server containing focal object. A larger k incurs higher pro­
cessing time in calculating the initial search region. In both
case, this setup time lasts for less than I sec.

6.1.2. Answer Update Response Time evaluates the
elapsed time between the moment when an object update u
is received at a regional server and the moment when u af­
fects final query answer at a querying server. Figures 9(a)­
9(b) give the answer update response time for range queries
and kNN queries, respectively. Note that to reduce the num­
ber of messages, participating servers update local results
every second. For range queries, the time increases with
query size. The main reason is because when query size be­
comes larger, a querying server receives more answer up­
dates per second and yields a longer processing time. Sim­
ilarly for kNN queries, a querying server processes more
answer updates when k becomes larger, and thus incurs
a longer answer update response time. However, in both

!4 too
I "tp

Query Slze (.h of enUre area) Value of k

(a) Range Query (b) kNN Query

Fig. 11. Server Handoff Time

we focus on query issuer objects as the most costly assem-
bler operator shipping is carried out for these objects.

Figure 1 l(a) gives the average server handoff time for
objects that have issued range queries. Three types of range
queries are studied: (1) Non-aggregate queries asking for lo-
cations of objects inside the query range (referred to as Non-
aggregate in Figure 1 l(a)), (2) Count() aggregate queries
asking for the total number of objects inside the query range
(referred to as Count() in Figure 11 (a)), and (3) Max() ag-
gregate queries asking for the east-most object inside the
query range (referred to as Max() in Figure 1 l(a)). As in-
dicated in Figure 1 l(a), the handoff time for non-aggregate
queries increases steadily with query size. This is mainly
because when the query size increases, the PST of the as-
sembler operator contains more answer objects. Transfer-
ring a larger-sized PST old server to new server requires
longer communication time. On the contrary, the handoff
times for Count() and Max() queries are negligible com-
pared to the handoff time of non-aggregate queries. This
is because the PST for an aggregate query contains only
aggregated results from participating servers and thus it is
quite small.

Figure 1 l(b) gives the handoff time for objects that have
issued kNN queries. Similar to non-aggregate range queries,
the handoff time for kNN queries increases along with the
value of k. When k becomes larger, a larger-size PST
needs to be transferred, which incurs more handoff time.

6.2. Communication Cost

In this section, we investigate the communication cost in
PLACE*. We focus on two aspects: (1) Local result com-
munication cost, and (2) Server handoff communication
cost.

6.2.1. Local Result Communication Cost In these ex-
periments, we evaluate the number of messages sent from
participating servers to querying servers when reporting lo-

Query Ske (% ofenllre area) Value of k

(a) Range Query (b) kNN Query

Fig. 12. Local Result Communication Cost

cal query results. Figures 12(a) and 12(b) give the average
number of messages sent per second for range queries and
kNN queries, respectively. As indicated in Figure 12(a), the
number of messages sent for non-aggregate range queries
increases with the query size. This is because more objects
reside in the query range when the query size increases.
For Count() queries and kNN() queries, the numbers of
sent messages are much smaller than that for non-aggregate
range queries. This is because only aggregated results are
sent by participating servers for aggregate queries. For kNN
queries, the number of messages increases with the value of
k. This is because a larger k results in a larger search re-
gion. Consequently, more objects are evaluated as answer
candidates and are sent to the querying server.

6.2.2. Server Handoff Communication Cost We evalu-
ate the total number of messages incurred during a server
handoff operation. Similar to Section 6.1.4, we focus on ob-
jects that have issued queries because assembler operator
shipping is carried out for those objects. Figure 13(a) and
Figure 13(b) give the number of messages for range queries
and kNN queries, respectively. These results are consistent
with the server handoff time given in Figure 11. During a
handoff, non-aggregate range queries and kNN queries in-
cur larger communication costs when the query size or the
value of k increases. On the other hand, the number of hand-
off messages for aggregate range queries remains constantly
small regardless of query size.

7. Conclusions

In this paper, we presented PLACE*, a distributed data
stream management system for moving objects. PLACE*
supports continuous spatio-temporal queries over multi-
ple regional servers through the Query-Track-Participate
model. Specifically, we have presented the algorithms for
answering continuous range queries and continuous k-
nearest-neighbor queries. Experimental evaluations have

-&- Non-awregale
...... CoontQ
........ MaxO

800

700

';" 800

.s. 500..
E 400

~ 300

.g 200

; 100
:z: 011--<_---.,_-__- __----1

2 .. 8 8 10

Query Size (% 01 enUre erea)

(a) Range Query

200

'i"1BO
.§.
~ 120
;:
IS 80..,
l:

:!! 40

....... kNN Query

100 200 300 400 500

Value ofk

(b) kNN Query

40 16
oj -6-Non-aggregsta oj kNN Query

tZ 35COuntO ..
~Max{)

Ul

i 30 :; 12
l:

eX 25 .
Ul.z 20 .. 801

{!!. 15 0....
f 10

GIl •":IE :IE
0 5 0.. 0 .. 0

2 • 8 8 10 100 200 300 400 500

Query Size (% of enllre area) Valueolk

(a) Range Query (b) kNN Query

Fig. 11. Server Handoff Time

we focus on query issuer objects as the most costly assem­
bler operator shipping is carried out for these objects.

Figure 11 (a) gives the average server handoff time for
objects that have issued range queries. Three types of range
queries are studied: (1) Non-aggregate queries asking for lo­
cations of objects inside the query range (referred to as Non­
aggregate in Figure II(a», (2) CountO aggregate queries
asking for the total number of objects inside the query range
(referred to as Count() in Figure ll(a», and (3) MaxO ag­
gregate queries asking for the east-most object inside the
query range (referred to as Max() in Figure ll(a». As in­
dicated in Figure II(a), the handoff time for non-aggregate
queries increases steadily with query size. This is mainly
because when the query size increases, the PST of the as­
sembler operator contains more answer objects. Transfer­
ring a larger-sized PST old server to new server requires
longer communication time. On the contrary, the handoff
times for CountO and MaxO queries are negligible com­
pared to the handoff time of non-aggregate queries. This
is because the PST for an aggregate query contains only
aggregated results from participating servers and thus it is
quite small.

Figure 11(b) gives the handoff time for objects that have
issued kNN queries. Similar to non-aggregate range queries,
the handoff time for kNN queries increases along with the
value of k. When k becomes larger, a larger-size PST
needs to be transferred, which incurs more handoff time.

6.2. Communication Cost

In this section, we investigate the communication cost in
PLACE*. We focus on two aspects: (1) Local result com­
munication cost, and (2) Server handoff communication
cost.

6.2.1. Local Result Communication Cost In these ex­
periments, we evaluate the number of messages sent from
participating servers to querying servers when reporting 10-

Fig. 12. Local Result Communication Cost

cal query results. Figures I2(a) and I2(b) give the average
number of messages sent per second for range queries and
kNN queries, respectively. As indicated in Figure I2(a), the
number of messages sent for non-aggregate range queries
increases with the query size. This is because more objects
reside in the query range when the query size increases.
For CountO queries and kNNO queries, the numbers of
sent messages are much smaller than that for non-aggregate
range queries. This is because only aggregated results are
sent by participating servers for aggregate queries. For kNN
queries, the number of messages increases with the value of
k. This is because a larger k results in a larger search re­
gion. Consequently, more objects are evaluated as answer
candidates and are sent to the querying server.

6.2.2. Server Handoff Communication Cost We evalu­
ate the total number of messages incurred during a server
handoff operation. Similar to Section 6.1.4, we focus on ob­
jects that have issued queries because assembler operator
shipping is carried out for those objects. Figure 13(a) and
Figure I3(b) give the number of messages for range queries
and kNN queries, respectively. These results are consistent
with the server handoff time given in Figure 11. During a
handoff, non-aggregate range queries and kNN queries in­
cur larger communication costs when the query size or the
value of k increases. On the other hand, the number of hand­
off messages for aggregate range queries remains constantly
small regardless of query size.

7. Conclusions

In this paper, we presented PLACE*, a distributed data
stream management system for moving objects. PLACE*
supports continuous spatio-temporal queries over multi­
ple regional servers through the Query-Track-Participate
model. Specifically, we have presented the algorithms for
answering continuous range queries and continuous k­
nearest-neighbor queries. Experimental evaluations have

Query Slze (% of entlre area) Value of k

(a) Range Query (b) kNN Query

Fig. 13. Handoff Communication Cost

been presented to demonstrate the scalability and effective-
ness of PLACE*.

References

[I] D. J. Abadi and et al. Aurora: a new model and architecture for data stream
management. VLDB Journal, 12(2), 2003.

[2] D. J. Abadi and et al. The design of the borealis stream processing engine. In
CIDR, 2005.

[3] W. G. Aref, S. E. Hambrusch, and S. Prabhakar. Pervasive Location Aware
Computing Environments (PLACE). http://www.cs.purdue.edu/place/.

[4] S. Babu and J. Widom. Continuous Queries over Data Streams. SIGMOD
Record, 30(3). 2001.

[5] R. Ciceres and V. N. Padmanabhan. Fast and scalable handoffs for wireless
internetworks. In MOBICOM, 1996.

[6] Y. Cai, K. A. Hua, and G. Cao. Processing Range-Monitoring Queries on Het-
erogeneous Mobile Objects. In Mobile Data Manage~nent, MDM, 2004.

[7] M. Cammert, C. Heinz, J. Kramer. T. Riemenschneider, M. Schwarzkopf,
B. Seeger, and A. Zeiss. Stream processing in production-to-business soft-
ware. In ICDE, 2006.

[8] S. Chandrasekaran and et al. Telegraphcq: Continuous dataflow processing for
an uncertain world. In CIDR, 2003.

[9] S. Chandrasekaran and M. J. Franklin. Psoup: a system for streaming queries
over streaming data. VLDB Journal, 12(2), 2003.

[lo] J. Chen and et al. NiagaraCQ: A Scalable Continuous Query System for Inter-
net Databases. In SIGMOD, 2000.

[I I] M. Chemiack and et al. Scalable Distributed Stream Processing. In CIDR,
Asilomar. CA. January 2003.

1121 B. Gedik and L. Liu. MobiEyes: Distributed Processing of Continuously Mov-
ing Queries on Moving Objects in a Mobile System. In EDBT, 2004.

[I31 M. A. Hammad and et al. Nile: A query processing engine for data streams. In
ICDE, 2004.

1141 H. Hu, J. Xu, and D. L. Lee. A generic framework for monitoring continuous
spatial queries over moving objects. In SIGMOD, 2005.

[151 G. S. Iwerks, H. Samet, and K. Smith. Continuous K-Nearest Neighbor Queries
for Continuously Moving Points with Updates. In VLDB, 2003.

[161 B. Liu and et al. A dynamically adaptive distributed system for processing com-
plex continuous queries. In VLDB, 2005.

1171 M. E Mokbel and W. G. Aref. Gpac: generic and progressive processing of
mobile queries over mobile data. In MDM, 2005.

[I81 M. F. Mokbel, X. Xiong, and W. G. Aref. SINA: Scalable Incremental Process-
ing of Continuous Queries in Spatio-temporal Databases. In SIGMOD, 2004.

[I91 M. E Mokbel, X. Xiong, and W. G. Aref. Continuous Query Processing of
Spatio-temporal Data Streams in PLACE*. Geolnformatica, 9(4), 2005.

[20] M. F. Mokbel, X. Xiong, W. G. Aref, S. E. Hambrusch, S. Prabhakar, andM. A.
Hammad. PLACE: A Query Processor for Handling Real-time Spatio-bmporal
Data Streams. In VLDB, 2004.

[211 R. Motwani and et al. Query processing, approximation, and resource manage-
ment in a data stream management system. In CIDR, 2003.

[22] K. Mouratidis, D. Papadias, and M. Hadjieleftheriou. Conceptual partitioning:
An efficient method for continuous nearest neighbor monitoring. In SIGMOD,
2005.

[231 S..Prabhakar and et al. Query Indexing and Velocity Constrained Indexing:

Scalable Techniques for Continuous Queries on Moving Objects. IEEE Trans-
actions on Computers, 5 l(1 O), 2002.

[24] E. A. Rundensteiner and et al. Cape: Continuous query engine with
heterogeneous-grained adaptivity. In VLDB, 2004.

[25] S. Seshan, H. Balakrishnan, and R. Katz. Handoffs in cellular wireless net-
works: The daedalus implementation and experience. 1996.

[26] M. A. Shah and et al. Flux: An adaptive partitioning operator for continuous
query systems. In ICDE, 2003.

[27] A. P. Sistla and et al. Modeling and Querying Moving Objects. In ICDE, 1997.
(281 Z . Song and N. Roussopoulos. K-Nearest Neighbor Search for Moving Query

Point. In SSTD, 200 1.
[29] Y. Tao, D. Papadias, and Q. Shen. Continuous Nearest Neighbor Search. In

VLDB, 2002.
[30] F. Tian and D. J. DeWitt. Tuple routing strategies for distributed eddies. In

VLDB, 2003.
[31] X. Xiong, M. E Mokbel, and W. G. Aref. SEA-CNN: Scalable Processing

of Continuous K-Nearest Neighbor Queries in Spatio-temporal Databases. In
ICDE, 2005.

[32] X. Xiong, M. F. Mokbel, W. G. Aref, S. Hambrusch, and S. Prabhakar. Scalable
Spatio-temporal Continuous Query Processing for Location-aware Services. In
SSDBM, 2004.

200 ,. [24]
-b- Non-allO",gale kNNQuery
...... CountQ

~ [25]~ 160 -?(-MaxO.. ..
CD CD
co :I 12= 12D ~ [26].. ..

:E :E
ll: 60 ll: [27]0 0 •.., ..,
c: ""

c: [28].. co
:r :r

10
[29]

2 4 • • 100 200 300 400 SOD

Query Size (% of entl", a",a) Valueofk
[30]

[31]

(a) Range Query (b) kNN Query

[32]

Fig. 13. Handoff Communication Cost

been presented to demonstrate the scalability and effective­
ness ofPLACE*.

References

[I] D. J. Abadi and et al. Aurora: a new model and architecture for data stream
management. VLDB Journal, 12(2),2003.

[2] D. J. Abadi and et al. The design of the borealis stream processing engine. In
CIDR,2005.

[3] W. G. Aref, S. E. Hambrusch, and S. Prabhakar. Pervasive Location Aware
Computing Environments (PLACE). http://www.cs.purdue.edulplace/.

[4] S. Babu and J. Widom. Continuous Queries over Data Streams. SIGMOD
Record, 30(3), 2001.

[5] R. Caceres and V. N. Padmanabhan. Fast and scalable handoffs for wireless
intemetworks. In MOBICOM, 1996.

[6] Y. Cai, K. A. Hua, and G. Cao. Processing Range-Monitoring Queries on Het­
erogeneous Mobile Objects. In Mobile Data Management, MDM, 2004.

[7] M. Cammert, C. Heinz, J. Kramer, T. Riemenschneider, M. Schwarzkopf,
B. Seeger, and A. Zeiss. Stream processing in production-to-business soft­
ware. In ICDE, 2006.

[8] S. Chandrasekaran and et al. Telegraphcq: Continuous dataflow processing for
an uncertain world. In CIDR, 2003.

[9J S. Chandrasekaran and M. J. Franklin. Psoup: a system for streaming queries
over streaming data. VWB Journal, 12(2),2003.

[10] J. Chen and et al. NiagaraCQ: A Scalable Continuous Query System for inter­
net Databases. In SIGMOD, 2000.

[II] M. Cherniack and et al. Scalable Distributed Stream Processing. In CIDR,
Asilomar, CA, January 2003.

[12] B. Gedik and L. Liu. MobiEyes: Distributed Processing of Continuously Mov­
ing Queries on Moving Objects in a Mobile System. In EDBT, 2004.

[13J M. A. Hammad and et al. Nile: A query processing engine for data streams. In
ICDE,2004.

[14J H. Hu, J. Xu, and D. L. Lee. A generic framework for monitoring continuous
spatial queries over moving objects. In SIGMOD, 2005.

[15] G. S. Iwerks, H. Samet, and K. Smith. Continuous K-Nearest Neighbor Queries
for Continuously Moving Points with Updates. In VLDB, 2003.

[16] B. Liu and et al. A dynamically adaptive distributed system for processing com­
plex continuous queries. In VLDB, 2005.

[17] M. F. Mokbel and W. G. Aref. Gpac: generic and progressive processing of
mobile queries over mobile data. In MDM, 2005.

[18] M. F. Mokbel, X. Xiong, and W. G. Aref. SINA: Scalable Incremental Process­
ing of Continuous Queries in Spatio-temporal Databases. In SIGMOD, 2004.

[19J M. F. Mokbel, X. Xiong, and W. G. Aref. Continuous Query Processing of
Spatio-temporal Data Streams in PLACE'. GeoInformatica, 9(4), 2005.

[20J M. F. Mokbel, X. Xiong, W. G. Aref, S. E. Hambrusch, S. Prabhakar, and M. A.
Hammad. PLACE: A Query Processor for Handling Real-time Spatio-t'emporal
Data Streams. In VLDB, 2004.

[2 I] R. Motwani and et al. Query processing, approximation, and resource manage­
ment in a data stream management system. In CIDR, 2003.

[22J K. Mouratidis, D. Papadias, and M. Hadjieleftheriou. Conceptual partitioning:
An efficient method for continuous nearest neighbor monitoring. In SIGMOD,
2005.

[23] So, Prabhakar and et al. Query Indexing and Velocity Constrained Indexing:

Scalable Techniques for Continuous Queries on Moving Objects. IEEE Trans­
actions on Computers, 51 (I 0), 2002.
E. A. Rundensteiner and et al. Cape: Continuous query engine with
heterogeneous-grained adaptivity. In VLDB, 2004.
S. Seshan, H. Balakrishnan, and R. Katz. Handoffs in cellular wireless net­
works: The daedalus implementation and experience, 1996.
M. A. Shah and et al. Flux: An adaptive partitioning operator for continuous
query systems. In ICDE, 2003.
A. P. Sistla and et al. Modeling and Querying Moving Objects. In ICDE, 1997.
Z. Song and N. Roussopoulos. K-Nearest Neighbor Search for Moving Query
Point. In SSTD, 2001.
Y. Tao, D. Papadias, and Q. Shen. Continuous Nearest Neighbor Search. In
VWB,2002.
F. Tian and D. J. DeWitt. Tuple routing strategies for distributed eddies. In
VWB,2003.
X. Xiong, M. F. Mokbel, and W. G. Aref. SEA-CNN: Scalable Processing
of Continuous K-Nearest Neighbor Queries in Spatio-temporal Databases. In
ICDE,2005.
X. Xiong, M. F. Mokbel, W. G. Aref, S. Hambrusch, and S. Prabhakar. Scalable
Spatio-temporal Continuous Query Processing for Location-aware Services. In
SSDBM,2004.

	PLACE*: A Distributed Spatio-temporal Data Stream Management System for Moving Objects
	Report Number:
	

	tmp.1307986960.pdf.EeIwF

