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ABSTRACT The idea that the rat hippocampus stores a
map of space is based on the existence of ‘‘place cells’’ that
show ‘‘location-specific’’ firing. The discharge of place cells is
confined with remarkable precision to a cell-specific part of
the environment called the cell’s ‘‘firing field.’’ We demon-
strate here that firing is not nearly as reliable in the time
domain as in the positional domain. Discharge during passes
through the firing field was compared with a model with
Poisson variance of the location-specific firing determined by
the time-averaged positional firing rate distribution. Place
cells characteristically fire too little or too much compared
with expectations from the random model. This fundamental
property of place cells is referred to as ‘‘excess firing vari-
ance’’ and has three main implications: (i) Place cell discharge
is not only driven by the summation of many small, asynchro-
nous excitatory synaptic inputs. (ii) Place cell discharge may
encode a signal in addition to the current head location. (iii)
The excess firing variance helps explain why the errors in
computing the rat’s position from the simultaneous activity of
many place cells are large.

How do rodents solve difficult spatial problems? On behav-
ioral grounds, it is believed that rats (and mice) can form
map-like representations of their surroundings. Once such a
representation is formed, the rat can use it to navigate because
the representation contains information about the overall
layout or geometry of the surroundings (1–3). Given that a
spatial map exists, it is natural to ask how it is organized in the
nervous system. That is, where is the map located and how does
it operate?

Our current understanding of spatial maps is based on the
discovery of hippocampal place cells 25 years ago (4). It was
observed that individual neurons in the hippocampus (pyra-
midal cells of CA3 and CA1) (5) show ‘‘location-specific’’
firing. A given place cell discharges rapidly only when a rat’s
head is in a certain part of the environment. Outside this
‘‘firing field’’ region, the cell rarely discharges (Fig. 1A). The
precise confinement of discharge to firing fields at once
suggested that the hippocampus is a key component of the map
and that mapping information is in part positional information.
In this view, the rat’s current location is signaled by the
conjoint firing of a set of place cells. As the rat moves, its head
leaves the field of some cells and enters the field of others, so
that the across-cell firing pattern changes in a characteristic
way. It thus is presumed that the rat’s head position can be
accurately calculated if the current across-cell discharge pat-
tern is known (6, 7).

This appealing picture is predicated on a tacit assumption—
that in addition to firing only when the head is in the firing
field, that a place cell fires in much the same way each time the
head goes through the field along much the same path. It is not

uncommon, however, for a robust place cell to be silent as the
rat’s head passes through the center of its firing field (8). Such
failures to discharge are seen even if there was substantial
firing on other, nearly identical passes. Fig. 1B shows the
discharge along two passes of a rat through the firing field in
which the sequence of pixels and time spent in each pixel were
closely matched so that position, time at position, instanta-
neous running speed, average running speed, and direction of
running are nearly the same during the two passes. Neverthe-
less, the cell fired 18 spikes on one pass and no spikes at all on
the other.

The purpose of this paper is to demonstrate that such
‘‘excess variance’’ of firing is characteristic of place cells. One
way to demonstrate this would be to show that decreases in
firing from a maximum are not well predicted by how much a
path deviates from the path that produces the maximum firing.
Unfortunately, this procedure cannot be used because the
differences between pairs of passes do not satisfy the triangular
inequality requirement of a metric that estimates the differ-
ence between two passes. Thus, there is no unambiguous way
to decide how much two paths differ and therefore no way to
predict the firing along one path from the firing along another.

A stochastic method therefore was used to characterize the
excess variance. Specifically, the number of spikes observed
during complete passes through the firing field was compared
with the number of spikes expected from the time-averaged
firing rates in the sequence of pixels encountered during the
pass. A pass begins when the rat’s head enters the firing field
and ends when the head leaves the field. Thus, we neglected all
processes that occur on a time scale shorter than a pass, which
is about a second. In doing so, we ignored at least one known
source of firing modulation, namely, the 5–10 Hz theta rhythm
(9, 10). This omission is justified because a pass lasts many
theta cycles, so the effects of theta modulation average out.

What constraints are there on the method of predicting the
number of spikes during a pass using only the sequence of head
positions and the time-averaged firing rates at those positions?
Because we are interested in demonstrating the excess vari-
ance, we chose the model that produces the greatest variance
of spike number for any given pass. This choice maximizes the
difficulty of rejecting the null hypothesis, that the observed
firing is predictable from head position and the time averaged
positional rate pattern.

This decision dictates the use of an inhomogeneous Poisson
process (IPP). In general, an IPP is a time series of ordinary
Poisson processes such that the rate parameter for each
ordinary Poisson process is adjusted according to the current
state of the system. For instance, an IPP can be used to
estimate the number of events registered by a radiation
detector as the position of the detector is moved relative a
radiation source. In the present case, the rate parameter for
each ordinary Poisson process in the IPP is set to the time-

The publication costs of this article were defrayed in part by page charge
payment. This article must therefore be hereby marked ‘‘advertisement’’ in
accordance with 18 U.S.C. §1734 solely to indicate this fact.

© 1998 by The National Academy of Sciences 0027-8424y98y953182-6$2.00y0
PNAS is available online at http:yywww.pnas.org.

Abbreviation: IPP, inhomogeneous Poisson process.
A commentary on this article begins on page 2717.
*To whom reprint requests should be addressed. e-mail: bob@fasthp.

hippo.hscbklyn.edu.

3182



averaged firing rate at the current head location. The IPP was
chosen because it yields the greatest possible variance of spike
occurrence for identical passes through the field of any model
in which firing depends only on the mean firing rate at each
position.†

METHODS

The behavioral and electrophysiological procedures and basic
place cell analyses are described in detail elsewhere (8).
Briefly, male Long Evans rats were anesthetized with Nem-
butal (40 mgykg) and implanted with a driveable bundle of 25
mm nichrome electrodes. Recording sessions between 16 and
64 min in duration were made while a rat collected food pellets
randomly scattered into a cylinder 76 cm in diameter and 51
cm high. The inside wall was uniformly gray except for a white
card that covered 90° of arc. For one rat the cylinder contained
instead one white card and one black card, each covering 45°
of arc and separated (center to center) by 135° of arc.

The position of a light-emitting diode mounted on the rat’s
head was detected and stored at 60 Hz. The time series of
filtered (300–10,000 Hz) action potentials was simultaneously
recorded and stored. Offline, the time-averaged firing rate in
each 3 cm 3 3 cm pixel visited by the rat was calculated as the
number of spikes discharged in the pixel divided by the total
time spent there. A firing field was defined as a set of pixels
such that the firing rate in each pixel was .0 spikesysec and
such that each pixel in the field shared at least one side with
another pixel in the field. Only the largest field is considered

for each cell if more that one field was found. The field center
was defined as the 333 group of pixels with the greatest mean
rate.

A pass through the firing field was defined as the time series
of positions starting when the light-emitting diode (LED)
entered the field and ending when the LED left the field. To
enhance the reliability of firing rate estimates passes were
studied only if they met several criteria: (i) Each pass had to
last at least 1 sec. (ii) The head light had to be detected for
every 1y60-sec sample. (iii) The pass could include only pixels
visited for at least 0.25 sec during recording. (iv) The pass had
to go through the field center.

The observed number of spikes fired during a pass was
compared with the number of spikes predicted from the
session-averaged positional firing rate distribution. The pre-
dicted activity during a pass depends only on the specific pixels
visited and the time spent in those pixels without regard to the
sequence of positions.

For a given pass, the number of spikes is given by,

N 5 *R~t!dt , [1]

where R(t) is the instantaneous firing rate at each time step (t)
along the pass. Under the assumption that the mean firing rate
in the current pixel estimates R(t), a discrete form of the model
can be written that uses the mean firing rates at positions along
the path to circumvent difficulties of estimating instantaneous
firing rates.

N 5 SRi Dt , [2]

where Ri is the time-averaged firing rate at position i in the pass
through the field and Dt, the sample duration, is 1y60th sec.
The distribution of N is Poisson with variance and mean 5 N.

How likely is it that the observed number of spikes (S) for
a pass is a random deviation from the model predicting the
expected number N? If N . 4, the Poisson distribution can be
approximated by a normal distribution with mean and variance
N. We therefore can calculate Z, the standard normal deviate
for S as:

Z 5

S 2 N 2
1
2

ÎN
, S $ N. [3a]

Z 5

S 2 N 1
1
2

ÎN
, S , N. [3b]

Z is the number of SDs that separate the observed and
expected number of spikes for a single pass. Decreasing S 2
N by 1y2 reduces Z to correct for transforming from a discrete
to a continuous probability distribution.

Eqs. 3a and 3b preserve the sign of Z. Z . 0 for passes in
which S . N and Z , 0 for passes in which S , N. If Z $ 1.96,
the probability that the observed number of spikes is consistent
with the model is #0.05.

Deciding whether deviations of the observed number of
spikes from Poisson expectations are characteristically large
must be based on the distribution of the deviations. To tell
whether place cells routinely discharge ‘‘too many’’ or ‘‘too
few’’ spikes on single passes we examined the distribution of Z
values for a large number of passes. If the variance of the Z
values is broader than the variance of the unit normal distri-
bution, the null hypothesis that place cell discharge reliably
reflects head position can be rejected.

The analytic calculation was adapted from ref. 11 and
converges precisely with Monte Carlo simulations in which a
random number generator is used to decide, for each small
time interval, whether a spike occurred. In such a calculation,

†A preliminary version of this paper was presented at the 1995 Annual
Meeting of the Society for Neuroscience (San Diego, CA, Nov. 11–16,
1995).

FIG. 1. Time averaged (A) and temporal firing properties (B) of a
typical place cell in the CA1 region of the hippocampus. (A) The
positional firing rate distribution averaged over 20 min is summarized
by a firing rate map in the cylindrical apparatus. The circular colored
area indicates the floor area of the cylinder. The firing rate in yellow
pixels is exactly zero. The key next to the map indicates the median rate
in each color category; darker colors encode higher rates. Virtually all
the firing is confined to the firing field, which is the dark area near 11
o’clock. (B) Shown is where the cell fired spikes during two nearly
identical passes through the firing field. The field is shown in dark gray,
the path through the field is a black line, and the pixels in which spikes
occurred are marked by red dots. The initial 1.77 sec of the two passes
are 94% ‘‘similar.’’ Similarity was measured by putting the position
time series for the two passes into register at the field center and then
counting the percentage of the corresponding 1y60th-sec position
samples that differed by at most one pixel. Despite the spatial and
temporal similarity of the passes, 18 spikes were fired during the
1.77-sec duration pass on the left and no spikes at all were fired during
the 2.11-sec pass on the right. Thus, the precise confinement of place
cell discharge to firing fields is not accompanied by reliable firing over
the behaviorally significant time scale of seconds, the time that it takes
rats to go through typical firing fields.
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the probability of a spike for a short interval is set from the
firing rate in the current pixel. The ‘‘unit interval’’ was 1y10th
of the 16.7-msec sample time to make the probability of getting
more than 1 spike in an interval very small. The Monte Carlo
calculation then proceeds in the following way: Imagine that
the rate in a pixel is 20 spikesysec. In 1y60th sec, the mean
number of expected spikes is 0.333 and in a unit interval is
0.0333. A random number is generated for each unit interval
and the number of spikes is counted. Now, the rat either stays
in the same pixel for the next 1y60th sec or it moves. If it stays,
the probability of a spike is kept the same; if it moves, the
probability is changed accordingly. This process is repeated for
all samples to yield a total number of spikes. Repeating the
Monte Carlo calculation 100,000 times for each pass produces
a distribution of integers. Now it is possible to calculate the
probability that the observed number of spikes was a random
selection from the distribution. We found that the mean and
variance of the distribution of the expected number of spikes
was virtually identical using the analytic and the Monte Carlo
methods.

RESULTS

A total of 51 cells were examined. Of these, 31 cells satisfied
the criteria that the firing rate in the field center had to be at
least 10 spikesysec and that the rat had to make at least 15
passes through the field center.

In a second pruning step, the 31 cells were tested for a
systematic drift of the Z scores during the recording time. Such
a drift could occur, for example, because the amplitude of the
cell’s waveform decreased during the session. In this case, early
passes would be associated with higher firing rates and later
passes with lower firing rates. Consequently, Z scores higher
than expected from time average rates would occur early in the
session, and Z scores lower than expected would occur late in
the session. To detect drift, we calculated the linear regression
coefficient for the time sequence of Z scores during each
session (robs). Next, the sequence of Z scores was shuffled 1,000
times and the linear regression coefficient was calculated for
each, thus removing any systematic time trend. Finally, robs was
compared with the distribution of the regression values for the
shuffled sequences. If robs was in the extreme 5% of this
distribution the trend was considered significant (12, 13). On
this basis, five cells were eliminated from further consider-
ation, leaving 26 cells for the complete analysis.

The observed sequence of Z scores for a unit recorded for
48 min is shown in Fig. 2. Because the gray band indicates the
95% region of confidence, it is clear that many more Z scores
are outside the band than would be expected by chance. In
addition, it is clear that there is no major upward or downward
trend for the Z scores. Moreover, Z scores that are too high and
too low according to the IPP often occur near each other, a
direct indication that the Z score distribution does not reflect
a simple time trend. No significant runs were detected in the
sequence of Z scores from any of the 26 cells. The proximity
of excessively low and high Z scores is typical of each cell in the
26-cell sample.

Z scores were calculated for 1,440 passes through the fields
of the 26 cells (mean duration 5 sec), for an average of 55
passes per cell. Because the average recording duration was 30
min per cell, the rat went through the field center about 1.8
times per min. The distribution of the Z scores was compared
with the unit normal distribution (Fig. 3). The mean of the Z
scores is 0.18, which is reliably different from 0.0 [t 5 2.8; df 5
1,439; P(t $ 2.8) 5 0.005]. More importantly, however, the
distribution of Z scores is much broader that the unit normal
distribution. Because the observed variance is 5.9, it is ex-
tremely unlikely that the Z scores come from a process with a
unit normal distribution [F1439,` 5 5.9; P(F $ 5.9) , 102220].
The excess variance is seen for paths from individual cells as

well. From F-tests, the probability that the variance could arise
from the model was P , 0.001 for 22 cells, 0.001 , P , 0.05
for two cells, and P . 0.05 for only two cells. It is therefore
extremely unlikely that the observed distribution of Z scores
has an underlying unit normal distribution. Thus, the mean
positional firing rates of individual place cells poorly estimate
the spike activity during single passes of the head through the
firing field. Furthermore, this discharge cannot be generated
by an IPP or by any other, more restrictive process that depends
only on the current location of the head.

What other origins of the excess variance are possible? One
is that hippocampal pyramidal cells fire ‘‘complex spikes’’ as
well as ordinary, simple spikes (14–16). A complex spike is a
series of extracellularly recorded action potentials with dec-
rementing amplitude. The first component of a complex-spike
is the same as a simple spike. To be part of a complex-spike,
each successive component had to occur within 10 msec of the
preceding component. We counted each component as a

FIG. 2. A plot of the time series of Z scores (F) for the observed
firing on all passes through the field of a place cell recorded for 2,880
sec (48 min). The gray band shows the 95% confidence interval. Note
that the number of Z scores that lie outside the 95% band are much
greater than expected by chance. To emphasize the improbability of
the occurrence of observed Z scores, E show the time series of Z scores
for single Monte Carlo simulations of the number of spikes expected
on each pass through the field; these expected values lie almost entirely
within the 95% band. Critically, there is no trend for the observed Z
scores to increase or decrease with time; the correlation between
observed Z score and time was 20.08 (P . 0.05). Note that high
negative and positive Z scores often follow each other and do so over
the whole recording time. This is an independent indication that the
excess variance is not because of a tendency of a large number of spikes
to be generated per pass at one time during the session and small
numbers to be generated per pass at another time.

FIG. 3. A histogram shows the distribution of Z scores for 1,440
passes through firing fields (left ordinate). The expected distribution
is the unit normal distribution drawn in red (right ordinate). The
variance of the observed distribution is more than 5 times greater than
1. The F-test comparing the observed variance to 1 indicates that the
probability of this outcome is virtually zero. Note also that large peak
of observed Z scores near zero indicates that the distribution of
observed Z scores is not normal.
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separate spike. Excess variance then might arise if place cells
tended to fire complex-spikes on some passes and only simple
spikes on other passes. To test for this variance, we eliminated
all components except the first from each complex-spike and
recomputed the time-averaged positional rate distribution.
This left field shape and position intact but reduced the
number of spikes and therefore field size by about 30%. After
recalculating the passes, the excess variance was still apparent
[F510,` 5 3.2; P (F $ 3.2) , 10237]. The excess variance still
occurred if complex spikes were completely eliminated, re-
moving a total of about 50% of the original action potentials.
Thus, complex-spiking does not account for the excess vari-
ance.

Another possible basis for the excess variance concerns the
exact properties of passes. As shown above, extreme differ-
ences in discharge can be seen for very similar passes. Never-
theless, there might be, for instance, a trend for some cells to
fire rapidly and other cells to fire slowly on passes when the rat
runs fast. Accordingly, we identified for each cell passes in
which the number of spikes was either unexpectedly low or
unexpectedly high (Z , 21.96 or Z . 1.96; the 0.05 probability
tails). We then compared for each cell the running speed
during passes with ‘‘too few’’ spikes to the running speed
during passes with ‘‘too many’’ spikes. From t tests, running
speed differences classified according to expected spike counts
reached the 0.05 level of probability for 3y26 cells. This
proportion of 0.115 is not detectably higher than the propor-
tion of 0.05 of the cells that would be expected to yield the 0.05
probability level by chance alone (Z 5 0.767; P 5 0.221).
Similar separations according to unexpectedly low and high Z
scores were done for the total time spent in the field during the
pass, for the distance moved in the field, path direction, and for
tortuosity [the ratio of the distance traveled in the field to the
line segment between the field entry and exit locations (17)].
In no case was there a trend that accounted for the excess
variance. [Head direction was not analyzed in this way because
the complicated shapes of paths make it impossible to generate
a meaningful average head direction for an entire pass. Earlier
work shows, however, that place cell discharge is independent
of head direction in open fields (18).]

The final possibility we considered is that excess variance is
caused by changes in the overall behavioral state of the animal.
For example, place cells might fire rapidly if the rat was using
external cues for navigation and more slowly if it was using
self-motion information. In this case, the activity of place cells
with overlapping or coincident fields would be expected to
covary. We find, however, that Z scores are uncorrelated for
simultaneously recorded cell pairs. Two example cell pairs are
shown in Fig. 4. The slope of the regression line was 0.06 for
the cell pair in Fig. 4A and 20.05 for the cell pair in Fig. 4B.
The correlation of Z scores was calculated for nine simulta-
neously recorded cell pairs with overlapping fields. The range
of the regression line slopes was 20.11 to 0.19. The mean slope
was 0.08, which is not reliably different from 0 [t 5 1.76; df 5
8; P(t $ 1.76) 5 0.12], indicating that the tendency of the two
cells to fire more rapidly or slowly than expected from the IPP
are independent of each other. It also should be noted that for
some cell pairs (see Fig. 4B) there seemed to be extra points
along the 45° line in addition to the uncorrelated points.
Further analysis of the duration, distance, running speed, path
direction, and tortuosity of such paths did not reveal any way
in which passes whose scatter points lay on the 45° line differed
from other passes.

The lack of correlation for cell pairs is in contrast to the
observation that cells that fire in one reference frame tend to
be silent during the activity of cells that fire in other reference
frames (19). This effect would lead to points along the 245°
line rather than to uncorrelated points or points along the 45°
line.

DISCUSSION

The IPP used to predict the number of spikes was chosen
because it yields the maximum variance of spike number for
any purely positional generator of place cell firing. Our basic
finding was that the observed firing variance greatly exceeds
expectations from the IPP. We call this basic place cell
characteristic ‘‘excess variance.’’ We now consider the impli-
cations of excess variance for three aspects of the organization
and properties of place cells.

FIG. 4. Scattergrams for the Z scores for two pairs of simultaneously recorded cells with overlapping firing fields. Each point represents the
Z score for each cell of a pair on a single pass through the field. If the excess variance were caused by any overall state of the animal, the Z scores
of the cell pairs should be correlated with each other. In fact, the approximately circular patterns of points in the scattergrams and the near-zero
slope of the regression lines (red) (upper: r 5 0.06, n.s; lower: r 5 20.05, n.s) indicate that the processes responsible for the excess variance of
each cell in a pair are independent. The small gray boxes show the limits of the 95% confidence intervals. Note that many Z scores for all four
cells in this figure lie outside the 95% confidence region. Interestingly, there appears to be a rather large number of points along the 45° line for
the bottom pair of cells. These correlated pairs seem to occur only at low Z scores and correspond to the extra values near zero in the histogram
of Fig. 3.
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Neuronal Mechanisms Underlying Place Cells. The fact that
the cells often fire too much or too little puts major constraints
on the neuronal mechanisms that drive place cell activity. On
the one hand, excess variance may be caused by a gating
mechanism that prevents cells from firing or forces them to fire
very rapidly on certain occasions. An anatomical substrate for
gating exists in the form of the dual inputs to CA1 from CA3
and from entorhinal cortex (EC). If, for example, the EC .
CA1 input generates feedforward inhibition (20–22), in-
creased activity of layer III cells in EC could cause CA1 place
cells to be too quiet or even silent. Note that this proposed role
of the EC input would require great specificity of connections
for the excess variance to be uncorrelated for cells with fields
in the same part of the apparatus. A second basis for excess
variance would be for place cells to be driven by powerful
synchronous inputs. In this view, the motorneuron model for
converting synaptic drive into firing frequency is inapplicable
to place cells because it is implausible that the excess variance
could arise from the smooth summation of many small,
asynchronous excitatory postsynaptic potentials. A similar
conclusion was reached about synaptic drive onto neocortical
neurons although the time scale was much briefer than whole
seconds (23).

The Place Cell Signal. The excess variance suggests that we
must abandon the appealing notion that place cells exclusively
and reliably signal the rat’s position by firing rate. If place cells
signal only position, the excess variance means that they are
quite unreliable in the time domain. Although excess variance
indeed may be just a form of noise, that is a hard conclusion
to accept given the great positional precision of place cell
firing.

The alternative conclusion is that in addition to current
position place cells carry a signal that is yet to be characterized.
The notion is that the excess variance represents modulation
of the positional signal that our initial explorations did not
uncover. Consider again those place cells with overlapping or
coincident firing fields in a certain part of the apparatus.
Perhaps some of these cells fire mainly when the rat ap-
proaches the target region along a certain trajectory and others
fire mainly when the rat approaches along a different trajec-
tory. Just as well the particular cells that fire on a certain pass
might indicate where the rat will wind up after exiting the field.
These possibilities are in line with a vector field model of
hippocampal mapping (24) in which the firing of place cells
during locomotion is biased locally in that direction that
eventually will take the rat to a goal. Provision for multiple
goals in a single environment is made by supposing that
different place cells with different local directional biases are
turned on or off by gain control depending on which potential
goal is current. Preliminary tests of this hypothesis were made
by once again examining the properties of passes through firing
fields grouped according to Z scores. Although our examina-
tion was by no means exhaustive, we could see no characteristic
that was common to high or low rate paths. Nevertheless,
because no place or set of places was a consistent goal during
pellet chasing, our analysis should be repeated for passes
through fields on the central platform of an eight-arm maze.
One then could ask if certain cells fired at higher rates if the
rat left a certain arm or if it was in the process of going to a
certain arm.

A related issue concerns the difficulty of testing whether the
excess variance arises because individual cells are ‘‘tuned’’ to
very specific behavioral states. Data from cells with overlap-
ping fields imply that the state of the place cell population does
not vary in conjunction with any specific state of the animal.
Nevertheless, individual cells could signal very particular
behavioral states as was suggested in early studies (25, 26).
Such proposals run into the grave problem that they are
virtually impossible to falsify. Consider first which variables to
examine. As the number of variables goes up, the number of

possible distinct states for the animal increases as a product.
For example, if only position is important, experience tells us
that dividing an apparatus into about 500 equal-size pixels
gives a good picture of the positional firing pattern. If head
direction also is included, it should be resolved to one part in
20 so the number of distinguishable states is now 10,000. What
about running speed? Step length? The nature of the current
gait? It would take an enormous amount of data gathering to
fill such multidimensional arrays. Furthermore, there is no end
to the possible variables that might be included. Which ones
are reasonable is a matter of judgment and taste. We have
developed a video-based method that could reveal which
variables are important as long as they are at the behavioral
level (27), but it remains for future work to apply this method
to the excess variance problem. We stress, however, that the
analysis of simultaneously recorded cells with coincident fields
provides a nearly perfect way of ruling out global states of the
animal as causing the variance. Thus, the firing of both cells
cannot be controlled by whether the animal is paying attention,
is happy, is eating, and so on. Perhaps some cells are tuned to
attention and others to inattention, some are tuned to happi-
ness and others to sadness, but hypotheses of this sort are
frivolous unless there is some independent reason for propos-
ing them. As stated above, the excess variance may reflect a
physiological mode of hippocampal activity and not an un-
known message.

Computing Position from Place Cell Activity. Finally, we
raise the issue of computing the rat’s position given the
conjoint activity of a set of place cells. It seems clear that
reconstruction of position should be less accurate by using the
real spike time series of a certain number of place cells
compared with spike time series generated for the same
number of place cells using an IPP. (It also seems clear that the
accuracy of position reconstruction from real place cell firing
can be improved by increasing the number of cells.)

To compare real and IPP-generated spike trains, we used
data from multiple simultaneously recorded place cells pro-
vided by Matthew Wilson and Bruce McNaughton (6). This is
the data set from rat 1 from ref. 6. We used 34 of the 76
complex-spike cells; these are the cells considered to exhibit
statistically significant spatial information content (6). A time-
averaged firing rate distribution was made for each cell. To
determine the position of the rat from the real data, the time
sequence of positions was replayed. A firing rate vector
averaged for 50 msec (the time resolution of rat tracking) then
was calculated for the 34 cells. The projection of this momen-
tary rate vector onto the session-averaged rate vector for each
pixel was calculated and the rat’s position was taken as the pixel
in which the projection was largest. The computation was done
only for intervals during which the length of momentary rate
vector was not zero (intervals during which at least one cell
fired). The error was the distance between the computed and
tracked positions. The error was averaged over all 50 msec
intervals for 13.4 min of data. The error then was found when
the rate was averaged for intervals of 100, 150, 200, . . . , 2,000
msec. Finally, the same process was used to compute the error
when ‘‘firing’’ was generated by the IPP instead of the observed
spike discharge.

The error calculations are summarized in Fig. 5. The spike
trains from the IPP consistently yielded smaller mean errors
for averaging times greater than 100 msec. We believe that the
poorer positional prediction from the real data reflects the
excess variance. We imagine that the nearly constant differ-
ence at averaging times .300 msec is caused by displacements
of the rat during the averaging interval; such errors will be
worse for longer intervals and will apply with equal strength to
computations from the real and IPP-generated data. We also
imagine that the errors are nearly equal for the real and
IPP-based spike trains at 50 and 100 msec averaging times
because it is unlikely, given the time-averaged firing rates, that
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more than one cell will be ‘‘active’’ in any sample interval.
Accordingly, the predicted error is expected to be the same for
each process. The fact that the error difference is greatest at
200 msec is interesting because this time is a ‘‘natural’’
integrating time; it is about equal to the cycle time of the theta
rhythm of the hippocampal electroencephalogram.

In summary, the excess variance firing described here is a
second surprising property of the temporal firing patterns of
place cells, the first being the precession of place cell discharge
relative to the phase of the hippocampal electroencephalo-
gram ‘‘theta’’ rhythm that accompanies locomotion (9, 10).
The possibility that the excess variance indicates a nonposi-
tional signal is of great potential importance—such a signal
would provide a major clue to the nature of mapping compu-
tations carried on by the hippocampus.
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FIG. 5. Error of the predicted position of a rat’s head from the
simultaneous firing of 34 place cells as a function of the integration
time for calculating firing rate. The error was calculated in two ways.
The line with E was obtained on the assumption that discharge is
generated by an IPP whose mean value is set by the time-averaged
firing rate of each place cell at the rat’s current position. The line with
F shows the error when head location is calculated using the real spike
time series. The difference (Errorreal 2 ErrorIPP) (‚) shows that the
IPP always does at least as well as the real spikes. At an integration time
of 200 msec, the difference in error is about 6 cm, an improvement of
about 35%. We attribute the lower prediction accuracy from the real
data to excess variance.
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